
cancers

Review

Molecular Heterogeneity and Cellular Diversity:
Implications for Precision Treatment
in Medulloblastoma

Han Zou 1,2,3, Brad Poore 4, Alberto Broniscer 5, Ian F. Pollack 1,2 and Baoli Hu 1,2,6,*
1 Department of Neurological Surgery, University of Pittsburgh School of Medicine,

Pittsburgh, PA 15213, USA; HANZOU@pitt.edu (H.Z.); POLLACI@upmc.edu (I.F.P.)
2 Pediatric Neurosurgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
3 Xiangya School of Medicine, Central South University, Changsha 410013, China
4 Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA;

Bradley.A.Poore@hitchcock.org
5 Pediatric Neuro-Oncology Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;

alberto.broniscer@chp.edu
6 Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
* Correspondence: baolihu@pitt.edu; Tel.: +1-412-962-9457; Fax: +1-412-692-8906

Received: 1 February 2020; Accepted: 5 March 2020; Published: 10 March 2020
����������
�������

Abstract: Medulloblastoma, the most common pediatric malignant brain tumor, continues to
have a high rate of morbidity and mortality in childhood. Recent advances in cancer genomics,
single-cell sequencing, and sophisticated tumor models have revolutionized the characterization
and stratification of medulloblastoma. In this review, we discuss heterogeneity associated with four
major subgroups of medulloblastoma (WNT, SHH, Group 3, and Group 4) on the molecular and
cellular levels, including histological features, genetic and epigenetic alterations, proteomic landscape,
cell-of-origin, tumor microenvironment, and therapeutic approaches. The intratumoral molecular
heterogeneity and intertumoral cellular diversity clearly underlie the divergent biology and clinical
behavior of these lesions and highlight the future role of precision treatment in this devastating brain
tumor in children.

Keywords: medulloblastoma; molecular subgroups; genetic and epigenetic heterogeneity;
intertumoral diversity; clinical trials

1. Introduction

Medulloblastoma (MB) is the most common malignant brain tumor of childhood, which is
classified as an embryonal tumor located in the cerebellum. With an incidence rate of 0.156 cases
per 100,000 population, MB ranks second behind leukemia in incidence, but carries a much worse
overall prognosis [1]. Histologically and genomically, MB is a heterogeneous disease that differs greatly
among patients. The histologic classification of MB consists of four types based on morphological
evaluation, including Classic (CLA), desmoplastic/nodular (DN), MB with extensive nodularity
(MBEN), and large cell/anaplastic (LCA) [2]. Of these findings, moderate to extensive anaplasia, along
with presence of metastases, were characterized with having the worse prognosis [3,4]. Given that
histological classifications can only partially reflect disease heterogeneity and insufficiently predict
patient outcome, MB has since become subclassified on key molecular variations in addition to their
histological characterization.

Multiple studies using genetic and transcriptional profiling of MB samples identified four distinct
molecular subgroups: wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4 [5–10]. Each of
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these subgroups has different molecular drivers, clinical characteristics, and prognoses; for example,
the SHH tumors, especially those tumors with TP53 mutations, and Group 3 have the worse prognosis
while the WNT driven MBs are associated with better prognosis [11,12]. Due to the differences in
aggressiveness between the groups, the WNT-driven MB may be treated less aggressively than those
with SHH or Group 3 tumors. This is important as the standard of care use of radiation therapy carries
significant comorbidities, such as developmental delays or secondary cancers that can occur later in
life [13–15]. This makes molecular classification of MBs, especially at initial diagnosis, an imperative.
Therefore, the revised 2016 World Health Organization (WHO) classification requires both histological
and genetical evaluation as a standard diagnosis for MB [16].

Recently, single-cell RNA sequencing (scRNA-seq) based studies provided new insights on
molecular and cellular heterogeneity, which underlie the divergent biology and clinical behavior in
MB [17–19]. This review is meant to explore the intratumoral and intertumoral heterogeneity and
diversity that characterize MB, and how the differences between the subgroups could potentially
contribute to the treatment and/or prognosis of affected patients.

2. Molecular Heterogeneity in MB

2.1. Molecular Stratifications of MB

In 2012, researchers reached a consensus that classified MB into four different subgroups based on
their molecular characterization, namely WNT, SHH, Group 3, and Group 4 [10]. Of these subgroups,
WNT and SHH were distinguished by the signaling pathways that contribute to their pathogenesis
while Group 3 and Group 4 are separated based on clustering algorithms rather than a single activated
pathway. WNT and SHH subgroups have a balanced sex ratio, while Group 3 and Group 4 MBs
have a male predominance [10]. It is important to note that these classifications are distinct from the
histological subgroupings, although there is significant overlap (Figure 1). For example, Group 3
MBs generally display a classic phenotype, although with some patients exhibiting anaplastic/large
cells pathology as well [10]. Clinical features in MB subgroups were summarized in Figure 2; cellular,
genetic and molecular characteristics of MB subgroups were described below and summarized in
Table 1.
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Figure 1. Relation of histological types and molecular types. The two columns represent histological
classification and molecular classification, respectively. Different heights correspond to different ratios.
Lines between the columns represent the overlapping classification systems. The broader a line,
the more overlapping patients it has. This figure was made based on the date from the reference [12].
CLA: classic medulloblastoma; DN: desmoplastic/nodular medulloblastoma; LCA: large cell/anaplastic
medulloblastoma; MBEN: medulloblastoma with extensive nodularity.
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Table 1. Summary of cellular, genetic and molecular and characteristics in MB subgroups.

Recurrent Gene
Amplification

[7,10,20,21]

Recurrent
SNVs

[7,10,20,21]

Gain of
Chromo-Some

[7,10,21]

Loss of
Chromo-Some

[7,10,21]

Other Recurrent
Genetic Events

[7,10,21,22]

Signature
Transcriptional

Markers [23]

Signature
Methylation
Markers [24]

Cell of Origin
[17,18]

WNT NA

CTNNB1,
DDX3X,

SMARCA4,
TP53

NA 6 NA
WIF1, TNC,

GAD1, DKK2,
EMX2

LHX6 (cg25542041)
USP40 (cg12925355)

KIAA1549
(cg01268345)

Progenitors in
LRL and dorsal

brainstem

SHH MYCN, GLI1 or
GLI2

PTCH1, TERT,
SUFU, SMO,

TP53
3q, 9p 9q, 10q, 17p NA

PDLIM3, EYA1,
HHIP, ATOH1,

SFRP1

lncRNA2178
(cg02227036)

CHTF18
(cg10333416)

KIAA1549
(cg01268345)

Granule
neurons (infant);
GNPs and UBCs

(adult)

Group 3 MYC, MYCN,
OTX2

SMARCA4,
KBTBD4,

CTDNEP1,
KMT2D

1q, 7, 18 8, 10q, 11, 16q

Isochromosome
17q; GFI1 and

GFI1B enhancer
hijacking

IMPG2,
GABRA5,

EGFL11, NRL,
MAB21L2,

NPR3

RPTOR (cg09929238
and cg08129331)

RIMS2 (cg12565585)
VPS37B

(cg13548946)
Intergenic region in

chromosome 12
(cg05679609)

Nestin positive
stem cells

Group 4 SNCAIP, MYCN,
OTX2, CDK6

KDM6A,
ZMYM3,
KTM2C,
KBTBD4

7, 18q 8, 11p, X

Isochromosome
17q; PRDM6,

GFI1, and GFI1B
enhancer
hijacking

KCNA1,
EOMES,

KHDRBS2,
RBM24, UNC5D,

OAS1

USP40 (cg12925355)
AKAP6 (cg18849583)

lncRNA2178
(cg02227036)

UBCs and
GluCNs in URL



Cancers 2020, 12, 643 4 of 18

2.1.1. WNT

Of the different subgroups, the WNT MB has the best prognosis and accounts for 10% of all patients
with MB. Patients with WNT MB are expected to have > 90% survival [10,25]. Named by its core
molecular pathway, WNT MB contains frequent mutations in the WNT pathway, including CTNNB1,
deletion of chromosome 6, and strong immunohistochemical nuclear staining for β-catenin [10].
Integrated analysis of gene expression and DNA methylation further defined two WNT subtypes:
WNTα and WNTβ [12]. While WNTα and WNTβ tumors have similar survival, the WNTα subtype is
enriched for children who have the high frequency of monosomy 6 while WNTβ subtype primarily
incorporates older children and adults with a low frequency of monosomy 6 [12].

