
ARTICLE IN PRESS
Original Investigation
Noninvasively Evaluating the Grading
of Glioma by Multiparametric
Magnetic Resonance Imaging
Lei Zhang, Master of medicine1, Liu-qing Yang, Bachelor of medicine1, Li Wen, MD,
Sheng-qing Lv, MD, Jun-hao Hu, Master of medicine, Qing-rui Li, Master of medicine,

Jian-ping Xu, MD, Ru-fu Xu, MD, Dong Zhang, MD
A

Fr
C
D
C
P
R
M
R
20
1

©
A
ht
Rationale and Objective: To investigate the performance of multi-parametric magnetic resonance imaging (MRI) for glioma grading.

Materials and Methods: Seventy consecutive patients with histopathologically confirmed glioma were retrospectively evaluated by conven-
tional MRI, dynamic susceptibility-weighted contrast-enhanced, multiple diffusion-weighted imaging signal models including mono-exponen-
tial, bi-exponential, stretched exponential, and diffusion kurtosis imaging. One-way analysis of variance and independent-samples t test were
used to compare the MR parameter values between low and high grades as well as among all grades of glioma. Receiver operating characteris-
tic analysis, Spearman’s correlation analysis, and binary logistic regression analysis were used to assess their diagnostic performance.

Results: The diagnostic performance (the optimal thresholds, area under the receiver operating characteristic curve, sensitivity, and spec-
ificity) was achieved with normalized relative cerebral blood flow (rCBV) (2.240 ml/100 g, 0.844, 87.8%, and 75.9%, respectively), mean
kurtosis (MK) (0.471, 0.873, 92.7%, and 79.3%), and water molecular diffusion heterogeneity index (a) (1.064, 0.847, 79.3% and 78.0%)
for glioma grading. There were positive correlations between rCBV and MK and the tumor grades and negative correlations between a

and the tumor grades (p < 0.01). The parameter of a yielded a diagnostic accuracy of 85.3%, the combination of MK and a yielded a diag-
nostic accuracy of 89.7%, while the combination of rCBV, MK, and a were more accurate (94.2%) in predicting tumor grade.

Conclusion: The most accurate parameters were rCBV, MK, and a in dynamic susceptibility-weighted contrast, diffusion kurtosis imag-
ing, and Multi-b diffusion-weighted imaging for glioma grading, respectively. Multiparametric MRI can increase the accuracy of glioma
grading.
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imaging, Dr radial diffusion coefficient, DSC dynamic susceptibility-weighted contrast, f fraction of fast ADC, FA fractional anisotropy, FAK
fractional anisotropy kurtosis, HGG high-grade glioma, IDH Isocitrate dehydrogenase, IVIM DWI intravoxel incoherent motion diffusion-
weighted imaging, Ka axial kurtosis, Kr radial kurtosis, LGG low-grade glioma,MADCmulti-component apparent diffusion coefficient,MD
mean diffusion,MKmean kurtosis,MTTmean transmit time, rCBF relative cerebral blood flow, rCBV relative cerebral blood volume, ROC
receiver operating characteristic, ROI region of interest, sADC standard apparent diffusion coefficient, TTP time to peak,WHOWorld Health
Organization, a water molecular diffusion heterogeneity index
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INTRODUCTION
G lioma is the most common primary malignant
tumor in the brain and is classified into four grades.
Grade I astrocytomas have a different enhancement

and/or vascularity pattern and do not follow the path of low-
grade astrocytoma (grade II), which progresses to anaplastic
(grade III) and finally to glioblastoma (grade IV) (1). Surgical
resection is the recommended treatment for low-grade gli-
oma (LGG), whereas adjuvant chemo- and radiotherapy after
resection have been shown to produce benefits in high-grade
glioma (HGG) patients (2,3). Accurately identifying and
grading glioma before surgery is important for determining
the appropriate treatment and evaluating the prognosis. His-
topathological analysis is the current gold standard for glioma
1
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Fig. 1. Flow diagram of the patient selection process.
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grading; however, this can only be achieved by invasive ste-
reotactic biopsy or surgical resection, posing a relevant addi-
tional risk to patients (4). Moreover, this approach is prone to
sampling error and cannot be applied to tumors located in
inaccessible brain regions, potentially resulting in inaccurate
grading (5). A noninvasive method that allows accurate assess-
ment of tumor grade is highly desirable and can overcome
these limitations.

