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Abstract: Secondary glioblastoma (sGBM) is a type of glioblastoma multiforme that evolves from low-grade glioma 
(LGG). However, the mechanism of this transition still remains poorly understood. In this study, we used weighted 
gene co-expression network analysis (WGCNA) on the gene expression profiles of glioma samples from the Chinese 
Glioma Genome Atlas (CGGA) database to identify key genetic module related to distinguish histological character-
istics. Here, the brown module was highly correlated with histological characteristics and was selected as the hub 
module. By applying functional annotation analysis, we found that biological processes related to the cell-cycle and 
DNA-replication were enriched in the genes of the brown module. After constructing a protein-protein interaction 
(PPI) network, validation of differential gene expression, and survival analyses, we ultimately identified five hub 
genes: CCNB2 (Cyclin B2), KIF2C (Kinesin Family Member 2C), CDC20 (Cell Division Cycle 20), TPX2 (TPX2 Microtu-
bule Nucleation Factor), and PLK1 (Polo Like Kinase 1). In addition, a computational risk model was developed for 
predicting the clinical outcomes of sGBM patients by combining gene expression levels. This gene signature was 
demonstrated to be an independent predictor of survival by univariate and multivariable Cox regression analysis. 
Finally, we used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the responses of sGBM 
patients to routine chemotherapeutic drugs. Patients from the high-risk group were more sensitive to common 
chemotherapies during clinical treatment. Our findings based on comprehensive analyses might advance the un-
derstanding of sGBM transition and aid the development of novel biomarkers for diagnosing and predicting the 
survival of sGBM patients. 
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Introduction

Glioma is the most common intracranial malig-
nancy, and the prognosis remains poor in most 
cases. According to the World Health Organi- 
zation (WHO) classification of central-nervous-
system tumors [1], grade IV glioma-also known 
as glioblastoma multiforme (GBM)-is the most 
lethal and aggressive brain tumor [2]. GBM can 
be classified into two distinct subtypes. The de 
novo tumors without a prior malignant lesion 
can be classified as “primary GBM (pGBM)”, 
whereas GBMs originating from low-grade glio-
ma (LGG) are defined as “secondary GBM 
(sGBM)” [3]. Although sGBM shares certain his-
tological similarities with pGBM, they differ in 
genetic and epigenetic aspects [3]. The pheno-

type of sGBM is often more aggressive, with 
significantly poorer clinical outcomes after 
developing from LGG. Accordingly, the median 
overall survival of sGBM patients (7.8 months) 
is much shorter than that of LGG patients 
(approximately seven years) [4, 5]. Despite 
intensive therapeutic methods, including surgi-
cal resection, chemotherapy and radiotherapy, 
the clinical efficacy of sGBM treatment still 
remains unsatisfactory [6]. Most studies on 
sGBM have mainly focused on exploring the bio-
logical differences between pGBM and sGBM 
[4, 7], and have rarely paid attention to the 
mechanisms of the transition from LGG to 
sGBM. Therefore, the changes in genetic pro-
files that accompany this conversion should be 
urgently clarified to aid the search for more 
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effective biomarkers and therapeutic targets 
for sGBM.

With the technological development of microar-
ray and high-throughput sequencing methods, 
gene expression profiles have been widely used 
to identify potential key targets behind the vital 
molecular mechanisms for subsequent resear- 
ch. However, most studies have merely focused 
on seeking differentially expressed genes but 
ignored the interactions among them. Weighted 
gene co-expression network analysis (WGCNA) 
[8] and protein-protein interaction (PPI) net-
work are powerful methods for exploring the 
correlations between gene clusters and clinical 
features. To date, the WGCNA algorithm has 
been widely used in studies of different diseas-
es, especially various cancers [9]. The Chinese 
Glioma Genome Atlas (CGGA), a database con-
sists of over 2000 samples from Chinese glio-
ma cohorts, has provided a considerable 
amount of genomic and clinical data for glioma, 
offering a possibility to better understand the 
biology and pathology of this severe malig- 
nancy.

In the present study, we used systematic bioin-
formatic approaches to explore the potential 
diagnostic and prognostic targets of sGBM. A 
co-expression network was constructed and 
several key genes inside the hub module were 
identified. A risk-score model was built to evalu-
ate the effect of these hub genes on the prog-
nosis of sGBM patients. This study may improve 
our understanding of the genetic changes and 
potential mechanisms of the transition from 
LGG to sGBM, and may provide new ideas for 
the development of efficacious therapies for 
treating sGBM.

Material and methods

Data collection and preprocessing

The normalized gene-level RNA-sequencing, 
microarray data and clinical information of dif-
fuse glioma samples ranging from WHO grade II 
to IV were downloaded from the CGGA data-
base (http://www.cgga.org.cn). All recurrent 
LGG samples were eliminated before filtering 
appropriate samples. Only samples with a ‘his-
tology’ valuation of LGG or sGBM were saved 
for further analysis. Accordingly, 142 LGG and 
34 sGBM samples from the RNA-sequencing 
dataset were selected as the training set, and 

another independent dataset consisting of 151 
LGG and 10 sGBM samples from the microar-
ray gene expression profile was defined as the 
validation set. For the RNA-sequencing datas-
et, the fragments per kilobase million (FPKM) 
values were transformed into transcripts per 
kilobase million (TPM) values, which are more 
similar to those resulting from microarrays and 
more comparable between different samples 
[10]. All probes from the microarray data were 
re-annotated using the GENECODE29 GTF file 
to generate gene symbol names. All protein-
coding genes from the two datasets were 
selected for subsequent analyses.