2.1.2. SHH

SHH MB is the dominant subgroup in both young children (≤3 years old) and adults (≥16 years
old) [26]. This subgroup accounts for about 30% of all patients with MB, and is defined by its activation
or mutation in the SHH signaling pathway, thus giving rise to the SHH nomenclature [27]. SHH
tumors often contain mutations in genes that activate or promote SHH signaling, such as PTCH1,
SMO, SUFU, and amplifications of GLI1 and GLI2 [27,28]. It is thought that overactivation of SHH
pathway is potentially the source of tumorigenesis, as patients with germline mutations in SUFU,
are at increased risk to develop SHH MB in infancy [28,29]. This SHH subgroup carries with it an
intermediate prognosis except in instances where the tumor also harbors TP53 mutations, in which
there is a poorer prognosis [30]. Additionally, infant and adult SHH MBs are distinct both clinically and
molecularly [27]. Clinically, metastasis in adult SHH MBs often portends a poor prognosis, while not in
young children [27]. Desmoplastic SHH MB is a mark of good prognosis in young children, but not in
adults [27]. Cytogenetically, over-representation of chromosome 10q deletion and MYCN amplification
are more significant in young children [27]. Chromosome 10q deletion, 2 gain, 17p deletion, 17q gain,
and/or GLI2 amplification in adults often means a much worse prognosis than in young children [27].
Recently, SHH MB was further classified into four subtypes: SHHα, SHHβ, SHHγ, and SHHδ based
on DNA methylation and gene expression array datasets [12]. SHHα subtype is enriched for children
who have frequent TP53 mutations and MYCN/GLI2 amplifications. SHHβ and SHHγ occur in young
children, whereas SHHβ tumors have a worse overall survival with frequent metastases compared to
SHHγ tumors that are enriched for the MBEN histology. SHHδ tumors primarily occur in adults, have
a favorable prognosis and have a high frequency of TERT promoter mutations.

2.1.3. Group 3

Of the subgroups, Group 3 has the worst prognosis in MB, with a 5-year survival ranging from 39%
to 58%, depending on age of the patient and treatment regimen [26]. One potential reason for the poorer
prognosis is that 50% of patients with Group 3 MB have metastases at the time of diagnosis [31,32].
The most common cytogenetic event in Group 3 is isochromosome 17q (40–50%). Other common
events include loss of chromosomes 8, 10q, and 16q and gain of 1q, 7, and 18 [20]. Currently, there
is no consensus if these tumors are driven by a distinct pathway, however Group 3 tumors contain
recurrent MYC amplifications, GABRA5 overexpression, and SMARCA4 mutations [31]. Due to a lack
of a single unifying mutation or activated pathway, these tumors are often clustered based on their
transcriptional profile rather than a single marker [10,24]. A recent study based on the integrated
analysis of gene expression and DNA methylation defined three subtypes of Group 3 MB: Group
3α, Group 3β, and Group 3γ [12]. Group 3α tumors are enriched for young children, while Group
3β and Group 3γ tumors occur more commonly in older children. Interestingly, Groups 3α and 3β
have a more favorable prognosis compared with Group 3γ, but Group 3α and Group 3γ are more
frequently metastatic compared with Group 3β. Molecularly, chromosome 8q loss is more frequent in
Group 3α and gain more frequent in Group 3γ. Furthermore, MYC amplification is more frequent in
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Group 3γ; Group 3β tumors have a higher frequency of OTX2 gain, DDX31 loss, and high GFI1/GFI1B
expression [12].

2.1.4. Group 4

Group 4 MB is the most common form of MB and accounts for 35–40% of all MBs [10]. Similar to
Group 3, Group 4 MB does not have a unifying molecular signature and instead must be distinguished
based on the overall transcriptional/molecular profile [10]. Genetically and transcriptionally, the highly
prevalent putative driver events in Group 4 involve overexpression of PRDM6 (17%) and GFI1/GFI1B
(5–10%), somatic mutations of KDM6A (9% ), ZMYM3 (6%), KMT2C (6%) and KBTBD4 (6%),
and amplifications of MYCN (6%), OTX2 (6%), and CDK6 (6%) [20]. Cytogenetically, Group 4
tumors have the most common aberration with isochromosome 17q (80%) and other less frequent
aberrations including gain of chromosomes 7 and 18q, and loss of 8q, 8p, 11p, and X [10,20]. Recently,
three subtypes of Group 4 tumors were defined as Group 4α, Group 4β and Group 4γ [12]. Clinically,
there is no statistically significant difference in the overall survival and metastasis rate at diagnosis
between these groups. Molecular features associated with these three subtypes include MYCN and
CDK6 amplification in group 4α, SNCAIP duplication in group 4β, and CDK6 amplification in group
4γ [12].

2.2. Epigenetic Regulation in MB Subgroups

Epigenetic regulation plays an important role in MB development, which mainly includes
DNA methylation, histone modifications, ATP-dependent chromatin remodeling, and genomic
structural variations. Importantly, epigenetic regulators serve as oncogenes or tumor suppressors in a
context-dependent manner across the distinct subtype of MB [33–35].

2.2.1. DNA Methylation

DNA methylation is a well-characterized epigenetic mechanism, typically occurring on CpG
islands of gene promoter regions, resulting in transcriptional repression during normal development
and tumorigenesis [36]. Based on whole genome bisulfite sequencing on 230 MB samples,
Schwalbe et al. previously demonstrated that subgroups classified by DNA methylation status
are highly related to their transcriptomic counterparts, indicating heterogeneity of DNA methylation
associated with distinct molecular, clinical and pathological disease characteristics in MB [37].
Mechanistically, in contrast to the classical notion of gene repression though promoter hypermethylation,
a comprehensive analysis by combining whole-genome, RNA, chromatin immunoprecipitation (ChIP)
and whole-genome bisulphite sequencing data revealed that hypomethylation of non-promoter regions
correlates with increased gene expression in MB subgroups [38]. For example, the low-risk Group
3 MB was defined primarily by hypermethylation with respect to normal cerebellum, whereas the
high-risk Group 3 MB was defined by hypomethylation [39]. These studies further demonstrated
complexity and diversity of DNA methylation features in MB subgroups.

2.2.2. Histone Modifications

Histone modifications play a crucial role in controlling chromatin structure and gene transcription,
which include histone methylation, phosphorylation, acetylation, and ubiquitination. Genomics
studies of MB provided strong evidence that alterations of histone modifiers result in deregulating
the epigenetic machinery, particularly in modifications of lysine methylation and/or acetylation,
which fundamentally contributes to MB development in the distinct subgroups [20,40,41]. Specifically,
frequent mutations of MLL2/KMT2D and MLL3/KMT2C, two histone-lysine N-methyltransferases that
regulate H3K4 methylation, were identified in 16% of MB [41]. Interestingly, MLL2 mutations were
slightly enriched in WNT and SHH subgroups, while MLL3 were found only in Group 3 and Group 4
MBs [41,42]. In contrast, KDM6A/UTX, a H3K27me demethylase binding to MLL2/3 complex, is the
most frequently mutated gene and co-occurs with ZMYM3 mutations in Group 4 MBs [42–44]. However,
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EZH2, the major subunit of the H3K27 methyltransferase PRC2 complex, was identified to be highly
expressed in Group 3 and Group 4 MBs with globally elevated H3K27me3 levels and a worse prognosis
compared with WNT and SHH MBs [34,44]. In addition to histone methylation, histone acetylation also
plays many fundamental and context-dependent roles in MB. Gene mutations of CREBBP and EP300,
encoding histone acetyltransferases (HATs) CBP and p300 respectively, were found in MB [44–46];
these HATs catalyze H3K27ac, an active enhancer mark associated with the higher activation of
gene transcription [47]. Based on high-resolution chromatin immunoprecipitation with sequencing
(ChIP-seq) for active enhancers (H3K27ac) in tumor samples and cell lines, Lin and colleagues found
subtype-specific super-enhancers in MB transcriptional diversity [48]. These super-enhancers regulate
ALK in WNT, SMO and NTRK3 in SHH, LMO1, LMO2 and MYC in Group 3, and ETV4 and PAX5 in
Group 4 MBs [48]. Another class of histone modifier, the Bromodomain and Extra-Terminal Domain
(BET) family proteins (BRD2, BRD3, BRD4), recognize acetylated lysine residues on euchromatin and
promote transcription, epigenetically regulate MYC expression in Group 3 MB, suggesting therapeutic
potential for this subgroup by using BET inhibitors (e.g., JQ1) [44,49,50]. In contrast, genes encoding
subunits of a nuclear receptor corepressor (N-CoR) complex, e.g., GPS2, BCOR and LDB1, which is
associated with histone deactylases (HDACs), are frequently mutated and active in SHH MB, suggesting
effective response of HDACs inhibitors in the treatment of this subgroup tumors [46,47].

2.2.3. ATP-Dependent Chromatin Remodeling

ATP-dependent chromatin remodeling complexes, such as switch/sucrose non-fermentable
(SWI/SNF) and chromodomain helicase DNA-binding (CHD), can utilize the energy from ATP
hydrolysis to reorganize chromatin structure for regulation of gene expression. Recurrent mutations in
SWI/SNF family members including SMARCA4/BRG1 are the most common in WNT and Group 3 MBs
than those in SHH and Group 4 MBs [41,42,44]. Of interest, SWI/SNF complex has both antagonistic
and synergistic roles with PRC1 and PCR2 in context-specific conditions [51–53], indicting significant
contribution of chromatin remodeling in MB biology and treatment. Additionally, ATP-dependent
chromatin remodeling enzyme CHD7 is frequently mutated in Group 3 and Group 4 MBs [44]. Tumors
with CHD7 mutations have reduced EZH2 expression levels [44], further supporting an antagonistic
relationship between SWI/SNF and PCR2 complexes in these subgroups of MB.