Magnetic resonance imaging (MRI) plays an important
role in preoperative grading and therapy optimization (6).
However, conventional MRI (cMRI) provides unsatisfac-
tory accuracy for glioma grading. Advanced MR imaging
techniques, including diffusion imaging, perfusion imag-
ing, and spectroscopy imaging, etc., can provide additional
functional information on tumor tissue in addition to
morphological imaging (7�9). Tissue organization,
including cell density and necrosis, can be visualized by
multiple diffusion-weighted imaging (DWI) signal models.
Diffusion kurtosis imaging (DKI) can be proposed to
characterize the non-Gaussian water diffusion (restricted
and hindered diffusion) behavior in neural tissues. Differ-
ent models can be applied to multi-b value DWI (Multi-
b DWI) including mono-exponential, bi-exponential, and
stretched exponential models, among which bi-exponen-
tial model have been widely used in research, it can
simultaneously provide diffusion and perfusion informa-
tion on tumor cellularity and microcirculation without
requiring a contrast agent. The water molecular diffusion
heterogeneity index (a) of stretched exponential model
reflected the tissue complexity by describing the heteroge-
neity of the diffusion rate in voxel (6). The lower the a

value is, the more complex the lesion is (6). Clinically,
the most commonly used perfusion MRI technique is
dynamic susceptibility-weighted contrast-enhanced imag-
ing (DSC), which can provide information on endothelial
cell proliferation and neovascularization (10,11). DSC can
also provide information about the size and density of
normal vessels supplying neoplasms. An example is a non-
enhancing glioma with elevated relative cerebral blood
volume (rCBV). Various advanced MR techniques have
been applied to glioma grading, meanwhile, combining
different technologies has been shown to provide comple-
mentary information and can be used to obtain more
comprehensive anatomical, physiological, and functional
information on gliomas (12�23). This provides a better
basis for accurate classification of preoperative glioma.

To our knowledge, there are few studies in the litera-
ture combining cMRI with diffusion and perfusion tech-
niques to distinguish glioma grading. The aim of this
study was to evaluate the diagnostic value and accuracy of
cMRI, DSC, and multiple DWI signal models including
DKI, mono-exponential, bi-exponential and stretched
exponential models for preoperative glioma grading and
to examine whether grading can be improved by a multi-
modal approach.
2

MATERIALS ANDMETHODS

Inclusion and Exclusion Criteria of Patients

This single-center retrospective study was approved by the
Ethics Committee of our hospital, and informed consent was
obtained from all participants.

The inclusion criteria were as follows:

� aged from 18�80 years;
� glioma confirmed pathologically;
� underwent surgery within 7 d of MR scan.

The exclusion criteria were as follows:

� intracranial lesion without operation;
� determined not to be a glioma based on pathological eval-
uation;

� corticosteroid therapy or chemoradiotherapy before multi-
parametric MR;

� unsatisfactory image quality.
Initially, 102 patients were enrolled in this study; however,

32 subjects were excluded due to conditions specified in the
criteria (Fig. 1).
Pathology

All tissues obtained from surgery were classified and graded
according to the 2016 World Health Organization guidelines
with standard hematoxylin-eosin staining (1). Grade II was con-
sidered LGG, whereas grades III and IV were considered HGG.
MR Protocol

Patients were examined with a 1.5T scanner (Signa Excite
HDx; GE Healthcare, Milwaukee, WI) using an 8-channel



Fig. 2. A 41-year-old male patient with glioblastoma multiforme (WHO grade IV) in the right frontal lobe. The solid tumor components and
peritumoral edema showed hypointense signals on T1WI (a), hyperintense signals on T2WI (b). Heterogeneous enhancement and placement
of ROIs was noted on the postgadolinium T1WI (c), the tumor lesion area ROI (the purple circle, ROI 1�5), peritumoral edema ROI (ROI 6) and
the contralateral normal-appearing white matter ROI (the green circle, ROI 7). The increased normalized rCBV (4.3 ml/100 g), increased normal-
ized MK (0.9) and dsecreased normalized a (1.0) was found on rCBV map (d), MK map (e) and a map(f), respectively. MK, mean kurtosis; ROI,
region of interest; rCBV, relative cerebral blood volume; WHO, World Health Organization.
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phased-array head coil, and imaging sequences, respective
parameters and the signal equations for multiple DWI signal
models and DSC are summarized in the Supplemental Material.
Conventional imaging, Multi-b DWI and DKI sequences
were acquired before the injection of contrast. After the
injection of 0.1 mmol/kg gadobenate dimeglumine, DSC
sequences and conventional T1 sequences were performed.
To solve the problem of the contrast leakage in DSC, we
made the preload-leakage correction, in which approxi-
mately 2 ml of contrast agent was administered approximately
2 minutes before DSC imaging was performed.
Image Analysis

All multiparametric MR data were analyzed and processed on
an ADW4.6 work station (Function tool; GE Healthcare).
cMRIs were used to assess glioma characteristics (e.g., loca-
tion, homogeneity, borders, and edema), and were carefully
reviewed to determine the solid part of each tumor, peritu-
moral edema, and contralateral normal-appearing white mat-
ter (CNAWM).
Tumor homogeneity: the tumor MR signals were uni-

formly identified as homogeneous, whereas the tumor MR
signals inhomogeneity (e.g., cystic, necrotic, or calcified large
vessels, and hemorrhagic areas) was defined as heterogeneous.
Tumor borders were classified as sharp or indistinct. If the

lesion had marked enhancement, the border was easily con-
firmed on T1-weighted imaging (T1WI) enhanced imaging.
For tumors with no obvious enhancement, the border was
confirmed on the basis of T2-weighted imaging (T2WI) and
fluid attenuated inversion recovery (FLAIR) sequences, and
relatively decreased signal intensity on T2WI or FLAIR was
regarded as tumor area rather than edema.