Clinical specimens

Archival paraffin-embedded LGG tissues (WHO 
grades II-III) were collected from eight patients 
who underwent surgery at the First Hospital of 
Nanjing Medical University. Four sGBM tissue 
samples were obtained from GBM patients who 
had previous pathohistological evidence of 
LGG. Written informed consent was obtained 
from all patients. This study was approved by 
the ethics committee of the First Hospital of 
Nanjing Medical University. All samples were 
collected under protocols approved by the insti-
tutional review boards of Nanjing Medical 
University. All tumor grades were evaluated by 
a pathologist according to the WHO classifi- 
cation criteria.

Construction of the co-expression network and 
module preservation analysis

The weighted co-expression network was con-
structed based on the RNA-sequencing dataset 
using the WGCNA software package [8]. Before 
applying the WGCNA algorithm, genes with 
insufficient abundance (TPM < 1) in more th- 
an 80% of all samples were removed to avoid 
noise and false correlations. This selection 
yielded 10,612 genes for the RNA-sequencing 
dataset. Since non-varying genes usually repre-
sent noise, the top 5000 genes according to 
median absolute deviation (MAD) were filtered 
for the following analysis. For the selected 
genes, a pairwise correlation matrix across all 
samples was calculated. Next, a soft threshold 
(β = 11; scale free R2 = 0.94) was used to trans-
form the correlation matrix into a signed weight-
ed adjacency matrix. The adjacency matrix was 
then used to calculate the topological overlap 
matrix (TOM), which is a robust measure of net-
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work connectivity. A cluster dendrogram, gener-
ated by average linkage hierarchical clustering 
of genes according to their topological overlap, 
was cut into modules with a minimum size of 
30 using the dynamic tree-cutting function. 
Next, a cut-line (0.25) was applied for the mod-
ule dendrogram, followed by the merging of 
similar modules. To assess the stability of each 
module identified in the microarray dataset, we 
conducted module preservation analysis using 
the module Preservation [11] method (nPermu-
tations = 200) in the WGCNA package. In order 
to guarantee the independence and reproduc-
ibility of the process, duplicate samples that 
were present in both the microarray dataset 
and the RNA-sequencing dataset (five sGBM 
and 30 LGG patients) were excluded from the 
module preservation analysis. The preserva-
tion statistics, Zsummary and Median rank, 
were used to quantify the preservation of gene 
modules between two different datasets. A 
Zsummary > 10 indicated strong preservation 
and a module with a lower Median rank tended 
to exhibit stronger preservation statistics than 
a module with a higher Median rank. 

Identification of clinically significant modules 
and functional annotation

The expression of a module eigengene (ME) 
was considered as representative of all genes 
in a given module. The correlations between 
MEs and clinical traits were calculated to iden-
tify the clinically significant modules. In addi-
tion, the gene significance (GS) was defined as 
the mediated p-value of each gene in the linear 
regression between gene expression values 
and clinical traits. Module significance (MS) 
was defined as the average absolute gene 
significance measured for all genes in a given 
module. To further clarify the mechanisms un- 
derlying the module genes, Gene Ontology (GO) 
term analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional pathway anno-
tation were performed using the R package 
clusterProfiler [12]. Enriched GO terms and 
KEGG pathways were chosen according to the 
cutoff criterion of an adjusted p-value (FDR) < 
0.05.

Identification and validation of hub genes

Hub genes are defined as a series of genes with 
high intramodular connectivity and are consid-
ered to play leading roles in the function of a 
module. Here, hub genes were filtered using 

the criteria of high intramodular connectivity 
(cor.geneModuleMembership > 0.8) and strong 
correlation with clinical traits inside a given 
module (cor.geneTraitSignificance > 0.5). The 
online STRING 11.0 database was used to con-
struct a PPI network, which was then imported 
into Cytoscape software. The Maximal Clique 
Centrality (MCC) algorithm in the CytoHubba 
plugin [13] was used to explore important 
nodes in the network. The top-20 highest scor-
ing genes were selected after the MCC process. 
Genes identified in both the co-expression net-
work and PPI network were defined as candi-
date hub genes. The expression levels of candi-
date genes were validated in the CGGA RNA- 
sequencing and microarray datasets using box-
plot. To further test the diagnostic accuracy of 
the candidate hub genes in distinguishing LGG 
and sGBM, the R package pROC [14] was us- 
ed to visualize receiver-operator characteristic 
(ROC) curves and calculate the area under the 
curve (AUC).

Immunohistochemistry

Immunohistochemistry was performed on 4- 
μm-thick sections. Briefly, antigen retrieval was 
performed using sodium citrate buffer (pH 6.0), 
and endogenous peroxidase activity was blo- 
cked with 3% H2O2. Then, the appropriate pri-
mary antibodies were added and incubated 
overnight at 4°C. The secondary antibody was 
applied for 30 min at room temperature. Slides 
incubated with normal serum instead of the pri-
mary antibody were used as negative controls. 
The slides were counterstained with hematoxy-
lin, dehydrated, and mounted. The primary anti-
bodies were as follows: anti-CCNB2 (Protein- 
tech, 21644-1-AP), anti-CDC20 (Proteintech, 
10252-1-AP), anti-KIF2C (Proteintech, 28372-1-
AP), anti-PLK1 (Abcam, ab17056), and anti-
TPX2 (Abcam, ab32795). All the stained slides 
were scanned and captured using Pannoramic 
SCAN (3DHISTECH, Budapest, Hungary). The 
intensity of staining was assessed by measur-
ing the ratio of the integrated optical density 
(IOD) to the area using Image-pro plus v6.0 
software (Media Cybernetics Inc., Bethesda, 
MD, USA).