2.2.4. Genomic Structural Variations

Structural variations (SVs), including all structural and quantitative chromosomal rearrangements,
not only contribute to the genetic diversity of the human genome, but also modulate basic mechanisms
of gene regulation by altering higher-order chromatin organization [54]. Importantly, Northcott
and colleagues identified diverse SV classes associated with oncogenic activation of GFI1B or its
paralogue GFI1 in Group 3 and Group 4 MBs [22]. Interestingly, the high diversity of SVs affects the
GFI1B and GFI1 locus or surrounding genomic regions, including deletions, inversions, duplications,
and interchromosomal translocations. Topologically, these SVs juxtapose GFI1 or GFI1B coding
sequences proximal to active enhancer elements, including super-enhancers, resulting in transcriptional
activation of these oncogenes and malignant transformation in Group 3 and Group 4 MBs [22].
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2.3. Proteomics in MB Subgroups

Genomic characterization of MB has identified the genetic and epigenetic heterogenicity but
struggles to define functional biological processes involved in tumorigenesis. Proteomic and
phosphoproteomic analysis could provide insight into discovering active oncogenic signaling pathways
and mechanisms in MB. Using quantitative (phospho)-proteomics, Forget et al. defined highly divergent
posttranscriptional pathway regulation in MB subgroups in a total of 41 flash-frozen primary MB
tumors, particularly in Group 3 and Group 4 MBs [58]. Specifically, this study further validated aberrant
ERBB4-SRC oncogenic signaling in Group 4, indicating potential therapeutic vulnerability by using
SRC kinase inhibitors in this subgroup of MB [58]. Another study of integrated RNA expression, DNA
methylation and global proteomes/phospho-proteomes of 45 MB samples identified two subsets of
tumors, SHHa and SHHb, suggesting a post-transcriptional heterogeneity within SHH MB. The SHHa
subset has higher levels of proteins associated with mRNA processing, splicing, and transcription,
MYC pathway activation, chromatin remodeling, and DNA repair; while the higher levels of proteins
in the SHHb subset are linked to neuronal and neurotransmitter-like activity, glutamatergic synaptic
pathway, and MAPK/ERK signaling [59]. Interestingly, in this study, post-translational modifications
of MYC (phosphorylation of residues S62 and T58 of MYC) in Group 3 tumors were defined as a higher
risk factor for prediction of patient outcome. This study further reported that different kinase activities
are associated with distinct subtypes of MB, including enrichment of PRKDC phosphorylation in
MYC-activated MB, highlighting PRKDC inhibitors in sensitizing this subset of tumors to radiation [59].

3. Cellular Heterogeneity in MB

3.1. Histological Diversity of MB

The four main histologic types of MB (CLA, DN, MBEN, and LCA) recognized by the WHO are
characterized based on their histological morphology, with separations made on the grade of nodularity,
desmoplasia, and anaplasia [2,3,60]. Of these subtypes, the majority of MBs are characterized as CLA,
which contains small basophilic cells with a high nuclear to cytoplasm ratio. Generally, this pattern is
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characterized by a high mitotic index as well as apoptotic activity. DN tumors are densely packed
with cells and hyperchromatic nuclei, in addition to collagen layers stratified throughout the tumor.
MBEN tumors are similar to the DN subgroup; however, portions of the tumor lack the collagen zones.
LCA tumors contain high numbers of mitotic and apoptotic cells, and an altered cellular morphology.
However, the anaplastic MB tends to have elevated nuclear pleomorphisms while large cell MB is
characterized by large circular cells with prominent nuclei [60].

3.2. Cell of Origins in MB Subgroups

Although MBs are thought to originate from primitive and undeveloped cells in the brain,
the cell of origin for MB subgroups remains controversial. Most recently, three single-cell RNA
sequencing (scRNA-seq) studies have provided a clearer picture of MB putative subtype-specific
origins, highlighting the molecular and cellular diversity of MB across all subgroups, with the potential
insights into understanding of tumor development and treatment response [17–19].

Based on investigation of associations between genotype and MB cell type, Gibson et al. discovered
that WNT MBs arise outside the cerebellum from the lower rhombic lip (LRL) and embryonic
dorsal brainstem, whereas SHH MBs are thought to originate from the cerebellar hemispheres [61].
Furthermore, genetically engineered mouse model studies demonstrated that SHH MBs arise from
cerebellar granule neuron progenitors (GNPs) [62,63]. By single-cell transcriptomics of SHH mouse
models, OLIG2+ glial lineage progenitors were identified to play a pivotal role in tumor initiation,
therapy-resistance and recurrence [19]. Interestingly, SHH MBs in infants (≤3 years old) and adults
(≥16 years old) are thought to originate from different GNP populations. Infant SHH MBs are correlated
with intermediate and mature granule neurons, while adult SHH MBs are correlated with GNPs and
mixed unipolar brush cells (UBCs) and GNPs [17]. In contrast to WNT and SHH MBs, cellular origins
of Group 3 and Group 4 MB remain unclear. Recent scRNA-seq studies uncovered a distinct cellular
hierarchy from undifferentiated to differentiated neuronal linkage in MB subgroups, particularly in
Group 3 and Group 4 tumors [17,18]. Group 3 MBs are dominated by an undifferentiated progenitor-like
program and thought to arise from Nestin+ stem cells, which give rise to a variety of differentiated
progeny including GNPs and UBCs [17,18]. In contrast, Group 4 MBs are dominated by a differentiated
neuronal-like program and associated with neuronal cell fates in the embryonic upper rhombic lip
(URL), including UBCs and glutamatergic cerebellar nuclei (GluCN) as candidate cells-of-origin
for this subgroup [17,18]. As for Group 3 and Group 4 tumors exhibiting overlapping molecular
signatures, a subset of ‘intermediate’ tumors (Group 3/4) are mixed, containing both undifferentiated
and more differentiated populations [17]. Together, these studies provided a clear landscape of MB
subtype-specific cell-of-origin during cerebellar development (Figure 3), further supporting cellular
and developmental diversity in MB biology and providing a proximate explanation for the peak
incidence of MBs in childhood. It would be interesting to understand whether the originating cells
(e.g., NSCs, UBCs, GNPs) are preferentially nourished in these anatomic niches for the development of
each subgroup-specific MB in future research directions.
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3.3. Diversity of Tumor Microenvironment in MB

The tumor microenvironment (TME) plays an important role in terms of tumor progression,
evolution, and overall prognosis. TME encompasses the various signaling molecules, supporting cells,
immune system cells, blood vessels, extracellular matrices, and nutrients that contribute to tumor
progression and therapy response [64,65]. Emerging evidence based on preclinical MB models and
bioinformatic analyses of clinical MB samples indicates significant TME heterogeneity across different
MB subgroups [66–69].

The blood–brain barrier (BBB), an anatomic structure consisting of a variety of cell types including
endothelial cells (ECs), astrocytes and pericytes, is also an important factor in maintaining TME.
Of interest, there is often a functional BBB that prevents the tumor from being exposed to potential
chemotherapies found in the blood stream. However, WNT MB, compared to other MB subgroups,
was identified to have a paucity of functional BBB, making this subset of tumors potentially more
susceptible to chemotherapies that may not cross the BBB [67]. Mechanistically, Wnt/β-catenin signaling
being a necessary pathway for BBB formation is thought to be inactive in tumor surrounding ECs in
WNT MB [67,70].

Infiltration of various immune cells in TME is of great interest because these infiltrating leukocytes
either interfere with tumor progression or promote tumor growth, underlying response and efficacy of
immunotherapy. Recent studies based on the quantification of gene expression signatures uncovered
dramatical diversity of immune TME among the MB subgroups [68,69]. Of interest, SHH MB, but not
Group 3 MB, displays strong signatures of macrophages and T cells, while Group 3 MB is enriched with
the highest number of CD8+ T cells; PD-L1 expression is highest in WNT and SHH MBs, but lowest in
Group 4 MB; Group 3 and Group 4 MBs have the largest number of cytotoxic lymphocytes and ECs [68].
Importantly, the study of murine SHH and Group 3 MB models further confirmed significantly higher
percentages of infiltrating immune cells including tumor-associated macrophages (TAMs) in SHH
tumors compared with Group 3 tumors; however, Group 3 tumors were enriched with more PD-1+

CD8+ T cells, resulting in a survival benefit in the Group 3 animals only after the treatment with
PD-L1 and CTLA4 inhibitors [66]. Therefore, these TME characteristics provide promising potential
of immunotherapy for treating MB. Several clinical trials have been conducting by using immune
checkpoint blockade and chimeric antigen receptor T (CAR-T) cell therapies as well as therapeutic
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vaccines [71]. Nonetheless, it would be essential to integrate molecular and immune classification of
MB for guiding future precision immunotherapy.