Edema was defined as a nonenhanced area on contrast-
enhanced T1WI and higher signal outside the tumoral solid
area on T2WI and FLAIR (14).

Next, two observers placed a freehand region of interest
(ROI) over the peritumoral edema to cover the highest signal
intensity on T2WI or FLAIR image distance beyond the
edge of the tumor (Fig. 2a). Five freehand round ROIs
(Fig. 2c) on the tumor lesion area were placed without over-
lap, and the freehand median values of the five ROIs were
selected for analysis (14,18). Regarding the tumor lesion area:
enhanced tumors were delineated to cover as much of the
solid part of the tumor as possible in obviously enhanced
lesions on conventional three-dimensional fast spoiled gradi-
ent-echo (3D-FSPGR+C) images, while the nonenhanced
tumors were delineated to cover the highest signal intensity
region of the tumor on T2WI or FLAIR images. ROI selec-
tion should avoid cystic, necrotic, or calcified large vessels
and hemorrhagic areas. For CNAWM, standardized ROIs
(the same sizes as the lesion ROIs) were placed in the cen-
trum semiovale (Fig. 2c). ROIs were copied to the Multi-b
DWI, DSC, and DKI parameter maps after coregistration
with the anatomical images.

Multi-b DWI, DKI, and DSC data were analyzed using
the MADC, DKI, and a single-compartment model of an
automated arterial input function of the brain perfusion
3



TABLE 1. The Main Clinical and cMRI Features in Gliomas
(Between LGG and HGG)

LGG (n = 29) HGG (n = 41) p Value

Sex (male/female) 15/14 20/21 0.967
Age (yr) 42 § 8 49 § 12 0.009*
Location 0.052
Frontal lobe 18 (26%) 12 (17%)
Parietal lobe 2 (3%) 5 (7%)
Temporal lobe 4 (6%) 15 (21%)
Occipital lobe 2 (3%) 4 (6%)
Insular lobe 2 (3%) 1 (1%)
Others 1 (1%) 4 (6%)
Homogeneity 0.138
Homogeneous 18 (26%) 18 (26%)
Heterogeneous 11 (15%) 23 (33%)
Edema 0.203
Presence 23 (33%) 37 (53%)
Absence 6 (8%) 4 (6%)
Borders 0.994
Sharp 17 (24%) 17 (24%)
Indistinct 12 (17%) 24 (35%)
Contrast enhancement 0.000*
No 21 (30%) 4 (6%)
Yes 8 (11%) 37 (53%)
Histology
Grade II astrocytomas 29 (100%) 0
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program. The mathematical correction of the time-concen-
tration curves was performed using the BrainAIF software
(Function tool, ADW4.6 work station, GE Healthcare) in
DSC analysis. First, the head motion was corrected, and the
threshold was then adjusted to remove the background noise,
yielding a pseudo-color map of each parameter. For DSC,
relative cerebral blood flow (rCBF), rCBV, mean transmit
time (MTT), and time to peak (TTP) were automatically
generated. For Multi-b DWI, standard apparent diffusion
coefficient (sADC) was obtained based on mono-exponential
model, slow diffusion coefficient (D), fast diffusion coefficient
(D�) and fraction of fast ADC (f) were estimated using the bi-
exponential model, distributed diffusion coefficient (DDC)
and water molecular diffusion heterogeneity index (a) were
calculated with stretched exponential model. For DKI, frac-
tional anisotropy (FA), mean diffusion (MD), axial diffusion
coefficient (Da), radial diffusion coefficient (Dr), FA kurtosis
(FAK), mean kurtosis (MK), axial kurtosis (Ka), and radial
kurtosis (Kr) were automatically generated. After the place-
ment of ROIs on the parameter maps, the value of the previ-
ously mentioned parameters were automatically available. All
quantitative parameters extracted from the tumor ROIs were
normalized as follows: lesion area and/or CNAWM, which
was used to eliminate whole-brain interindividual variations
(15,23).
Grade III astrocytomas 0 25 (61%)
Grade IV glioblastomas 0 16 (39%)

cMRI, conventional MRI; HGG; high-grade glioma; LGG, low-grade
glioma.
Data are numbers (%) unless otherwise indicated.
* p < 0.01.
Statistical Analysis

Statistical analysis was performed using SPSS v.24.0 software
(SPSS Inc., Chicago, IL). Data are expressed as the mean §
standard deviation. p values <0.05 were considered statistically
significant for all tests. One-way analysis of variance was used
to compare normalized lesion areas, edema, and CNAWM
values of DSC, DKI and Multi-b DWI parameters between
LGG and HGG, and an independent-samples t test was used
to compare normalized lesion areas for all grades of glioma
(II vs. III, II vs. IV, III vs. IV). A receiver operating characteris-
tic (ROC) curve analysis was performed to determine the opti-
mal thresholds for glioma grading by each normalized
parameter. Additionally, sensitivity, specificity, and area under
the curve (AUC) for glioma grading were calculated in each
case. Relationships between each normalized lesion area
parameter and tumor grade were analyzed with Spearman’s
correlation. A binary logistic regression analysis was conducted
to evaluate the diagnostic accuracy of multi-parametric MR
for glioma grading.
RESULTS