Construction of a prognostic signature based 
on hub genes

To construct the risk-score model of gene sig-
natures for predicting the overall survival of 
sGBM patients, multivariate Cox proportional-
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hazards regression was performed. The risk 
score for each sGBM patient was calculated as 
follows: risk score = exprgene1 × βgene1 + exprgene2 × 
βgene2 +…+ exprgene n × βgene n. In this formula, βgene 
is the regression coefficient calculated by the 
multivariate Cox proportional hazards regres-
sion model and exprgene represents the expres-
sion value of a given gene. To identify the spe-
cific gene signature that determines the pa- 
tients’ clinical outcomes, patients with risk 
scores above the median were defined as ‘high-
risk’, and those with scores below the median 
were defined as ‘low-risk’. Kaplan-Meier surviv-
al curves were visualized to compare the differ-
ences of prognosis between the high- and low-
risk groups. Subsequently, time-dependent 
ROC analysis for overall survival was used to 
display the predictive capacity of the gene-sig-
nature-based risk model. 

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was per-
formed using GSEA software [15] from the 
Broad Institute. Differential gene analysis bet- 
ween high- and low-risk samples was perfor- 
med using the limma package [16] and the cal-
culated value of log2 (fold change) was used as 
the ranking metric. Collections from curated 
gene sets (C2) and hallmark gene sets (H) were 
downloaded from the Molecular Signatures 
Database (MSigDB) and were used as refer-
ence gene sets. Among them, H contains well-
defined and representative biological states  
or processes, and C2 contains various cura- 
ted canonical pathways, as well as genetic  
and chemical perturbations. While performing 
GSEA analysis, 1000 gene-set permutations 
were performed. The normalized enrichment 
score (NES) was calculated for each gene set. 
Enrichment p-values were adjusted using the 
Benjamini-Hochberg procedure to control the 
FDR [17].

Prediction of chemotherapeutic response

The chemotherapeutic response for each of 
the sGBM patients was predicted according to 
the public pharmacogenomic database, Geno- 
mics of Drug Sensitivity in Cancer (GDSC, www.
cancerrxgene.org). The GDSC database con-
tains data on a large collection of human can-
cer cell lines, anticancer compounds, and ex- 
perimental data on drug sensitivity. The predic-
tion of drug sensitivity (IC50) values was con-

ducted using the R package “pRRophetic” [18], 
which uses a ridge regression model based on 
the GDSC cancer-cell-line expression profiles. 
Before processing, genes with low variety were 
removed and duplicate gene expression data 
was summarized as the mean value.

Statistical analysis

Kaplan-Meier survival curves were visualized to 
discover the differences of clinical outcomes 
between groups using the “survival” and “sur- 
vminer” R packages. Two-sample Student’s 
t-test and Wilcoxon test (Mann-Whitney test) 
were used to assess the significance of differ-
ences in gene expression levels and responses 
to chemotherapeutic drugs between two gro- 
ups, respectively. The log-rank test was per-
formed for survival analysis. For all hypothetical 
tests, a two-sided p-value < 0.05 was consid-
ered to indicate statistical significance. All sta-
tistical analyses were performed using R soft-
ware (version 3.6.1, www.r-project.org).

Results

Construction of the co-expression network

The co-expression network was constructed 
using the CGGA RNA-sequencing dataset. Hi- 
erarchical clustering indicated that CGGA_ 
1283 and CGGA_488 were outliers in these 
datasets, and they were excluded from subse-
quent study (Figure S1). Finally, the datasets of 
33 sGBM patients and 141 LGG patients with 
complete clinical information were selected for 
WGCNA analysis (Figure 1A). The power of β = 
11 (scale free R2 = 0.94) was selected as the 
soft threshold parameter to ensure a scale-free 
network (Figure 1B-E). Specifically, 13 co-
expression modules were identified after merg-
ing modules with similarities above 0.75 
(Figures 2A and S2). The interaction relation-
ship of the modules was analyzed by plotting a 
network heatmap (Figure S3). Each module 
showed significant independence from other 
modules. 

Two methods were used to test the relationship 
between each module and the clinical informa-
tion. Modules with a greater MS were consid-
ered to have a stronger connection with clinical 
features. The brown module had an R2 of 0.64 
(P = 4.1e-40; Figure S4), which was higher than 
that of other modules (Figure 2C). Additionally, 
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the ME of the brown module showed the high-
est association with the histology (Figure 2B). 
Also, this module was robust and reproducible 
according to the module preservation analysis 
after comparing RNA-sequencing data with 
microarray gene expression data. The brown 
module could also be identified in another inde-
pendent network with Zsummary > 10 and relative 
low Median rank statistics (Figure S5). Con- 
sequently, this module was identified as the key 
module of interest for further analyses.