4. Diagnosis, Current Therapies and Clinical Trials for MB Subgroups

4.1. Diagnosis of MB Subgroups

Clinically, a physical examination aligning with neuroimaging, biopsy, and cerebrospinal
fluid tests is in general being used for MB diagnosis. In 2016, the World Health Organization
(WHO) classification of the Central Nervous System (CNS) tumors initiated an integrative
approach including molecular parameters in combination with histology for MB diagnoses [16].
Given the many possible histological-molecular combinations, the 2016 CNS WHO presented
5 genetic variants (WNT-activated, SHH-activated/TP53-mutant, SHH-activated/TP53-wildtype,
non-WNT/non-SHH/Group 3, and non-WNT/non-SHH/Group 4) in addition to the long-established
histological variants (CLA, DN, MBEN, and LCA) [16]. This diagnoses approach allows greater
flexibility for clinical pathologists with the ability to undertake practical methods in molecular
classification. A previous study reported a NanoString 22-gene signature based on mRNA expression
to stratify molecular subgroups of MB [23]. Furthermore, Gómez et al. reported a novel method for
clinically applicable classification of MB based on DNA methylation detection of tumor samples [24].
Besides molecular subgrouping of MB using gene transcription and DNA methylation features,
magnetic resonance imaging-based radiomic approach is a powerful tool for rapid diagnosis of MB
molecular subgroups in clinic [55,72]. In addition, patient risk stratification in MB subgroups, based
on age, metastatic stage, genetic and cytogenetic alterations, should be considered in diagnosis due
to its significance for prognosis and treatment modalities, which was summarized in Table 2. Thus,
practical and reliable biomarkers for risk stratification are important in MB diagnosis because molecular
heterogeneity leads to prognostic variables in the distinct subgroups and even in the same subgroups
of MB (Table 2). To this end, Shih et al. identified a small panel of cytogenetic biomarkers (GLI2,
MYC, chr11, chr14, 17p, and 17q) to distinguish high-risk and low-risk patients with SHH, Group 3,
and Group 4 MBs, which may provide an excellent tool in patient selection for precision therapy [73].

Table 2. Risk stratification of MB subgroups.

WNT SHH Group 3 Group 4 Intermediate
3/4 Group

Low Risk
(>90%

survival)

<16
years
(age)

Chromosome 13
loss without
neither MYC

amplification nor
metastasis

Non-metastatic,
and whole

chromosome
11 loss or whole

chromosome 17 gain

All

Average
(standard)
(75–90%
survival)

TP53 wildtype
without metastasis

and MYCN
amplification

Neither metastasis
nor MYC

amplification

Neither metastasis nor
chromosome 11 loss

High Risk
(50–75%
survival)

Metastatic, and/or
MYCN-amplified Metastatic

Very High
Risk (<50%

survival)

Adult with TP53
mutation

Metastatic or MYC
amplification

This table was made based on data from the following references [11,21,39,74].
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4.2. Current Therapies

The therapies for MB treatment are currently based on the patient’s risk factors, and consist of
surgery, radiotherapy (RT), and chemotherapy (CT) [31,75]. Although maximal safe resection is the
first-line treatment for MB, the prognostic benefit of increased extent of resection is attenuated when
molecular subgroup affiliation is taken into account [76]. In a retrospective study, patients with Group
4 MB, especially those with metastatic tumor, showed the progression-free survival (PFS) benefit from
gross total resection (GTR) compared to sub-total resection (STR), while this phenomenon was not
observed in WNT, SHH, and Group 3 MBs [76]. However, overall survival (OS) benefit from GTR vs.
STR was not observed in all subgroups of MB [76].

Craniospinal irradiation (CSI) is usually a follow-up treatment after surgery for children older
than age 3 years. Based on patient risk, the treatment dose is 23.4 Gray (Gy) for standard-risk
patients and 36–39 Gy for high-risk patients [77–81]. After the radiation, patients (>3 years of
age) receive chemotherapeutic agents include vincristine, cisplatin, cyclophosphamide, lomustine,
etoposide, and methotrexate [82]. For young children (<3 years of age), multi-agent chemotherapy and
autologous stem cell transplantation are considered to avoid severe long-term cognitive effects from
radiation [82,83]. Despite the current standard of care improves survival rates, iatrogenic morbidity
and late effects often occur in children who survive MB. Therefore, new therapeutic approaches
based on molecular classification must be developed to reduce these side effects for children with this
brain tumor.

4.3. Clinical Trials

With increasing knowledge in MB genomics and biology, precision medicine is an emerging
approach to clinical care that takes into account tumor genetic make-up and individual variations.
Based on molecular classification of MB, we summarized the completed and ongoing clinical trials in
Table 3. Current clinical trials in WNT MB are focused on decreasing the doses of RT and CT, rather
than targeting WNT signaling, because this subgroup of tumor has a more permeable BBB caused by
the dysfunctional WNT signaling pathway, which enables better penetration of CT molecules into
cancer cells. In addition, restoration of WNT signaling activity can attenuate CT sensitivity [67,81].
There are several trials in progress and completion including lower doses of RT+CT (NCT02066220,
NCT01878617, and NCT02724579) and CT-only tests (NCT02212574).

SHH MB with recurrent mutations in PTCH1 or SMO can benefit from SMO inhibitor,
vismodegib [84,85]. However, high-risk SHH patients harboring SUFU mutation, MYCN and GLI2
amplifications, may not benefit from vismodegib treatment, and patients may also develop irreversible
growth plate fusions after vismodegib treatment, which all limit widespread clinical application [86–89].
Therefore, there is a pressing need for new therapeutic strategies for the highest-risk groups of SHH
patients. The completed and ongoing clinical trials include evaluating vismodegib alone in children and
adults with refractory or recurrent SHH MB (NCT00939484, NCT01239316), oral LDE225 (Sonidegib)
in relapsed SHH MB, and vismodegib in combination with temozolomide in SHH MB. Other clinical
trials are ongoing, including testing CX-4945 drug (silmitasertib sodium), an orally bioavailable, highly
selective and potent CK2 inhibitor, in children with recurrent SHH (NCT03904862), and fimepinostat,
a synthetic, orally-available, small molecule that potently inhibits the activity of HDAC and PI3 kinase
enzymes in recurrent medulloblastoma (NCT03893487). In addition, one open trial aims to assess
the combination of ribociclib and sonidegib on patients with refractory or recurrent SHH at St. Jude
Children’s Research Hospital (SJDAWN).

Group 3 and Group 4 MBs have heterogenous clinical characteristics and outcomes associated
with MYC or MYCN amplification, metastasis, and young age (<3 years of age). A multicenter
clinical trial is ongoing in the comprehensive evaluation of current treatment options by integrating
molecular subgroup and risk stratification status into the trial design (NCT01878617), in which Group
3/Group 4 MBs are prioritized for more rigorous treatment with pemetrexed and gemcitabine [21].
While MYC plays an important oncogenic role in many cancers, it is challenging to be directly targeted
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by small molecules and antibodies due to a lack of an enzymatic active site and its nuclear location [90].
Given that inhibition of BET by small molecule JQ1 resulted in suppressing MYC expression and
thereby induce cell death [50], a pediatric cancer trial is currently underway including assessing
the BET inhibitor BMS-986158 in MB with MYC/MYCN amplification (NCT03936465). Furthermore,
ongoing trials aim to evaluate the inhibition of checkpoint kinases (e.g., CDK4/6, CDK1/2) alone or in
combination with CT drugs in brain tumors including recurrent and refractory SHH, Group 3/Group 4
MBs (NCT02255461, NCT04023669).

Table 3. Clinical trials targeting different medulloblastoma groups.

Conditions Interventions ClinicalTrials.gov
Identifier Status

WNT Surgery + Reduced-Dose Radiotherapy +
Reduced-Dose Chemotherapy

NCT02066220
NCT01878617
NCT02724579

Recruiting

WNT Surgery + Chemotherapy, No
Radiotherapy NCT02212574 Suspended

Targeting SHH pathway Vismodegib (SMO Inhibitor) NCT00939484
NCT01239316 Completed

Targeting SHH pathway Vismodegib in combination with
Temozolomide NCT01601184 Terminated

Targeting SHH pathway Sonidegib (SMO Inhibitor) NCT01708174 Completed

Targeting SHH pathway CX-4945 (CK2 Inhibitor) NCT03904862 Recruiting

Intensified Treatment of Group
3/Group 4 MB Pemetrexed and Gemcitabine NCT01878617 Recruiting

MYC-driven Group 3 MB BMS-986158(Bromodomain (BRD) and
Extra-Terminal Domain (BET) Inhibitor NCT03936465 Recruiting

Group 3 MB PD-0332991/Palbociclib (CDK 4-6
Inhibitor) NCT02255461 Terminated

Refractory or Recurrent Group
3/Group 4 MB

Prexasertib (CHK1/2 Inhibitor) and
Gemcitabine NCT04023669 Recruiting

Refractory or Recurrent SHH,
Group 3/Group 4 MB

Prexasertib (CHK1/2 Inhibitor) and
Cyclophosphamide NCT04023669 Recruiting

Recurrent MB Fimepinostat (HDAC and PI3K inhibitor) NCT03893487 Recruiting

Refractory or Recurrent SHH MB Ribociclib and Sonidegib SJDAWN Recruiting

5. Conclusions

Recent advances in cancer genomics, single-cell sequencing, and sophisticated tumor models
have revolutionized our understanding of the biology of MB. It is becoming increasingly clear that
MB is a heterogeneous disease with a high degree of diversity on various molecular and cellular
levels. Four major subgroups of MB (WNT, SHH, Group 3, and Group 4) display tremendous
subtype-specificity in genetic and epigenetic alterations, proteomic landscape, cell-of-origin, tumor
microenvironment, current therapies, and clinical trial design. Undoubtedly, these findings shed
unprecedented light on the development of tailored treatment for children with MB. However,
the side effects of current therapies are still a major obstacle to successful MB treatment. In the
future, greater emphasis needs to be placed on the molecular characterization of MB in the clinic,
as identification of the individual subgroups at diagnosis could help shape the treatment and care of
the patients, and potentially improve the overall survival. Furthermore, as further elucidation of the
activated pathways becomes known, precise and effective therapies targeting the driver mutations in
subtype-specificity can be made available to the patients with this devastating brain tumor in children.