Patient Population and Groups

Among the 70 patients, 61 cases underwent total resection of
tumor lesions and nine cases underwent partial resection of
tumor lesions. Seventy histologically confirmed 29 LGG and
41 HGG cases were selected, as follows: grade II: two cases of
astrocytoma with isocitrate dehydrogenase (IDH) mutation,
4

27 cases of diffuse astrocytoma (25 cases with IDH mutation
and two cases without this mutation), grade III: 25 cases of
anaplastic astrocytoma (10 cases with IDH mutation and 15
cases without this mutation), and 16 cases of grade IV: glio-
blastoma (three cases with IDH mutation and 13 cases with-
out this mutation). The clinical, histological, and cMRI
characteristics are summarized in Table 1. The 41 patients
with HGG were older (LGG, 42 § 8 years, and HGG, 49 §
12 years; p = 0.009) and demonstrated more indistinct mar-
gins (LGG, 12/29; HGG, 24/41) than those with LGG. The
LGGs were more likely to occur in the frontal lobes, whereas
the HGGs were more likely to occur in the temporal and
frontal lobes. Examples of HGG and LGG are provided in
Figs. 2a�e and 3a�e, respectively (Fig. 3).
Comparison of DSC and Multiple DWI Signal Models
Metrics Between LGG and HGG as well as Among All
Grades of Glioma

DSC
The mean values of the normalized rCBF and rCBV were
significantly lower for LGG than HGG in the lesion area
(p < 0.050), and the mean value of normalized MTT was
lower for LGG than HGG in the lesion area (p < 0.050).



TABLE 2. Comparison of DSC, DKI and Multi-b DWI Parameters Values Between LGG (n = 29) and HGG (n = 41) in Gliomas

Parameters Tumor Lesion Area Edema CNAWM

LGG HGG p1 LGG HGG p2 LGG HGG p3

DSC rCBF 2.7 § 2.5 5.2 § 3.9 0.003y 11.3 § 8.2 11 § 8.8 0.885 8.3 § 4.5 7.1 § 3.7 0.228
rCBV 2.0 § 1.5 5.2 § 3.7 0.000y 1.2 § 0.8 1.3 § 1.1 0.762 1.0 § 0.5 0.8 § 0.4 0.095
MTT 0.9 § 0.2 1.1 § 0.4 0.039* 7.1 § 1.6 7.8 § 2.4 0.175 7.7 § 2.2 7. § 1.6 0.474
TTP 1.0 § 0.1 1.0 § 0.1 0.254 20.4 § 3.7 23.2 § 5.8 0.027* 21.1 § 4.1 23.2 § 6.1 0.105

DKI FA 0.4 § 0.1 0.5 § 0.2 0.059 0.3 § 0.1 0.2 § 0.1 0.657 0.5 § 0.1 0.5 § 0.1 0.916
MD 1.9 § 0.6 1.5 § 0.5 0.011* 1.3 § 0.5 1.5 § 0.4 0.078 0.8 § 0.2 0.8 § 0.1 0.051
Da 1.4 § 0.4 1.2 § 0.4 0.016* 1.6 § 0.5 1.9 § 0.4 0.034* 1.2 § 0.2 1.3 § 0.2 0.034*
Dr 2.3 § 0.8 1.9 § 0.7 0.014* 1.2 § 0.5 1.3 § 0.4 0.189 0.6 § 0.1 0.6 § 0.1 0.102
FAK 1.0 § 0.2 0.8 § 0.3 0.001y 0.4 § 0.1 0.4 § 0.1 0.146 0.5 § 0.1 0.5 § 0.1 0.478
MK 0.4 § 0.2 0.7 § 0.2 0.000y 0.6 § 0.2 0.5 § 0.2 0.343 1.1 § 0.1 1.0 § 0.1 0.064
Ka 0.6 § 0.2 0.9 § 0.2 0.000y 0.6 § 0.2 0.5 § 0.1 0.161 0.9 § 0.1 0.9 § 0.1 0.058
Kr 0.3 § 0.1 0.5 § 0.1 0.000y 0.6 § 0.3 0.6 § 0.2 0.510 1.3 § 0.2 1.2 § 0.2 0.181

Multi-b DWI sADC 2.1 § 0.5 1.6 § 0.4 0.000y 1.3 § 0.4 1.3 § 0.3 0.747 0.7 § 0.0 0.7 § 0.0 0.147
D 4.8 § 2.6 3.2 § 1.2 0.001y 0.7 § 0.3 0.7 § 0.3 0.915 0.3 § 0.1 0.2 § 0.1 0.320
D* 1.8 § 1.9 1.1 § 1.3 0.052 33.7 § 20.5 31.1 § 26.7 0.655 29.4 § 15.2 30.3 § 15.3 0.809
f 0.9 § 0.3 1.0 § 0.4 0.487 0.4 § 0.1 0.4 § 0.2 0.328 0.4 § 0.1 0.4 § 0.1 0.627
DDC 2.3 § 0.6 1.8 § 0.5 0.000y 1.3 § 0.5 1.4 § 0.3 0.726 0.7 § 0.0 0.7 § 0.0 0.049*
a 1.1 § 0.1 1.0 § 0.1 0.000y 0.9 § 0.0 0.9 § 0.0 0.508 0.8 § 0.0 0.8 § 0.0 0.020*