In order to provide an interpretation of the bio-
logical mechanisms underlying the impact of 
genes clustered in the brown module, GO func-
tional and KEGG pathway enrichment analyses 
were performed on 336 genes of this module 
using the “clusterProfiler” R package (Figure 3). 
In the GO analysis, terms related to the cell 
cycle were most prominent, such as DNA repli-
cation (FDR = 5.433e-27), chromosomal se- 
gregation (FDR = 6.637e-22), sister chromatid  
segregation (FDR = 8.205e-20) and cell-cycle 

Figure 1. Clustering dendrogram of samples and selection of soft-threshold power. A. The clustering was based on 
the expression data from the CGGA RNA-sequencing dataset. The top 5000 genes with the highest MAD values 
were used for WGCNA analysis. The displayed colors correspond to the histological characteristics of samples. B. 
Analysis of the scale-free fit index for different soft-thresholding powers. C. Analysis of the mean connectivity for 
different soft-threshold powers. D. Histogram of connectivity distribution when β = 11. E. Linear model fitting of the 
R2 index showing a good quality of fit (R2 = -0.94).
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G1/S phase transition (FDR = 1.617e-16). 
KEGG pathway analysis showed that genes 
from this module were mostly enriched in cell 
cycle (FDR = 3.576e-18), DNA replication (FDR 
= 8.717e-12), human T-cell leukemia virus-1 
infection (FDR = 1.333e-07), oocyte meiosis 
(FDR = 2.022e-07) and the p53 signaling path-

way (FDR = 2.936e-07). These findings revealed 
that genes from the identified brown module 
are mainly involved in DNA replication, cell cycle 
regulation, and proliferation. It stands to rea-
son that the relatively poor prognosis of sGBM 
is related to persistent proliferation during the 
transition from LGG to sGBM.

Figure 2. Identification of modules associated with the histopathological features of the samples. A. Clustering 
tree (dendrogram) of genes based on co-expression network analysis. Genes were clustered based on dissimilarity 
measure (1-TOM). Bars below correspond to modules of genes with high interconnectivity. B. Heatmap of correla-
tions between the modules’ eigengenes and histological characteristics of the samples. Each row corresponds to a 
specific module color. The upper number in each cell is the correlation coefficient of each module with histology, and 
the lower number is the p-value. Color is coded according to the correlation coefficient. C. Distribution of average 
gene significance and errors in the modules associated with the histological characteristics of the samples.
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Identification of hub genes in the brown mod-
ule

Inspired by these findings, we further evaluated 
how these genes of the brown module may 
drive tumor development. Based on the cut-off 
criteria (cor.geneModuleMembership > 0.8 and 
cor.geneTraitSignificance > 0.5), 22 genes with 
high connectivity in the brown module were 
identified as primary hub genes. Subsequently, 
we constructed a network of PPI for these 22 
genes according to the STRING database using 
Cytoscape software, and the MCC score of 
each node was calculated using the CytoHubba 
algorithm. Finally, the top-20 genes ranked by 
MCC scores were filtered, and the PPI network 
was plotted in Cytoscape using genes filtered 
by the two methods. Seven genes were eventu-
ally identified as potential hub genes (CCNB2, 
KIF2C, KIF20A, CDC20, TPX2, CCNB1 and 
PLK1) (Figures 4A and S6). 

Next, we further explored the differences of 
expression levels between the sGBM and LGG 

samples, as well as the diagnostic/prognostic 
value of the identified potential hub genes. We 
used boxplots to show the relationships 
between the hub genes and clinical features in 
the RNA-sequencing and microarray datasets. 
The expression levels of hub genes were signifi-
cantly higher in the sGBM samples than in LGG 
samples (Figure 4B). To evaluate the perfor-
mance of the gene signature in distinguishing 
between sGBM and LGG samples, we used 
ROC curves to measure the true-positive rates 
against the false-positive rates at various 
expression levels of hub genes. All tested ge- 
nes consistently showed a satisfactory perfor-
mance in two independent datasets. Consider- 
ing the limited sample size of the microarray 
dataset, Kaplan-Meier overall survival curves 
were further compared for patients with high 
versus low expression levels of individual hub 
genes in the RNA-sequencing dataset. Com- 
parison of survival curves indicated that five of 
the seven genes were significantly correlated 
with the survival time in the RNA-sequencing 
dataset, with hazard ratios (HRs) ranging from 

Figure 3. GO functional and KEGG pathway enrichment analysis of genes in the brown module. A. Top 10 signifi-
cantly enriched biological process annotations. B. Top 10 significantly enriched cellular component annotations. C. 
Top 10 significantly enriched molecular function annotations. D. Top 10 significantly enriched KEGG pathways. The 
x-axis represents the number of genes in the corresponding gene term and the y-axis shows the gene terms. The 
adjusted p-value of each term is colored according to the legend. 
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2.89 to 4.73 (Figure 5). These in silico analysis 
results indicated that the five genes may serve 
as effective indicators for the diagnosis and 
prognosis of sGBM patients.

Validation of hub genes in clinical specimens

In order to confirm that the five identified hub 
genes were also overexpressed at the protein 
level, we carried out IHC staining and measured 
the expression levels of target proteins in LGG 
(n = 8) and sGBM (n = 4) samples from our insti-
tution. Consistent with the results of the bioin-
formatic analyses, all five proteins were signifi-
cantly upregulated in sGBM samples compared 
with the LGG samples (Figure 6). Taken togeth-
er, we concluded that the five hub genes 
(CCNB2, KIF2C, CDC20, TPX2 and PLK1) play 
an important role in promoting the transition of 
LGG to sGBM, and selected them as bona fide 
hub genes for subsequent analyses.

Construction and validation of a sGBM risk 
signature based on the identified hub genes

To assess the prognostic value of the five iden-
tified hub genes, we constructed a prognostic 

gene signature by integrating the expression 
levels of these genes and the corresponding 
regression coefficients. The risk score was cal-
culated for each patient using the following for-
mula: risk score = (-1.0519)  expression value 
of CCNB2 + 2.2897 expression value of KIF2C 
+ 1.628 expression value of CDC20 + (-1.6286)  
expression value of TPX2 + (-0.8481) expres-
sion value of PLK1.