Cancers 2020, 12, 643 13 of 18

Author Contributions: Conceptualizing, B.H.; software and visualization, H.Z.; writing: H.Z., B.P. and B.H.;
review and editing: A.B., I.F.P.; All authors have read and agreed to the published version of the manuscript.

Funding: H.Z. was supported by a joint visiting medical student research program between the University of
Pittsburgh School of Medicine and Central South University Xiangya School of Medicine in Changsha, China. B.H.
was funded by the Matthew Larson Foundation and V Foundation (Funded by WWE in Honor of Connor’s Cure).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khanna, V.; Achey, R.L.; Ostrom, Q.T.; Block-Beach, H.; Kruchko, C.; Barnholtz-Sloan, J.S.; de Blank, P.M.
Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013. J. Neurooncol.
2017, 135, 433–441. [CrossRef] [PubMed]

2. Ellison, D.W. Childhood medulloblastoma: Novel approaches to the classification of a heterogeneous disease.
Acta Neuropathol. 2010, 120, 305–316. [CrossRef] [PubMed]

3. Eberhart, C.G.; Kepner, J.L.; Goldthwaite, P.T.; Kun, L.E.; Duffner, P.K.; Friedman, H.S.; Strother, D.R.;
Burger, P.C. Histopathologic grading of medulloblastomas: A pediatric oncology group study. Cancer 2002,
94, 552–560. [CrossRef] [PubMed]

4. Albright, A.L.; Wisoff, J.H.; Zeltzer, P.M.; Boyett, J.M.; Rorke, L.B.; Stanley, P. Effects of medulloblastoma
resections on outcome in children: A report from the Children’s Cancer Group. Neurosurgery 1996, 38,
265–271. [CrossRef] [PubMed]

5. Cho, Y.J.; Tsherniak, A.; Tamayo, P.; Santagata, S.; Ligon, A.; Greulich, H.; Berhoukim, R.; Amani, V.;
Goumnerova, L.; Eberhart, C.G.; et al. Integrative genomic analysis of medulloblastoma identifies a
molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 2011, 29, 1424–1430. [CrossRef]
[PubMed]

6. Kool, M.; Koster, J.; Bunt, J.; Hasselt, N.E.; Lakeman, A.; van Sluis, P.; Troost, D.; Meeteren, N.S.; Caron, H.N.;
Cloos, J.; et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles,
pathway signatures and clinicopathological features. PLoS ONE 2008, 3, e3088. [CrossRef]

7. Northcott, P.A.; Korshunov, A.; Witt, H.; Hielscher, T.; Eberhart, C.G.; Mack, S.; Bouffet, E.; Clifford, S.C.;
Hawkins, C.E.; French, P.; et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol.
2011, 29, 1408–1414. [CrossRef]

8. Remke, M.; Hielscher, T.; Northcott, P.A.; Witt, H.; Ryzhova, M.; Wittmann, A.; Benner, A.; von Deimling, A.;
Scheurlen, W.; Perry, A.; et al. Adult medulloblastoma comprises three major molecular variants. J. Clin.
Oncol. 2011, 29, 2717–2723. [CrossRef]

9. Thompson, M.C.; Fuller, C.; Hogg, T.L.; Dalton, J.; Finkelstein, D.; Lau, C.C.; Chintagumpala, M.; Adesina, A.;
Ashley, D.M.; Kellie, S.J.; et al. Genomics identifies medulloblastoma subgroups that are enriched for specific
genetic alterations. J. Clin. Oncol. 2006, 24, 1924–1931. [CrossRef]

10. Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.;
Rutkowski, S.; Gajjar, A.; et al. Molecular subgroups of medulloblastoma: The current consensus.
Acta Neuropathol 2012, 123, 465–472. [CrossRef]

11. Ramaswamy, V.; Remke, M.; Bouffet, E.; Bailey, S.; Clifford, S.C.; Doz, F.; Kool, M.; Dufour, C.; Vassal, G.;
Milde, T.; et al. Risk stratification of childhood medulloblastoma in the molecular era: The current consensus.
Acta Neuropathol. 2016, 131, 821–831. [CrossRef] [PubMed]

12. Cavalli, F.M.G.; Remke, M.; Rampasek, L.; Peacock, J.; Shih, D.J.H.; Luu, B.; Garzia, L.; Torchia, J.; Nor, C.;
Morrissy, A.S.; et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2017, 31,
737–754. [CrossRef] [PubMed]

13. Ris, M.D.; Packer, R.; Goldwein, J.; Jones-Wallace, D.; Boyett, J.M. Intellectual outcome after reduced-dose
radiation therapy plus adjuvant chemotherapy for medulloblastoma: A Children’s Cancer Group study.
J. Clin. Oncol. 2001, 19, 3470–3476. [CrossRef] [PubMed]

14. Gessi, M.; Maderna, E.; Guzzetti, S.; Cefalo, G.; Massimino, M.; Solero, C.L.; Finocchiaro, G.; Pollo, B.
Radiation-induced glioblastoma in a medulloblastoma patient: A case report with molecular features.
Neuropathology 2008, 28, 633–639. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11060-017-2594-6
http://www.ncbi.nlm.nih.gov/pubmed/28828582
http://dx.doi.org/10.1007/s00401-010-0726-6
http://www.ncbi.nlm.nih.gov/pubmed/20652577
http://dx.doi.org/10.1002/cncr.10189
http://www.ncbi.nlm.nih.gov/pubmed/11900240
http://dx.doi.org/10.1097/00006123-199602000-00007
http://www.ncbi.nlm.nih.gov/pubmed/8869053
http://dx.doi.org/10.1200/JCO.2010.28.5148
http://www.ncbi.nlm.nih.gov/pubmed/21098324
http://dx.doi.org/10.1371/journal.pone.0003088
http://dx.doi.org/10.1200/JCO.2009.27.4324
http://dx.doi.org/10.1200/JCO.2011.34.9373
http://dx.doi.org/10.1200/JCO.2005.04.4974
http://dx.doi.org/10.1007/s00401-011-0922-z
http://dx.doi.org/10.1007/s00401-016-1569-6
http://www.ncbi.nlm.nih.gov/pubmed/27040285
http://dx.doi.org/10.1016/j.ccell.2017.05.005
http://www.ncbi.nlm.nih.gov/pubmed/28609654
http://dx.doi.org/10.1200/JCO.2001.19.15.3470
http://www.ncbi.nlm.nih.gov/pubmed/11481352
http://dx.doi.org/10.1111/j.1440-1789.2008.00900.x
http://www.ncbi.nlm.nih.gov/pubmed/18384514


Cancers 2020, 12, 643 14 of 18

15. Madden, J.R.; Addo-Yobo, S.O.; Donson, A.M.; Liu, A.K.; McNatt, S.A.; Kleinschmidt-Demasters, B.K.;
Fenton, L.Z.; Foreman, N.K.; Smith, A.A. Radiation-induced glioblastoma multiforme in children treated
for medulloblastoma with characteristics of both medulloblastoma and glioblastoma multiforme. J. Pediatr.
Hematol. Oncol. 2010, 32, e272–e278. [CrossRef]

16. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.;
Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of
the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed]

17. Hovestadt, V.; Smith, K.S.; Bihannic, L.; Filbin, M.G.; Shaw, M.L.; Baumgartner, A.; DeWitt, J.C.; Groves, A.;
Mayr, L.; Weisman, H.R.; et al. Resolving medulloblastoma cellular architecture by single-cell genomics.
Nature 2019, 572, 74–79. [CrossRef]

18. Vladoiu, M.C.; El-Hamamy, I.; Donovan, L.K.; Farooq, H.; Holgado, B.L.; Sundaravadanam, Y.;
Ramaswamy, V.; Hendrikse, L.D.; Kumar, S.; Mack, S.C.; et al. Childhood cerebellar tumours mirror
conserved fetal transcriptional programs. Nature 2019, 572, 67–73. [CrossRef]

19. Zhang, L.; He, X.; Liu, X.; Zhang, F.; Huang, L.F.; Potter, A.S.; Xu, L.; Zhou, W.; Zheng, T.; Luo, Z.;
et al. Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic
Cascades during Tumorigenesis and Relapse. Cancer Cell 2019, 36, 302–318. [CrossRef]

20. Clifford, S.C.; Lusher, M.E.; Lindsey, J.C.; Langdon, J.A.; Gilbertson, R.J.; Straughton, D.; Ellison, D.W.
Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of
medulloblastomas associated with a favorable prognosis. Cell Cycle 2006, 5, 2666–2670. [CrossRef]

21. Kool, M.; Korshunov, A.; Remke, M.; Jones, D.T.; Schlanstein, M.; Northcott, P.A.; Cho, Y.J.; Koster, J.;
Schouten-van Meeteren, A.; van Vuurden, D.; et al. Molecular subgroups of medulloblastoma:
An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH,
Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012, 123, 473–484. [CrossRef]

22. Northcott, P.A.; Hielscher, T.; Dubuc, A.; Mack, S.; Shih, D.; Remke, M.; Al-Halabi, H.; Albrecht, S.; Jabado, N.;
Eberhart, C.G.; et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly
distinct. Acta Neuropathol. 2011, 122, 231–240. [CrossRef]