a, water molecular diffusion heterogeneity index; D, slow diffusion coefficient; D*, fast diffusion coefficient; Da, axial diffusion; DDC, distrib-
uted diffusion coefficient; Dr, radial diffusion; f, fraction of fast ADC; FA, fractional anisotropy; FAK, fractional anisotropy kurtosis; Ka, axial kur-
tosis; Kr, radial kurtosis; MD, mean diffusion; MK, mean kurtosis; MTT, mean transmit time; rCBF, relative cerebral blood flow; rCBV, relative
cerebral blood volume; sADC, standard apparent diffusion coefficient; TTP, relative time to peak.
p1, analysis of variance in lesion area.
p2, analysis of variance in edema.
p3, analysis of variance in CNAWM.
The unit of parameters: rCBF (ml/100 g/min); rCBV (ml/100 g); MTT (s); TTP (s); MD (mm2/ms); Da (mm2/ms); Dr (mm2/ms); sADC (£ 10�3 mm2/

s); D (£ 10�3 mm2/s); D* (£ 10�3 mm2/s); DDC (£ 10�3 mm2/s).
* p < 0.05.
y p < 0.01.
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However, the mean normalized TTP values of the lesion area
did not differ between LGG and HGG (p > 0.050). The
mean TTP value in cases of peritumoral edema was lower for
LGG than HGG (p < 0.050). There were no significant dif-
ferences in rCBF, rCBV, MTT, and TTP in CNAWM
between LGG and HGG (p > 0.050; Table 2).
The mean values of the normalized rCBF and rCBV values

were significantly lower for grade II glioma than grade III and
IV glioma in the lesion area (p < 0.050), whereas compared
to grade II glioma, the MTT value was significantly higher in
grade IV glioma (p < 0.050; Table 3).
Multiple DWI Signal Models

DKI
In the lesion area, the mean values of the normalized MK,
Ka, and Kr were lower for LGG than HGG (p < 0.050),
whereas the opposite trend was observed for the mean values
of the normalized MD, Da, Dr, and FAK (p < 0.050). The
mean Da value in cases of peritumoral edema and CNAWM
was lower in LGG than in HGG (p < 0.05; Table 2).
The mean values of the normalized MK and Kr values

were significantly lower for grade II glioma than grade III
and IV glioma (p < 0.050) and were significantly lower for
grade III glioma than grade IV glioma (p < 0.050). The mean
values of the normalized Da and FAK values were signifi-
cantly higher, whereas the Ka values were significantly lower
for grade II glioma than grade III and IV glioma in the lesion
area (p < 0.050). In grade IV glioma, compared to grade II
glioma, the MD and Dr values were significantly lower, and
the FA values were significantly higher (p < 0.050; Table 3).
Remaining DWI Signal Models

The mean values of the normalized sADC, D, DDC, and a

were higher for LGG than HGG in the lesion area (p <

0.050). The mean values of DDC and a were slightly lower
in LGG than HGG in CNAWM (p < 0.050; Table 2).

The mean values of the normalized sADC values were sig-
nificantly higher for grade II glioma than grade III and IV gli-
oma (p < 0.050) and were significantly higher for grade III
glioma than for grade IV glioma (p < 0.050). The mean val-
ues of the normalized D, DDC, and a values were signifi-
cantly higher for grade II glioma than for grade III and IV
glioma in the lesion area (p < 0.050; Table 3).
5



TABLE 3. Comparison of DSC, DKI, and Multi-b DWI Parameter Values in the Normalized Lesion Area Across All Grades of Glioma

Parameters Ⅱ (n = 29) Ⅲ( (n = 25) Ⅳ (n = 16) Ⅱ &Ⅲ (p) Ⅱ &Ⅳ (p) Ⅲ &Ⅳ (p)

DSC rCBF 2.7 § 2.5 4.7 § 2.8 6.0 § 5.1 0.008y 0.006y 0.301
rCBV 2.0 § 1.5 4.7 § 2.9 6.1 § 4.8 0.000y 0.000y 0.229
MTT 0.9 § 0.2 1.0 § 0.3 1.2 § 0.5 0.117 0.022* 0.255
TTP 1.0 § 0.1 1.0 § 0.1 1.0 § 0.1 0.523 0.154 0.395

DKI FA 0.4 § 0.1 0.4 § 0.2 0.5 § 0.2 0.303 0.009y -0.105
MD 1.9 § 0.6 1.6 § 0.5 1.4 § 0.5 0.066 0.017* 0.308
Da 1.4 § 0.4 1.2 § 0.3 1.2 § 0.5 0.049* 0.045* 0.567
Dr 2.3 § 0.8 2.0 § 0.7 1.8 § 0.7 0.093 0.015* 0.244
FAK 1.0 § 0.2 0.8 § 0.3 0.8 § 0.2 0.004y 0.005y 0.985
MK 0.4 § 0.2 0.6 § 0.2 0.8 § 0.2 0.000y 0.000y 0.007y