Patients were subdivided into a high- and a low-
risk group based on the median risk score of 
0.4996. The risk score distribution, survival 
status, and expression profile of the hub genes 
are shown in Figure 7A. Unsurprisingly, more 
surviving patients were found in the low-risk 
group than in the high-risk group. Heatmap 
depicting the expression patterns of the hub 
genes in the two distinct risk groups showed 
that patients with high risk scores were charac-
terized by upregulation of all hub genes, where-
as hub genes were downregulated in low-risk 
patients. A Kaplan-Meier curve was plotted to 
analyze the distribution and correlation of 
patient risk scores with corresponding statuses 
(Figure 7B). The HR value of the high versus the 
low-risk group was 5.37 for overall survival (OS; 

Figure 4. Detection and validation of candidate hub genes. A. PPI network of 22 genes with high connectivity and 
top-20 MCC genes in the brown module. Nodes colored in yellow are candidate genes identified both in the co-
expression network and the PPI network. B. Boxplots of the expression levels of candidate genes in LGG and sGBM 
samples in the CGGA RNA-sequencing and microarray datasets. **; P < 0.01, ***; P < 0.001. Two-tailed Student’s 
t-test was used to evaluate the statistical significance of differences. C. ROC curves measuring the predictive value 
of each candidate gene in the CGGA database. The X-axis shows the false-positive rate, shown as “1-Specifcity”. The 
Y-axis indicates the true positive rate, shown as “Sensitivity”. 
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Figure 5. Overall survival analyses 
based on seven candidate hub genes 
using the log-rank test. Candidate 
genes in the brown module and sig-
nificant results of survival analysis 
(P < 0.05 was defined as statistically 
significant). These were CCNB2 (A), 
CDC20 (B), PLK1 (C), KIF2C (D) and 
TPX2 (E), respectively. HR: hazard ra-
tio, CI: confidence interval.

Figure 6. Protein expression levels of five hub genes in LGG and sGBM tissues. A. Representative photographs of 
IHC staining for CCNB2, CDC20, PLK1, KIF2C, and TPX2 in clinical human samples of LGG and sGBM. Magnifica-
tion, × 200. Scale bar = 50 μm. B. Quantification of IHC staining intensity for each protein in the specimens. The 
integrated optical density (IOD) and the area were quantified using Image-Pro Plus software. Significance tested by 
Student’s t-test, *; P < 0.05, **; P < 0.01, ***; P < 0.001.
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P < 0.001, 95% confidence interval (CI) = 2.08-
13.86). Thus, the patients with low risk scores 
had significantly longer survival times than 
those with high scores. Considering that the 
median survival time of these sGBM patients 
was approximately eight months, we evaluated 
the accuracy of this risk model in predicting the 
one-year survival status. The isocitrate dehy-
drogenase 1 (IDH1) mutation status has been 
previously demonstrated to be strongly corre-
lated with increased OS and is regarded as a 
molecular predictor in the prognosis of sGBM 
patients [19]. The AUC for the risk model was 
0.85, which was much higher than that of the 
IDH1 mutation status (0.55), suggesting that 
the risk model outperforms currently known 
biomarker in accurately predicting the survival 
of sGBM patients (Figure 7C).

To confirm whether the risk model can be used 
as an independent prognostic tool for sGBM, 
univariate and multivariate Cox regression 
analyses were applied to the RNA-sequencing 
dataset according to clinicopathologic featur- 
es, including age, gender, chemotherapy, radio-
therapy and IDH1 mutation status. The risk 
score signature was adjusted using prognostic 
information of clinical factors that had been 
deemed statistically significant in univariate 
analysis (P < 0.05). The HRs for the signature in 
the univariate and multivariate analyses were 
6.53 (P < 0.001, 95% CI: 2.121-20.109) and 
5.167 (P = 0.015, 95% CI: 1.368-19.52), 
respectively (Table 1). Thus, the risk score sig-
nature based on the hub genes can be used 
independently to predict the overall survival of 
sGBM patients.

Figure 7. Construction of the risk signature for sGBM based on five hub genes. The patients were classified into 
high- and low-risk groups based on the median value of the risk scores. A. Risk score distribution, survival status 
of sGBM patients and expression heatmap of the five hub genes. Red indicates a high expression level of a given 
gene, whereas blue indicates a low expression level. B. Kaplan-Meier survival curves for overall survival in the 
high- and low-risk group. C. Time-dependent ROC curves for predicting one-year survival of sGBM patients in the 
RNA-sequencing dataset based on the signature and IDH1 status. The AUC of the gene signature was 0.85, and the 
AUC of the IDH1 mutation was 0.55. 
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Functional analysis of the risk score signature