23. Taylor, M.D.; Liu, L.; Raffel, C.; Hui, C.C.; Mainprize, T.G.; Zhang, X.; Agatep, R.; Chiappa, S.; Gao, L.;
Lowrance, A.; et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 2002, 31, 306–310.
[CrossRef] [PubMed]

24. Brugieres, L.; Pierron, G.; Chompret, A.; Paillerets, B.B.; Di Rocco, F.; Varlet, P.; Pierre-Kahn, A.; Caron, O.;
Grill, J.; Delattre, O. Incomplete penetrance of the predisposition to medulloblastoma associated with
germ-line SUFU mutations. J. Med. Genet. 2010, 47, 142–144. [CrossRef] [PubMed]

25. Zhukova, N.; Ramaswamy, V.; Remke, M.; Pfaff, E.; Shih, D.J.; Martin, D.C.; Castelo-Branco, P.; Baskin, B.;
Ray, P.N.; Bouffet, E.; et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma.
J. Clin. Oncol. 2013, 31, 2927–2935. [CrossRef] [PubMed]

26. Sengupta, S.; Pomeranz Krummel, D.; Pomeroy, S. The evolution of medulloblastoma therapy to personalized
medicine. F1000Res 2017, 6, 490. [CrossRef] [PubMed]

27. Garzia, L.; Kijima, N.; Morrissy, A.S.; De Antonellis, P.; Guerreiro-Stucklin, A.; Holgado, B.L.; Wu, X.;
Wang, X.; Parsons, M.; Zayne, K.; et al. A Hematogenous Route for Medulloblastoma Leptomeningeal
Metastases. Cell 2018, 172, 1050–1062. [CrossRef]

28. Northcott, P.A.; Buchhalter, I.; Morrissy, A.S.; Hovestadt, V.; Weischenfeldt, J.; Ehrenberger, T.; Grobner, S.;
Segura-Wang, M.; Zichner, T.; Rudneva, V.A.; et al. The whole-genome landscape of medulloblastoma
subtypes. Nature 2017, 547, 311–317. [CrossRef]

29. Gomez, S.; Garrido-Garcia, A.; Garcia-Gerique, L.; Lemos, I.; Sunol, M.; de Torres, C.; Kulis, M.; Perez-Jaume, S.;
Carcaboso, A.M.; Luu, B.; et al. A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma.
Clin. Cancer Res. 2018, 24, 1355–1363. [CrossRef]

30. Batora, N.V.; Sturm, D.; Jones, D.T.; Kool, M.; Pfister, S.M.; Northcott, P.A. Transitioning from genotypes to
epigenotypes: Why the time has come for medulloblastoma epigenomics. Neuroscience 2014, 264, 171–185.
[CrossRef]

31. Dubuc, A.M.; Remke, M.; Korshunov, A.; Northcott, P.A.; Zhan, S.H.; Mendez-Lago, M.; Kool, M.; Jones, D.T.;
Unterberger, A.; Morrissy, A.S.; et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation
occur across subgroups in medulloblastoma. Acta Neuropathol. 2013, 125, 373–384. [CrossRef]

http://dx.doi.org/10.1097/MPH.0b013e3181e51403
http://dx.doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
http://dx.doi.org/10.1038/s41586-019-1434-6
http://dx.doi.org/10.1038/s41586-019-1158-7
http://dx.doi.org/10.1016/j.ccell.2019.07.009
http://dx.doi.org/10.4161/cc.5.22.3446
http://dx.doi.org/10.1007/s00401-012-0958-8
http://dx.doi.org/10.1007/s00401-011-0846-7
http://dx.doi.org/10.1038/ng916
http://www.ncbi.nlm.nih.gov/pubmed/12068298
http://dx.doi.org/10.1136/jmg.2009.067751
http://www.ncbi.nlm.nih.gov/pubmed/19833601
http://dx.doi.org/10.1200/JCO.2012.48.5052
http://www.ncbi.nlm.nih.gov/pubmed/23835706
http://dx.doi.org/10.12688/f1000research.10859.1
http://www.ncbi.nlm.nih.gov/pubmed/28713553
http://dx.doi.org/10.1016/j.cell.2018.01.038
http://dx.doi.org/10.1038/nature22973
http://dx.doi.org/10.1158/1078-0432.CCR-17-2243
http://dx.doi.org/10.1016/j.neuroscience.2013.07.030
http://dx.doi.org/10.1007/s00401-012-1070-9


Cancers 2020, 12, 643 15 of 18

32. Jones, D.T.; Northcott, P.A.; Kool, M.; Pfister, S.M. The role of chromatin remodeling in medulloblastoma.
Brain Pathol. 2013, 23, 193–199. [CrossRef] [PubMed]

33. Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428.
[CrossRef]

34. Schwalbe, E.C.; Williamson, D.; Lindsey, J.C.; Hamilton, D.; Ryan, S.L.; Megahed, H.; Garami, M.; Hauser, P.;
Dembowska-Baginska, B.; Perek, D.; et al. DNA methylation profiling of medulloblastoma allows robust
subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 2013,
125, 359–371. [CrossRef]

35. Hovestadt, V.; Jones, D.T.; Picelli, S.; Wang, W.; Kool, M.; Northcott, P.A.; Sultan, M.; Stachurski, K.;
Ryzhova, M.; Warnatz, H.J.; et al. Decoding the regulatory landscape of medulloblastoma using DNA
methylation sequencing. Nature 2014, 510, 537–541. [CrossRef]

36. Schwalbe, E.C.; Lindsey, J.C.; Nakjang, S.; Crosier, S.; Smith, A.J.; Hicks, D.; Rafiee, G.; Hill, R.M.; Iliasova, A.;
Stone, T.; et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood
medulloblastoma: A cohort study. Lancet. Oncol. 2017, 18, 958–971. [CrossRef]

37. Northcott, P.A.; Nakahara, Y.; Wu, X.; Feuk, L.; Ellison, D.W.; Croul, S.; Mack, S.; Kongkham, P.N.; Peacock, J.;
Dubuc, A.; et al. Multiple recurrent genetic events converge on control of histone lysine methylation in
medulloblastoma. Nat. Genet. 2009, 41, 465–472. [CrossRef]

38. Parsons, D.W.; Li, M.; Zhang, X.; Jones, S.; Leary, R.J.; Lin, J.C.; Boca, S.M.; Carter, H.; Samayoa, J.;
Bettegowda, C.; et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011, 331,
435–439. [CrossRef]

39. Northcott, P.A.; Jones, D.T.; Kool, M.; Robinson, G.W.; Gilbertson, R.J.; Cho, Y.J.; Pomeroy, S.L.; Korshunov, A.;
Lichter, P.; Taylor, M.D.; et al. Medulloblastomics: The end of the beginning. Nat. Rev. Cancer 2012, 12,
818–834. [CrossRef] [PubMed]

40. Lee, M.G.; Villa, R.; Trojer, P.; Norman, J.; Yan, K.P.; Reinberg, D.; Di Croce, L.; Shiekhattar, R. Demethylation
of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 2007, 318, 447–450. [CrossRef]
[PubMed]

41. Robinson, G.; Parker, M.; Kranenburg, T.A.; Lu, C.; Chen, X.; Ding, L.; Phoenix, T.N.; Hedlund, E.; Wei, L.;
Zhu, X.; et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012, 488, 43–48.
[CrossRef]

42. Jones, D.T.; Jager, N.; Kool, M.; Zichner, T.; Hutter, B.; Sultan, M.; Cho, Y.J.; Pugh, T.J.; Hovestadt, V.;
Stutz, A.M.; et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012, 488,
100–105. [CrossRef] [PubMed]

43. Pugh, T.J.; Weeraratne, S.D.; Archer, T.C.; Pomeranz Krummel, D.A.; Auclair, D.; Bochicchio, J.; Carneiro, M.O.;
Carter, S.L.; Cibulskis, K.; Erlich, R.L.; et al. Medulloblastoma exome sequencing uncovers subtype-specific
somatic mutations. Nature 2012, 488, 106–110. [CrossRef] [PubMed]

44. Yi, J.; Wu, J. Epigenetic regulation in medulloblastoma. Mol. Cell Neurosci. 2018, 87, 65–76. [CrossRef]
45. Lin, C.Y.; Erkek, S.; Tong, Y.; Yin, L.; Federation, A.J.; Zapatka, M.; Haldipur, P.; Kawauchi, D.; Risch, T.;

Warnatz, H.J.; et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature
2016, 530, 57–62. [CrossRef] [PubMed]

46. Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.;
Paranal, R.M.; Qi, J.; et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011,
146, 904–917. [CrossRef]

47. Bandopadhayay, P.; Bergthold, G.; Nguyen, B.; Schubert, S.; Gholamin, S.; Tang, Y.; Bolin, S.; Schumacher, S.E.;
Zeid, R.; Masoud, S.; et al. BET bromodomain inhibition of MYC-amplified medulloblastoma.
Clin. Cancer Res. 2014, 20, 912–925. [CrossRef]

48. Kadoch, C.; Williams, R.T.; Calarco, J.P.; Miller, E.L.; Weber, C.M.; Braun, S.M.; Pulice, J.L.; Chory, E.J.;
Crabtree, G.R. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic
states. Nat. Genet. 2017, 49, 213–222. [CrossRef]