Ka 0.6 § 0.2 0.8 § 0.2 0.9 § 0.2 0.000y 0.000y 0.295
Kr 0.3 § 0.1 0.5 § 0.1 0.6 § 0.1 0.000y 0.000y 0.015*

Multi-b DWI sADC 2.1 § 0.5 1.7 § 0.4 1.4 § 0.4 0.011* 0.000y 0.038*
D 4.8 § 2.6 3.3 § 1.4 3.0 § 1.0 0.013* 0.011* 0.443
D* 1.8 § 1.9 1.1 § 1.6 1.0 § 0.7 0.144 0.099 0.786
f 0.9 § 0.3 1.0 § 0.4 0.9 § 0.3 0.268 0.835 0.274
DDC 2.3 § 0.6 1.9 § 0.5 1.6 § 0.5 0.017* 0.000y 0.058
a 1.1 § 0.1 1.0 § 0.1 1.0 § 0.6 0.000y 0.000y 0.994

a, water molecular diffusion heterogeneity index; D, slow diffusion coefficient; D*, fast diffusion coefficient; Da, axial diffusion; DDC, distrib-
uted diffusion coefficient; Dr, radial diffusion; f, fraction of fast ADC; FA, fractional anisotropy; FAK, fractional anisotropy kurtosis; Ka, axial kur-
tosis; Kr, radial kurtosis; MD, mean diffusion; MK, mean kurtosis; MTT, mean transmit time; rCBF, relative cerebral blood flow; rCBV, relative
cerebral blood volume; sADC, standard apparent diffusion coefficient; TTP, relative time to peak.
The unit of parameters: rCBF (ml/100 g/min); rCBV (ml/100 g); MTT (s); TTP (s); MD (mm2/ms); Da (mm2/ms); Dr (mm2/ms); sADC (£ 10�3 mm2/

s); D (£ 10�3 mm2/s); D* (£ 10�3 mm2/s); DDC (£ 10�3 mm2/s).
* p < 0.05.
y p < 0.01.

Fig. 3. A 53-year-old male patient with diffuse astrocytoma (WHO grade II) in the left temporal lobe. The solid tumor components showed hypo-
intense signal on T1WI (a), hyperintense signal on T2WI (b), no obvious tumor peripheral edema (a, b) and no enhancement was observed on the
postgadolinium T1WI (c). no obviously increased normalized rCBV(1.3 ml/100 g), decreased normalized MK (0.3) and increased normalized a

(1.2) map was found on rCBV map (d), MK map (e) and a map (f), respectively. MK, mean kurtosis; rCBV, relative cerebral blood volume; WHO,
World Health Organization.
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TABLE 4. Correlations Between Glioma Grade and Parame-
ters of the Tumor Lesion Area

Parameters Spearman Correlation
Coefficient

p Value

DSC rCBF 0.369 0.002y

rCBV 0.488 0.000y

MTT 0.293 0.014*
TTP 0.174 0.150

DKI FA 0.309 0.009y

MD �0.317 0.007y

Da �0.282 0.018*
Dr �0.317 0.008y

FAK �0.343 0.004y

MK 0.642 0.000y

Ka 0.521 0.000y

Kr 0.622 0.000y

Multi-b DWI sADC �0.475 0.000y

D �0.366 0.002y

D* �0.218 0.070
f 0.007 0.957
DDC �0.455 0.000y

a �0.501 0.000y

a, water molecular diffusion heterogeneity index; D, slow diffusion
coefficient; D*, fast diffusion coefficient; Da, axial diffusion; DDC,
distributed diffusion coefficient; Dr, radial diffusion; f, fraction of fast
ADC; FA, fractional anisotropy; FAK, fractional anisotropy kurtosis;
Ka, axial kurtosis; Kr, radial kurtosis; MD, mean diffusion; MK, mean
kurtosis; MTT, mean transmit time; rCBF, relative cerebral blood
flow; rCBV, relative cerebral blood volume; sADC, standard apparent
diffusion coefficient; TTP, relative time to peak.
* Correlation is significant at the 0.05 level (2-tailed).
y correlation is significant at the 0.01 level (2-tailed).
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Correlations Between DSC and Multiple DWI Signal
Models Parameter Values and Glioma Grade

There were significant positive correlations between the nor-
malized rCBF, rCBV, MTT, FA, MK, Ka, and Kr values and
tumor grades (p < 0.010), whereas negative correlations were
observed between MD, Da, Dr, FAK, sADC, D, D�, DDC,
and a values and tumor grades (p < 0.010; Table 4).
ROC Analysis of the Normalized DSC and Multiple DWI
Signal Models Parameters for Glioma Grading

An ROC analysis was performed to determine the optimal
thresholds, AUC, sensitivity, and specificity for differentiating
the performance of the normalized DSC, DKI, and Multi-b
DWI parameters regarding the diagnosis of LGG and HGG
(Table 5). The normalized mean rCBV (2.240 ml/100 g,
0.844, 87.8% and 75.9% for the optimal threshold, AUC,
sensitivity, and specificity, respectively), MK (0.471, 0.873,
92.7% and 79.3%) and a (1.064, 0.847, 79.3% and 78.0%)
showed the best diagnostic performance for identifying the
glioma grade (Fig. 4).
Diagnostic Accuracy of Multiparametric MR in Glioma
Grading