To investigate the potential biological charac-
teristics and processes related to the hub gene 
signature, we performed GSEA analysis, which 
is a computational method that assesses 
whether an a priori defined set of genes shows 
statistically significant and concordant differ-
ences between two groups. The results showed 
that signaling pathways related to the cell-cycle 
and epithelial-mesenchymal transition (EMT) 
were consistently and significantly upregulated 
in the high-risk samples. These include path-
ways implicated in the regulation of the G2/M 
checkpoint, E2F transcription factors, cell 
cycle, and elevation of the EMT (Figure 8A). By 
contrast, the low-risk group showed high enrich-
ment for the p53 pathway, the inflammatory 
response, and downregulation of glioma stem-
ness and tumor metastasis (Figure 8B). The 
“lein_oligodendrocyte_markers” and “lein_as- 
trocyte_markers” are large gene sets compris-
ing many oligodendrocyte and astrocyte mark-
ers, and their high enrichment in the low-risk 
group suggested that malignant tissues derived 
from these sGBM patients are more similar to 
those of LGG (diffuse astrocytoma, oligoden-
droglioma) patients at the genetic level (Figure 
8B). In recent years, clinically relevant molecu-
lar subtypes of GBM were defined by integrated 
genomic analysis. Verhaak et al. used unified 
transcriptomic and genomic dimensions to 
stratify GBM into four distinct subtypes: Pr- 
oneural, Neural, Classical and Mesenchymal. 
The Neural subtype is typified by the expres-
sion of neuronal markers, and often indicates  
a more favorable prognosis compared with 

Mesenchymal and Classical subtypes. Intri- 
guingly, we noticed that the “verhaak_glioblas-
toma_neural” gene term was enriched in the 
low-risk group, which might partially explain the 
difference in prognosis between the high- and 
low-risk patients in this study.

Greater sensitivity to chemotherapy in the 
high-risk group

Considering that chemotherapy is still the con-
ventional approach in the clinical treatment of 
glioma, we attempted to evaluate the respons-
es of sGBM patients from different risk groups 
to common drugs. Temozolomide (TMZ)-based 
chemotherapy is a standard strategy for glio-
ma, and cisplatin is one of the most effective 
drugs for adjuvant therapy [20]. We managed to 
predict the responses of the two patient groups 
to these chemotherapy drugs by ridge regres-
sion, using GDSC nervous system cell lines 
gene expression data as the training set. A 
10-fold cross-validation was applied to ensure 
the accuracy of this prediction. We found a sig-
nificant difference in the estimated IC50 values 
of the two drugs between the high- and low-risk 
groups (Figure 8C). Hence, we concluded that 
the high-risk group may be more sensitive to 
common chemotherapies during clinical treat-
ment (P < 0.001 for TMZ, P < 0.001 for cis- 
platin). 

Discussion

Secondary glioblastoma is a type of grade IV 
glioma that originates from LGG. Because it is a 
rare disease, insufficient attention has been 
paid to the potential mechanisms of the pro-

Table 1. Uni- and multivariate analyses of the relationship of clinicopathological characteristics, IDH1 
mutation status, and the hub gene signature with overall survival in the CGGA sGBM RNA-sequencing 
cohort

Variable
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P
Gender Male vs. female 1.332 (0.496-3.573) 0.57
Age ≥ median vs. < median 0.709 (0.276-1.817) 0.474 1.869 (0.579-6.035) 0.295
Radiotherapy Yes vs. no 0.267 (0.075-0.957) 0.043 0.264 (0.062-1.124) 0.072
Chemotherapy Yes vs. no 0.13 (0.039-0.435) < 0.001 0.128 (0.036-0.451) 0.001
IDH1 status Mutation vs. wild-type 0.707 (0.264-1.892) 0.49
Risk score High vs. low 6.53 (2.121-20.109) 0.001 5.167 (1.368-19.52) 0.015
Note: The multivariate analysis used stepwise addition and removal of age and covariates associated with survival in the 
univariate models (P < 0.05). The final models only include covariates significantly associated with survival (Wald statistic, P < 
0.05). Bolded italics indicate statistically significant values (P < 0.05).
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Figure 8. Differentially regulated pathways and predicted responses to chemotherapy in the high- and low-risk group. 
All transcripts were ranked according to the log2 (fold change) value derived from differential gene expression analy-
sis between the two groups. Various pathways enriched in the high- (A) and low-risk group (B) were plotted. The NES 
and FDR value of each term were shown. (C) Boxplots of the estimated IC50 values of TMZ and cisplatin for tumor 
cells from two groups. Wilcoxon test (Mann-Whitney test) was used for comparison across groups.
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gression from LGG to sGBM. Although various 
chemotherapies and radiotherapies have been 
applied in clinical treatment, little improvement 
has been documented in sGBM patients. TMZ, 
the first-line chemotherapy for GBM, functions 
by inducing DNA damage, which is unfortunate-
ly accompanied by the development of chemo-
resistance and various side effects. Almost all 
patients will suffer from tumor recurrence after 
TMZ treatment, and the recurrent lesion will be 
resistant to TMZ [21]. Therefore, there is an 
urgent need to explore the genetic alterations 
and unknown biological processes behind this 
conversion, as well as identify new therapeutic 
targets for clinical treatment. By using inte- 
grated bioinformatic methods, we successfully 
identified five key genes strongly associated 
with the patients’ pathological information and 
developed an effective computational tool to 
predict the risk of sGBM patients. This study 
may offer other researchers useful novel ideas 
to improve our understanding of the initiation of 
sGBM.

In order to ensure the robustness of our conclu-
sion, we used both RNA-sequencing and micro-
array gene expression data from the CGGA 
database for the whole study. WGCNA, a power-
ful algorithm for the mining of key genetic mod-
ules behind different phenotypes of interest, 
has been widely used in cancer research. We 
did not filter the differentially expressed genes 
between LGG and sGBM samples before per-
forming WGCNA, because WGCNA is an unsu-
pervised analysis method that seeks for clus-
ters of genes based on expression profiles. 
Accordingly, pre-filtering genes will yield a set of 
correlated genes that will result in highly corre-
lated modules. Moreover, the clustering meth-
od inside WGCNA mainly focuses on sub-classi-
fication of expression profiles based on similar 
biological processes rather than geometric dis-
tance. According to the correlation between 
modules and the pathohistological data of glio-
ma patients, the brown module was selected 
as the preliminary module. Preservation analy-
sis using the microarray dataset showed that 
the module has sufficiently high stability.