49. Stanton, B.Z.; Hodges, C.; Calarco, J.P.; Braun, S.M.; Ku, W.L.; Kadoch, C.; Zhao, K.; Crabtree, G.R. Smarca4
ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 2017, 49, 282–288. [CrossRef]

50. Ho, L.; Miller, E.L.; Ronan, J.L.; Ho, W.Q.; Jothi, R.; Crabtree, G.R. esBAF facilitates pluripotency by
conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat. Cell Biol. 2011,
13, 903–913. [CrossRef]

http://dx.doi.org/10.1111/bpa.12019
http://www.ncbi.nlm.nih.gov/pubmed/23432644
http://dx.doi.org/10.1038/nrg816
http://dx.doi.org/10.1007/s00401-012-1077-2
http://dx.doi.org/10.1038/nature13268
http://dx.doi.org/10.1016/S1470-2045(17)30243-7
http://dx.doi.org/10.1038/ng.336
http://dx.doi.org/10.1126/science.1198056
http://dx.doi.org/10.1038/nrc3410
http://www.ncbi.nlm.nih.gov/pubmed/23175120
http://dx.doi.org/10.1126/science.1149042
http://www.ncbi.nlm.nih.gov/pubmed/17761849
http://dx.doi.org/10.1038/nature11213
http://dx.doi.org/10.1038/nature11284
http://www.ncbi.nlm.nih.gov/pubmed/22832583
http://dx.doi.org/10.1038/nature11329
http://www.ncbi.nlm.nih.gov/pubmed/22820256
http://dx.doi.org/10.1016/j.mcn.2017.09.003
http://dx.doi.org/10.1038/nature16546
http://www.ncbi.nlm.nih.gov/pubmed/26814967
http://dx.doi.org/10.1016/j.cell.2011.08.017
http://dx.doi.org/10.1158/1078-0432.CCR-13-2281
http://dx.doi.org/10.1038/ng.3734
http://dx.doi.org/10.1038/ng.3735
http://dx.doi.org/10.1038/ncb2285


Cancers 2020, 12, 643 16 of 18

51. Spielmann, M.; Lupianez, D.G.; Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 2018, 19,
453–467. [CrossRef] [PubMed]

52. Northcott, P.A.; Lee, C.; Zichner, T.; Stutz, A.M.; Erkek, S.; Kawauchi, D.; Shih, D.J.; Hovestadt, V.; Zapatka, M.;
Sturm, D.; et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 2014, 511,
428–434. [CrossRef] [PubMed]

53. Juraschka, K.; Taylor, M.D. Medulloblastoma in the age of molecular subgroups: A review. J. Neurosurg.
Pediatr. 2019, 24, 353–363. [CrossRef] [PubMed]

54. Northcott, P.A.; Shih, D.J.; Remke, M.; Cho, Y.J.; Kool, M.; Hawkins, C.; Eberhart, C.G.; Dubuc, A.;
Guettouche, T.; Cardentey, Y.; et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical
medulloblastoma samples. Acta Neuropathol. 2012, 123, 615–626. [CrossRef] [PubMed]

55. Perreault, S.; Ramaswamy, V.; Achrol, A.S.; Chao, K.; Liu, T.T.; Shih, D.; Remke, M.; Schubert, S.; Bouffet, E.;
Fisher, P.G.; et al. MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am. J. Neuroradiol.
2014, 35, 1263–1269. [CrossRef] [PubMed]

56. Wefers, A.K.; Warmuth-Metz, M.; Poschl, J.; von Bueren, A.O.; Monoranu, C.M.; Seelos, K.; Peraud, A.;
Tonn, J.C.; Koch, A.; Pietsch, T.; et al. Subgroup-specific localization of human medulloblastoma based on
pre-operative MRI. Acta Neuropathol. 2014, 127, 931–933. [CrossRef]

57. Ramaswamy, V.; Remke, M.; Bouffet, E.; Faria, C.C.; Perreault, S.; Cho, Y.J.; Shih, D.J.; Luu, B.; Dubuc, A.M.;
Northcott, P.A.; et al. Recurrence patterns across medulloblastoma subgroups: An integrated clinical and
molecular analysis. Lancet. Oncol. 2013, 14, 1200–1207. [CrossRef]

58. Forget, A.; Martignetti, L.; Puget, S.; Calzone, L.; Brabetz, S.; Picard, D.; Montagud, A.; Liva, S.; Sta, A.;
Dingli, F.; et al. Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by
Integrative Phosphoproteomic Profiling. Cancer Cell 2018, 34, 379–395. [CrossRef]

59. Archer, T.C.; Ehrenberger, T.; Mundt, F.; Gold, M.P.; Krug, K.; Mah, C.K.; Mahoney, E.L.; Daniel, C.J.; LeNail, A.;
Ramamoorthy, D.; et al. Proteomics, Post-translational Modifications, and Integrative Analyses Reveal
Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2018, 34, 396–410. [CrossRef]

60. Quinlan, A.; Rizzolo, D. Understanding medulloblastoma. JAAPA 2017, 30, 30–36. [CrossRef]
61. Gibson, P.; Tong, Y.; Robinson, G.; Thompson, M.C.; Currle, D.S.; Eden, C.; Kranenburg, T.A.; Hogg, T.;

Poppleton, H.; Martin, J.; et al. Subtypes of medulloblastoma have distinct developmental origins. Nature
2010, 468, 1095–1099. [CrossRef] [PubMed]

62. Oliver, T.G.; Read, T.A.; Kessler, J.D.; Mehmeti, A.; Wells, J.F.; Huynh, T.T.; Lin, S.M.; Wechsler-Reya, R.J.
Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma.
Development 2005, 132, 2425–2439. [CrossRef] [PubMed]

63. Yang, Z.J.; Ellis, T.; Markant, S.L.; Read, T.A.; Kessler, J.D.; Bourboulas, M.; Schuller, U.; Machold, R.;
Fishell, G.; Rowitch, D.H.; et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted
progenitors or stem cells. Cancer Cell 2008, 14, 135–145. [CrossRef] [PubMed]

64. Spill, F.; Reynolds, D.S.; Kamm, R.D.; Zaman, M.H. Impact of the physical microenvironment on tumor
progression and metastasis. Curr. Opin. Biotechnol. 2016, 40, 41–48. [CrossRef]

65. Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 2012, 125,
5591–5596. [CrossRef]

66. Pham, C.D.; Flores, C.; Yang, C.; Pinheiro, E.M.; Yearley, J.H.; Sayour, E.J.; Pei, Y.; Moore, C.; McLendon, R.E.;
Huang, J.; et al. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade
among Molecular Subtypes of Murine Medulloblastoma. Clin. Cancer Res. 2016, 22, 582–595. [CrossRef]

67. Phoenix, T.N.; Patmore, D.M.; Boop, S.; Boulos, N.; Jacus, M.O.; Patel, Y.T.; Roussel, M.F.; Finkelstein, D.;
Goumnerova, L.; Perreault, S.; et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype.
Cancer Cell 2016, 29, 508–522. [CrossRef]

68. Bockmayr, M.; Mohme, M.; Klauschen, F.; Winkler, B.; Budczies, J.; Rutkowski, S.; Schuller, U.
Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology 2018, 7,
e1462430. [CrossRef]

69. Margol, A.S.; Robison, N.J.; Gnanachandran, J.; Hung, L.T.; Kennedy, R.J.; Vali, M.; Dhall, G.; Finlay, J.L.;
Erdreich-Epstein, A.; Krieger, M.D.; et al. Tumor-associated macrophages in SHH subgroup of
medulloblastomas. Clin. Cancer Res. 2015, 21, 1457–1465. [CrossRef]

http://dx.doi.org/10.1038/s41576-018-0007-0
http://www.ncbi.nlm.nih.gov/pubmed/29692413
http://dx.doi.org/10.1038/nature13379
http://www.ncbi.nlm.nih.gov/pubmed/25043047
http://dx.doi.org/10.3171/2019.5.PEDS18381
http://www.ncbi.nlm.nih.gov/pubmed/31574483
http://dx.doi.org/10.1007/s00401-011-0899-7
http://www.ncbi.nlm.nih.gov/pubmed/22057785
http://dx.doi.org/10.3174/ajnr.A3990
http://www.ncbi.nlm.nih.gov/pubmed/24831600
http://dx.doi.org/10.1007/s00401-014-1271-5
http://dx.doi.org/10.1016/S1470-2045(13)70449-2
http://dx.doi.org/10.1016/j.ccell.2018.08.002
http://dx.doi.org/10.1016/j.ccell.2018.08.004
http://dx.doi.org/10.1097/01.JAA.0000524717.71084.50
http://dx.doi.org/10.1038/nature09587
http://www.ncbi.nlm.nih.gov/pubmed/21150899
http://dx.doi.org/10.1242/dev.01793
http://www.ncbi.nlm.nih.gov/pubmed/15843415
http://dx.doi.org/10.1016/j.ccr.2008.07.003
http://www.ncbi.nlm.nih.gov/pubmed/18691548
http://dx.doi.org/10.1016/j.copbio.2016.02.007
http://dx.doi.org/10.1242/jcs.116392
http://dx.doi.org/10.1158/1078-0432.CCR-15-0713
http://dx.doi.org/10.1016/j.ccell.2016.03.002
http://dx.doi.org/10.1080/2162402X.2018.1462430
http://dx.doi.org/10.1158/1078-0432.CCR-14-1144