When we compared the multiparametric MR parameters,
including the parameters of normalized rCBV, MK, and a in
DSC, DKI, and Multi-b DWI, respectively. The a parameter
from Multi-b DWI (85.3%) showed the best diagnostic accu-
racy relative to the other modalities, followed by the MK
parameter from DKI (83.4%) and the rCBV parameter from
DSC (79.6%) for glioma grading. The diagnostic accuracy
was 89.7% for the combination of the MK parameter from
DKI and the a parameter from Multi-b DWI, followed by
the rCBV parameter from DSC. The a parameter from
Multi-b DWI (86.1%) and the rCBV parameter from DSC
and the MK parameter from DKI (81.9%). The combination
of the three advanced MR parameters (rCBV, MK, and a)
showed the highest accuracy for predicting tumor grade (the
diagnostic accuracy of the statistical analysis was 94.2%).
DISCUSSION

The present study demonstrated that the most accurate
parameters were rCBV, MK, and a in DSC, DKI, and
Multi-b DWI for glioma grading, respectively. Multipara-
metric MR can increase the accuracy of glioma grading. Our
results provide a basis for more accurately grading of gliomas,
which will facilitate better treatment decisions for individual
patients.
Application Value of DSC in Grading Gliomas

DSC quantitatively reflects tumor microvessel density, vascu-
lar properties and distribution and can be used to evaluate the
extent of tumor neoangiogenesis and invasion of surrounding
tissue by measuring rCBV and rCBF, which have been found
to be highly accurate predictors of tumor grade (18,24�26).
HGG exhibits high perfusion in terms of high CBV and CBF
values in the tumor area due to abundant angiogenesis. We
found that the mean values of the normalized rCBF and
rCBV values were significantly lower for grade II glioma
than for grade III and IV glioma in the lesion area (p <

0.050), which was in agreement with previous studies. Thus,
rCBF and rCBV best reflect the hemodynamic response in
glioma, which can be used to evaluate the pathological grade
of glioma before surgery. The results obtained here were sim-
ilar to previous studies (27�29). However, the accuracy, sen-
sitivity and specificity were lower than those in earlier
reports, possibly because our study included more cases
(n= 70) and adopted different methods for ROI selection.
Application Value of DKI in Grading Gliomas

DKI was proposed to characterize the non-Gaussian water
diffusion (restricted and hindered diffusion) behavior in neu-
ral tissues (30). HGG has greater structural complexity and
7



TABLE 5. Threshold Values for Multiple Parameters for Differentiating LGG From HGG

Parameters Threshold AUC Sensitivity (%) Specificity (%)

DSC rCBF 2.347 0.767 80.5 69.0
rCBV 2.240 0.844 87.8 75.9
MTT 0.841 0.659 80.5 48.3
TTP 0.964 0.555 53.7 65.5

DKI FA 0.422 0.604 46.3 82.8
MD 1.443 0.714 89.7 56.1
Da 1.182 0.714 72.4 68.3
Dr 1.880 0.710 79.3 65.9
FAK 0.918 0.738 69.0 70.7
MK 0.471 0.873 92.7 79.3
Ka 0.642 0.841 90.2 69.0
Kr 0.339 0.871 90.2 82.8

Multi-b DWI sADC 1.622 0.774 93.1 63.4
D 3.585 0.699 69.0 75.6
D* 1.648 0.680 79.3 56.1
f 1.150 0.526 31.7 82.8
DDC 1.813 0.765 93.1 63.4
a 1.064 0.847 79.3 78.0

a, water molecular diffusion heterogeneity index; D, slow diffusion coefficient; D*, fast diffusion coefficient; Da, axial diffusion; DDC, distrib-
uted diffusion coefficient; Dr, radial diffusion; f, fraction of fast ADC; FA, fractional anisotropy; FAK, fractional anisotropy kurtosis; Ka, axial kur-
tosis; Kr, radial kurtosis; MD, mean diffusion; MK, mean kurtosis; MTT, mean transmit time; rCBF, relative cerebral blood flow; rCBV, relative
cerebral blood volume; sADC, standard apparent diffusion coefficient; TTP, relative time to peak.
LGG-positive: MD, Da, Dr, FAK, sADC, D, D*, DDC, and a.
HGG-positive: rCBF, rCBV, rMTT, rTTP, FA, MK, Ka, Kr, and f.
The unit of parameters: rCBF (ml/100 g/min); rCBV (ml/100 g); MTT (s); TTP (s); MD (mm2/ms); Da (mm2/ms); Dr (mm2/ms); sADC (£ 10�3 mm2/

s); D (£ 10�3 mm2/s); D* (£ 10�3 mm2/s); DDC (£ 10�3 mm2/s).