Molecular function terms of the GO analysis 
describe activities that occur at the molecular 
level [22]. The genes of the brown module from 
this study were significantly enriched in several 
categories, including chromatin binding, DNA-

dependent ATPase activity, ATPase activity, his-
tone binding, and cyclin-dependent protein 
kinase activity. Chromatin binding can affect 
the local chromatin structure and regulate gene 
transcription [23]. Cyclin-dependent protein 
kinases are a family of regulatory kinases that 
are necessary for cell cycle progression [24]. 
Several signatures related to biological pro-
cess, such as DNA replication, chromosome 
segregation, mitotic nuclear division, and cell 
cycle G1/S phase transition, were found to be 
enriched in the brown module, indicating that 
the main changes of the progression from LGG 
to sGBM were relevant to the cell cycle and 
DNA replication pathways. KEGG pathway anal-
ysis further supported these results. All the 
identified gene terms basically mediate cell 
proliferation, tumorigenesis, and oncogenic 
activities. Our study therefore indicated that 
dysregulation of the cell cycle and DNA replica-
tion processes may be responsible for the 
sGBM transition.

We adopted strict criteria to ensure the preci-
sion of hub gene selection. CytoHubba is a 
Cytoscape plugin that can be used to rank 
nodes in a network according to their network 
features. MCC has been proved to have the 
best performance among all methods built into 
CytoHubba for predicting key genes in ranked 
nodes. Combined with filtering high-connectivi-
ty genes in WGCNA, seven genes were selected 
as hub genes. Nevertheless, KIF20A and 
CCNB1 were eliminated because of lacking 
significant prognostic value. ROC curve analy-
sis showed that these five genes may serve as 
potential biomarkers for the diagnosis of sGBM 
with relatively high sensitivity and specificity. 
The expression levels of these hub genes were 
tested in two databases and protein levels 
were further validated in clinical samples. The 
overexpression and unfavorable prognostic 
value of these genes in sGBM patients may 
explain our hypothesis.  

Multiple studies underscored the tumor-driver 
roles of the hub genes identified in this study. 
CCNB2, a member of the mitotic cyclin family, is 
essential for cyclin-dependent kinase 1 (CDK1) 
activation and is expressed in most cells with 
high mitotic activities [25, 26]. CCNB2 was 
reported to play an important role in regulating 
the G2/M transition [27]. Overexpression of 
CCNB2 is an unfavorable prognostic factor in 
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multiple human cancers, including breast carci-
noma, gastric cancer, non-small cell lung can-
cer, and colorectal adenocarcinoma [28-31]. 
CDC20 is a mitotic regulator that functions by 
co-activating the anaphase-promoting complex 
(APC) E3 ubiquitin ligase [32]. In GBM, CDC20-
APC can control the cell cycle and contribute to 
the maintenance of the invasiveness and self-
renewal abilities of GBM stem-like cells by inter-
acting with SRY-Box 2 (SOX2) [33]. Increased 
expression of CDC20 was observed and veri-
fied to be associated with clinicopathological 
parameters in a variety of human cancers [34-
37]. Recently, small-molecule inhibitors target-
ing CDC20 were developed and found to have 
considerable anti-tumor effects. Examples in- 
clude tosyl-l-arginine methyl ester (TAME), APC 
inhibitor (Apcin), withaferin A, and genistein 
[38-41]. PLK1 has been found to control mitotic 
processes, including centrosome maturation, 
chromosome segregation, spindle assembly, 
and cytokinesis [42]. By phosphorylating cell 
division cycle-25 (CDC25), cyclin B/cdc2 kinase 
is activated and in turn contributes to cell prolif-
eration. At the same time, PLK1 can inhibit the 
activation of checkpoint kinase 1 (Chk1) and 
checkpoint kinase 2 (Chk2) to further prevent 
DNA damage repair [43]. Deficiency of mis-
match repair (MMR) genes has been identified 
as a vital mechanism of the recurrence of GBM 
and acquisition of TMZ resistance [44]. Sele- 
ctive PLK1 inhibitors, such as volasertib, have 
been proved to inhibit the proliferation of GBM 
cells and suppress the development of MMR-
deficient TMZ resistant GBM tumors [45]. 
KIF2C, also known as mitotic centromere-asso-
ciated kinesin (MCAK), is regulated by aurora 
kinase-B and modulates cell cycle progression 
by participating in chromosome segregation 
and microtubule depolymerization [46]. The 
expression level of KIF2C escalates with in- 
creasing glioma grades, and is correlated with 
a poor prognosis in glioma patients [47]. TPX2 
binds to the Thr288 residue in the catalytic 
domain of Aurora-A, preventing Aurora-A from 
phosphorylation and further achieve complete 
activation during mitosis [48]. Considering the 
overexpression and unfavorable prognostic 
correlation of TPX2 in various human cancer 
types, it has been regarded as an oncogene 
and a promising therapeutic target [49-51].