Cancers 2020, 12, 643 17 of 18

70. Liebner, S.; Corada, M.; Bangsow, T.; Babbage, J.; Taddei, A.; Czupalla, C.J.; Reis, M.; Felici, A.; Wolburg, H.;
Fruttiger, M.; et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J. Cell Biol.
2008, 183, 409–417. [CrossRef]

71. Wang, S.S.; Bandopadhayay, P.; Jenkins, M.R. Towards Immunotherapy for Pediatric Brain Tumors. Trends
Immunol. 2019, 40, 748–761. [CrossRef]

72. Iv, M.; Zhou, M.; Shpanskaya, K.; Perreault, S.; Wang, Z.; Tranvinh, E.; Lanzman, B.; Vajapeyam, S.;
Vitanza, N.A.; Fisher, P.G.; et al. MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of
Medulloblastoma. AJNR Am. J. Neuroradiol. 2019, 40, 154–161. [CrossRef] [PubMed]

73. Shih, D.J.; Northcott, P.A.; Remke, M.; Korshunov, A.; Ramaswamy, V.; Kool, M.; Luu, B.; Yao, Y.; Wang, X.;
Dubuc, A.M.; et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 2014, 32,
886–896. [CrossRef] [PubMed]

74. Lastowska, M.; Trubicka, J.; Niemira, M.; Paczkowska-Abdulsalam, M.; Karkucinska-Wieckowska, A.;
Kaleta, M.; Drogosiewicz, M.; Perek-Polnik, M.; Kretowski, A.; Cukrowska, B.; et al. Medulloblastoma with
transitional features between Group 3 and Group 4 is associated with good prognosis. J. Neurooncol. 2018,
138, 231–240. [CrossRef] [PubMed]

75. Packer, R.J.; Vezina, G. Management of and prognosis with medulloblastoma: Therapy at a crossroads.
Arch. Neurol. 2008, 65, 1419–1424. [CrossRef] [PubMed]

76. Thompson, E.M.; Hielscher, T.; Bouffet, E.; Remke, M.; Luu, B.; Gururangan, S.; McLendon, R.E.; Bigner, D.D.;
Lipp, E.S.; Perreault, S.; et al. Prognostic value of medulloblastoma extent of resection after accounting for
molecular subgroup: A retrospective integrated clinical and molecular analysis. Lancet. Oncol. 2016, 17,
484–495. [CrossRef]

77. Packer, R.J.; Goldwein, J.; Nicholson, H.S.; Vezina, L.G.; Allen, J.C.; Ris, M.D.; Muraszko, K.; Rorke, L.B.;
Wara, W.M.; Cohen, B.H.; et al. Treatment of children with medulloblastomas with reduced-dose craniospinal
radiation therapy and adjuvant chemotherapy: A Children’s Cancer Group Study. J. Clin. Oncol. 1999, 17,
2127–2136. [CrossRef]

78. Merchant, T.E.; Kun, L.E.; Krasin, M.J.; Wallace, D.; Chintagumpala, M.M.; Woo, S.Y.; Ashley, D.M.; Sexton, M.;
Kellie, S.J.; Ahern, V.; et al. Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4
Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive
chemotherapy for average-risk medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 782–787.
[CrossRef]

79. Wahba, H.A.; Abu-Hegazy, M.; Wasel, Y.; Ismail, E.I.; Zidan, A.S. Adjuvant chemotherapy after reduced
craniospinal irradiation dose in children with average-risk medulloblastoma: A 5-year follow-up study.
J. Buon 2013, 18, 425–429.

80. Gajjar, A.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Kun, L.E.; Merchant, T.E.; Woo, S.; Wheeler, G.;
Ahern, V.; Krasin, M.J.; et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy
and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96):
Long-term results from a prospective, multicentre trial. Lancet. Oncol. 2006, 7, 813–820. [CrossRef]

81. Thomas, A.; Noel, G. Medulloblastoma: Optimizing care with a multidisciplinary approach. J. Multidiscip.
Healthc. 2019, 12, 335–347. [CrossRef] [PubMed]

82. De Braganca, K.C.; Packer, R.J. Treatment Options for Medulloblastoma and CNS Primitive Neuroectodermal
Tumor (PNET). Curr. Treat. Options Neurol. 2013, 15, 593–606. [CrossRef] [PubMed]

83. Remke, M.; Ramaswamy, V. Infant medulloblastoma - learning new lessons from old strata. Nat. Rev.
Clin. Oncol. 2018, 15, 659–660. [CrossRef] [PubMed]

84. Robinson, G.W.; Orr, B.A.; Wu, G.; Gururangan, S.; Lin, T.; Qaddoumi, I.; Packer, R.J.; Goldman, S.;
Prados, M.D.; Desjardins, A.; et al. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic
Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies
PBTC-025B and PBTC-032. J. Clin. Oncol. 2015, 33, 2646–2654. [CrossRef]

85. Gajjar, A.; Stewart, C.F.; Ellison, D.W.; Kaste, S.; Kun, L.E.; Packer, R.J.; Goldman, S.; Chintagumpala, M.;
Wallace, D.; Takebe, N.; et al. Phase I study of vismodegib in children with recurrent or refractory
medulloblastoma: A pediatric brain tumor consortium study. Clin. Cancer Res. 2013, 19, 6305–6312.
[CrossRef] [PubMed]

http://dx.doi.org/10.1083/jcb.200806024
http://dx.doi.org/10.1016/j.it.2019.05.009
http://dx.doi.org/10.3174/ajnr.A5899
http://www.ncbi.nlm.nih.gov/pubmed/30523141
http://dx.doi.org/10.1200/JCO.2013.50.9539
http://www.ncbi.nlm.nih.gov/pubmed/24493713
http://dx.doi.org/10.1007/s11060-018-2797-5
http://www.ncbi.nlm.nih.gov/pubmed/29427151
http://dx.doi.org/10.1001/archneur.65.11.1419
http://www.ncbi.nlm.nih.gov/pubmed/19001159
http://dx.doi.org/10.1016/S1470-2045(15)00581-1
http://dx.doi.org/10.1200/JCO.1999.17.7.2127
http://dx.doi.org/10.1016/j.ijrobp.2007.07.2342
http://dx.doi.org/10.1016/S1470-2045(06)70867-1
http://dx.doi.org/10.2147/JMDH.S167808
http://www.ncbi.nlm.nih.gov/pubmed/31118657
http://dx.doi.org/10.1007/s11940-013-0255-4
http://www.ncbi.nlm.nih.gov/pubmed/23979905
http://dx.doi.org/10.1038/s41571-018-0071-6
http://www.ncbi.nlm.nih.gov/pubmed/30030473
http://dx.doi.org/10.1200/JCO.2014.60.1591
http://dx.doi.org/10.1158/1078-0432.CCR-13-1425
http://www.ncbi.nlm.nih.gov/pubmed/24077351


Cancers 2020, 12, 643 18 of 18

86. Kool, M.; Jones, D.T.; Jager, N.; Northcott, P.A.; Pugh, T.J.; Hovestadt, V.; Piro, R.M.; Esparza, L.A.;
Markant, S.L.; Remke, M.; et al. Genome sequencing of SHH medulloblastoma predicts genotype-related
response to smoothened inhibition. Cancer Cell 2014, 25, 393–405. [CrossRef]

87. Rudin, C.M.; Hann, C.L.; Laterra, J.; Yauch, R.L.; Callahan, C.A.; Fu, L.; Holcomb, T.; Stinson, J.; Gould, S.E.;
Coleman, B.; et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl.
J. Med. 2009, 361, 1173–1178. [CrossRef]

88. Ramaswamy, V.; Taylor, M.D. Medulloblastoma: From Myth to Molecular. J. Clin. Oncol. 2017, 35, 2355–2363.
[CrossRef]

89. Robinson, G.W.; Kaste, S.C.; Chemaitilly, W.; Bowers, D.C.; Laughton, S.; Smith, A.; Gottardo, N.G.; Partap, S.;
Bendel, A.; Wright, K.D.; et al. Irreversible growth plate fusions in children with medulloblastoma treated
with a targeted hedgehog pathway inhibitor. Oncotarget 2017, 8, 69295–69302. [CrossRef]

90. Chen, H.; Liu, H.; Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct.
Target Ther. 2018, 3, 5. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ccr.2014.02.004
http://dx.doi.org/10.1056/NEJMoa0902903
http://dx.doi.org/10.1200/JCO.2017.72.7842
http://dx.doi.org/10.18632/oncotarget.20619
http://dx.doi.org/10.1038/s41392-018-0008-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Molecular Heterogeneity in MB 
	Molecular Stratifications of MB 
	WNT 
	SHH 
	Group 3 
	Group 4 

	Epigenetic Regulation in MB Subgroups 
	DNA Methylation 
	Histone Modifications 
	ATP-Dependent Chromatin Remodeling 
	Genomic Structural Variations 

	Proteomics in MB Subgroups 

	Cellular Heterogeneity in MB 
	Histological Diversity of MB 
	Cell of Origins in MB Subgroups 
	Diversity of Tumor Microenvironment in MB 

	Diagnosis, Current Therapies and Clinical Trials for MB Subgroups 
	Diagnosis of MB Subgroups 
	Current Therapies 
	Clinical Trials 

	Conclusions 
	References