Fig. 4. ROC curves for differentiating the performance of normalized DSC (a), DKI (b) and Multi-b DWI (c) parameters in the lesion area. DKI,
diffusion kurtosis imaging; DSC, dynamic susceptibility-weighted contrast; DWI, diffusion-weighted imaging; ROC, receiver operating charac-
teristic.
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heterogeneity than LGG, which increases kurtosis but
decreases the diffusion range (15).

Previous reports have analyzed only one or a few DKI
parameters (15,23,31), and this did not provide comprehen-
sive information about lesions. Our study is distinguished
from previous work by the fact that we selected more DKI
parameters. In this study, we analyzed all available DKI
parameters and compared these metrics between LGG and
HGG. We found that normalized kurtosis metrics in the
8

lesion area were more useful than values that were not nor-
malized for glioma grading. The normalized MK values
showed higher values for the AUC, sensitivity, and specificity
in differentiating all grades. The kurtosis metric (e.g., MK) of
DKI is a promising imaging marker for the accurate identifi-
cation of microstructural changes caused by increased cell
proliferation and associated with higher glioma grades, which
could lead to a more accurate diagnosis and optimized ther-
apy for glioma patients.
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In addition, it was interesting to note that there were sig-
nificant differences in the CNAWM between the LGG and
HGG groups across numerous DKI parameters, including
MD, Da, MK, and Ka. This result is concordant with data
from other studies (15,23,31). The reason may be that the
tumor invaded and destroyed nerve fibers in local brain
regions, which affected the connection of the whole-brain
neural network or caused changes in the microstructure and
microenvironment of brain tissue. Thus, combined with
these parameters in the contralateral normal white matter
area, these parameters can provide more effective imaging
indicators for the early diagnosis of HGG and LGG and an
improvement in the overall diagnostic efficiency.
Application Value of Remaining DWI Signal Models in
Glioma Grading

Multi-b DWI can simultaneously provide diffusion and perfu-
sion information on tumor cellularity and microcirculation
without requiring the use of a contrast agent (32). Currently,
Multi-b DWI has mono-exponential, bi-exponential, and
stretched exponential models, among which bi-exponential
models have been widely used in research. Unlike previous
research reports that used only one model, we used a mono-
exponential(by measuring the sADC value), a bi-exponential
model (by measuring D, D�, and f values) and a stretched
exponential model (by measuring DDC and a values) for gli-
oma grading. The resulting parameters of the three models
were compared regarding their utility in differentiating LGG
from HGG and differentiating across all grades of glioma. We
found that the normalized f and D� values in the lesion area
did not significantly differ between LGG and HGG (p> 0.05),
which contradicted the findings of other studies (22,33). One
possible reason is that these studies used different scanning
equipment and different methods for selecting ROIs as well as
different b values (since a lower b value was more important
for calculating pseudodiffusion, and the b value can influence
the accuracy of f value measurements) (34).
Meanwhile, after comparing all the parameters of the three

models, we showed that the stretched exponential model plays
a potential role in glioma grading. Furthermore, our results
suggested that other parameters calculated from Multi-b DWI
could potentially be useful for noninvasive glioma grading.
Application Value of Multiparametric MRI in Grading
Gliomas

Some studies have reported that the combination of multi-
parametric MR technology can improve the accuracy of gli-
oma grading. Van Cauter S et al. (11) reported that the most
accurate tumor grading can be achieved with a combination
of DKI, DSC, and magnetic resonance spectrum (MRS).
Another study using cMRI, DTI, DSC, and MRS concluded
that combining all parameters was useful for individually clas-
sifying gliomas as low or high grade (35). For the first time,
we used a combination of cMRI, DSC, and multiple DWI
signal models for glioma grading. The results demonstrated
that mean rCBV, MK, and a values were the best diagnostic
parameters of DSC, DKI, and remaining DWI signal models,
respectively, for glioma grading. Evaluations based on the
combination of multiple parameter values provided a better
assessment of glioma grading.

Apart from the intrinsic limits of any retrospective study,
several other limitations of our study should be mentioned.
First, differences between glioma subtypes were not studied
because of the small sample size. Second, only the most abnor-
mal regions within the tumor volumes were manually selected
as ROIs, but not the entire tumor volume. Ideally, it would be
better to select the entire tumor volume as the ROI. We will
refine this in future studies. Third, the range and number of b
values can affect accurate assessments of f and D� but there is
currently no consensus on the optimal number and range of b
values for Multi-b DWI. Finally, high accuracy for glioma
grading reported in this study may be related to over-fitting.
Ideally, a larger dataset should be studied and divided into
training and testing data, so that the latter could be used to
evaluate the performance of the model designed through fit-
ting to the training data. These limitations will be considered
and improved in future research work.

In conclusion, the results of this study showed that the
combination of DSC, DKI, and Multi-b DWI was useful for
preoperative noninvasive glioma grading and that the best
diagnostic performance parameters were the mean rCBV,
MK, and a, respectively. When individually comparing each
modality, the parameter of a from Multi-b DWI had the best
diagnostic accuracy, while combining multiple MR parame-
ters further enhanced the diagnostic performance for glioma
grading. These results provide a basis for more accurate grad-
ing glioma, which will better facilitate correct treatment deci-
sions for individual patients.
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