Although each single gene showed satisfactory 
efficiency in the diagnosis and prognosis of 

sGBM patients, the robustness of results is still 
a major concern. In this study, we successfully 
developed a computational risk model by com-
bining all these key genes. Integrated analysis 
indicated that a combination of the five genes 
can serve as an indicator for predicting the clin-
ical outcomes of sGBM patients. Somatic muta-
tions of the IDH1 gene in GBM have been found 
to be associated with better overall survival. It 
has been reported that the frequency of IDH1 
mutation in sGBM and LGG is much higher than 
in pGBM [52]. Moreover, patients with IDH1 
mutation often show a relatively better re- 
sponse to TMZ-based chemotherapy, which in- 
dicates that sGBM patients can better benefit 
from TMZ application than pGBM patients [19]. 
In our study, ROC curve analysis showed that 
the AUC of this hub-gene-based signature for 
the prediction of 1-year survival was much high-
er than that of IDH1 mutation, which means 
that this risk model is superior to IDH1 status in 
predicting the clinical outcomes of sGBM. Given 
the scarcity of effective biomarkers for sGBM, 
this gene signature is potentially a useful alter-
native indicator for the clinical management of 
sGBM patients.

GBM is comprised of heterogeneous cells and 
manifests in distinct phenotypes and clinical 
outcomes [53]. An interesting finding of the 
present study was that genetic markers of oli-
godendrocytes and astrocytes were enriched in 
the low-risk group. According to the WHO clas-
sification of tumors of the CNS, low-grade dif-
fuse glioma can be classified as oligodendro-
glioma, astrocytoma, and mixed oligoastrocy- 
toma [54]. Different types of diffuse glioma 
may originate from different cell lineages. 
Traditionally, oligodendroglioma and astrocyto-
ma are believed to respectively originate from 
oligodendrocytes and astrocytes in the normal 
brain. Hence, the high enrichment of these 
brain cell markers indicated that tumor tissues 
derived from the low-risk patients were well-
differential and more similar to LGG at the 
genetic level. The Neural subtype of GBM is 
characterized by the expression of neuronal 
markers, including NEFL, GABRA1, and SYT1, 
as well as a strong association with oligoden-
drocytic and astrocytic differentiation [55]. 
Therefore, the longer overall survival time of 
low-risk sGBM patients probably results from 
distinct genetic characteristics.
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Due to the pressing need to discover potential 
new anti-cancer drugs, an increasing number 
of drug databases has been established. GDSC 
is the largest public database containing infor-
mation on the drug sensitivity of cancer cell 
lines and molecular markers of drug response 
based on large genomic data. Here, we built 
statistical models based on gene expression 
and drug sensitivity data of nervous system 
cancer cell lines. Cisplatin is a well-known che-
motherapeutic drug that has been widely used 
for the treatment of numerous different human 
cancers [56]. It can induce DNA damage and 
apoptosis in cancer cells and is an effective 
regimen for LGG in children [57]. In this study, 
the IC50 of TMZ and cisplatin predicted using 
the GDSC dataset indicated that tumors in  
the high-risk group may be more sensitive to 
chemotherapy. This finding may provide guid-
ance for deciding which treatment plan is 
appropriate for sGBM patients with different 
risk scores.

Finally, we are aware that there are also some 
limitations in this study. Considering the 
extremely low incidence of sGBM, it is difficult 
to collect enough tumor samples and primary 
sGBM cells for experimental validation. Con- 
sidering that this study was mainly focused on 
data mining and analysis, further experiments 
are needed to confirm the findings of our work. 
For similar reasons, the CGGA database con-
tains a limited number of sGBM samples, which 
may limit the power of statistical analyses. This 
will remain a significant challenge until a large-
scale genomic database becomes available.

In summary, our analyses uncovered several 
key genes that might play critical roles in the 
progression from LGG to sGBM. These genes 
may serve as potential diagnostic and prognos-
tic biomarkers, as well as possible therapeutic 
targets for sGBM. Most importantly, a risk 
model based on hub genes revealed the intrin-
sic mechanisms of this transition, underscoring 
the value of this model in predicting the clinical 
outcomes and directing clinical decisions in 
sGBM cases.
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Figure S1. Clustering analysis of all samples in CGGA RNA-sequencing dataset. The top 5,000 genes with the high-
est median absolute deviation values of glioma samples were used. The red line was plotted to distinguish the 
outlier samples. Two outliner samples, CGGA_1283 and CGGA_488, were figured out.

Figure S2. Visualization of the eigengene network representing the relationships among the modules. Hierarchical 
clustering dendrogram of the eigengenes based on the dissimilarity diss. The horizontal line (red) represents the 
threshold (0.25) for identifing the meta-modules.
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Figure S3. Heatmap of the topological overlap within the gene network. Each row and column represents a gene. 
Different colors on the x-axis and y-axis correspond to different modules. Bright color represents high topological 
overlap while darker color denoting low topological overlap.
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Figure S4. Scatterplot of gene significance (GS) for histology versus module membership (MM) in the brown module. 
The correlation coefficient and p-value were calculated using Pearson correlation analysis.

Figure S5. Preservation analysis of modules using another independent cohort (microarray dataset). The left panel 
shows the composite statistic preservation median rank. Modules with high median ranks usually indicate low pres-
ervation. The right panel shows the composite statistic median rank versus module size. Zsummary > 10 means 
strong evidence that the module is preserved. The dashed blue and green lines represent the thresholds Z = 2 and 
Z = 10, respectively.
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Figure S6. Identification of hub genes in the brown module. A. Overlap of hub genes in the brown module identified 
by accessing gene connectivity and performing MCC algorithm, respectively. Intersected genes were regarded as 
hub genes for the subsequent analysis. B. List of detailed gene names obtained from these two distinct methods.


