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Abstract 

This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intel‑
ligence (AI) and radiomics in the field of neuro‑oncology. A variety of AI and radiomics utilized conventional and 
advanced techniques to differentiate brain tumors from non‑neoplastic lesions such as inflammatory and demyelinat‑
ing brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. 
Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow‑
up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed 
the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the 
assessment of extra‑axial brain tumors and pediatric tumors with high performance in tumor detection, classification, 
and stratification of patient’s prognoses.
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Key points

• AI methods utilized conventional and advanced 
techniques to differentiate brain tumors from non-
neoplastic lesions.

• AI used in the diagnosis of gliomas and discrimina-
tion of gliomas from lymphomas and metastasis.

• AI has a role in the grading, prediction of treatment 
response, and prognosis of gliomas.

• Radiogenomics allowed the connection of the imag-
ing phenotype of the tumor to its molecular environ-
ment.

• AI is applied for the assessment of extra-axial brain 
tumors and pediatric tumors.

Introduction and background
Brain tumors
The World Health Organization (WHO) has provided 
an update of brain tumor classification in 2016 incorpo-
rating genetic information. Discrimination between dif-
ferent types of brain tumors is problematic at imaging. 
Accurate diagnosis is crucial for planning of treatment 
to improve patient’s outcome, helpful in the grading of 
tumors and response after therapy [1–7]. Brain tumor 
biopsy is considered the gold standard for diagnosis. 
However, it carries the risk of procedure-related compli-
cations in about 6% of cases [2, 3, 8, 9].

Methods of examination
Conventional MR imaging relies particularly on overall 
tumor morphology, composition, location, mass effect, 
and multiplicity. Some limitations remain as challenges 
such as the differentiation of brain tumors from simulat-
ing lesions, tumor characterization and grading, and the 
discrimination of recurrent tumors from tissue necrosis. 
Advanced MR imaging including diffusion, diffusion ten-
sor imaging (DTI), perfusion MR techniques as arterial 
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spin labeling (ASL), dynamic susceptibility contrast 
(DSC), dynamic contrast-enhanced imaging (DCE), and 
MR spectroscopy technique are quantitative biomark-
ers used to determine tumor morphology and function 
[10–14]. The emerging Artificial Intelligence (AI) meth-
ods have shown significant progress in the field of radi-
ological-based medical imaging applications. The basic 
concept of AI refers to any method that allows human 
intelligence to be imitated by computers [2, 4]. Machine 
learning (ML) is a subset of AI techniques that utilize 
algorithms that evolve as new data are introduced. Deep 
learning (DL) is a subclass of ML-based on neural net-
works, applying a large number of layers, and allowing 
more complex classification processes [1–5].

Both radiology and computing have advanced to the 
point that Artificial Intelligence (AI) can be applied to 
radiology problems: radiology has gone digital, with 
all data stored in radiology information system picture 
archives and communication system archives; AI has 
evolved to the point where automated image processing 
is possible. Increased computing capacity, data storage 
with low cost, and faster rates of transferring data have all 
contributed to this growth. In recent years, this has cul-
minated in a large rise in publications on AI in radiology, 
regarding a vast variety of potential applications includ-
ing identification, segmentation, classification, and out-
come prediction.

This article addresses the fundamentals, existing work-
flow, and methods used in AI-based radiological applica-
tions in the medical field. Additionally, we aim to review 
the clinical applications of AI in brain tumors.

Artificial intelligence (AI)
Artificial Intelligence (AI) refers to the computation abil-
ity to perform tasks that are similar to those performed 
by humans in order to highly utilize unique inputs gen-
erating outputs with high added value. Medical imaging 
is actually one of the most exciting applications of AI 
right now. Radiologists can make great use of comput-
ers with routine detection and diagnosis tasks. The aim 
of encouraging the use of Computer-Aided Diagnostic 
(CAD) systems using the state-of-the-art AI techniques 
was to assist radiologists in the detection and analysis 
of potential lesions which in turn enables distinguishing 
between lesions, reducing errors, and increasing radio-
logical efficiency. As a result, there have been continu-
ous and incremental efforts to enhance AI’s diagnostic 
efficiency to be promoted for everyday clinical practice 
[15]. The invention of artificial neural networks (ANN) in 
the middle of the last century and their subsequent evo-
lution, which introduced the principles of computational 
learning models, ML, and DL, is largely responsible for 
the growth of AI.

Machine learning (ML)
Applications of ML necessitate a collection of patho-
logical data as input that the machine will use for 
self-training, and such data should always provide the 
desired output to be expected. Whether the input was 
previously labeled by human experts or whether the 
computer performed direct data extraction using a 
variety of computational methods identifies two types 
of ML; supervised or unsupervised [16]. The optimal 
ML model must include the features that are most 
important to the outcome (local features) as well as the 
most generic ones (global features) with the ability of 
generalization for new unseen inputs.

Deep learning (DL)
Deep learning (DL) allows more complex classification 
processes as well as automatic dimensionality reduc-
tion through a hierarchical feature extraction criterion. 
Using convolutional neural networks (CNN) and the 
inclusion of multiple neural layers between input and 
output, enhance the robustness of DL and provide the 
ability to replicate the human brain processes in the 
training phase. DL is a hot subject of research that has 
practically exploded in recent years. By combining ML/
DL image processing with clinical and, where appropri-
ate, pathological/histological data, the ability to relate 
fundamental diagnostic patterns and features of radio-
logical scans (with different modalities) to a particular 
pathological and histological subtyping has created a 
new field in research developing which is Radiomics 
[17].

Radiomics
Radiomics is a new translational field in which a range 
of attributes, such as geometry, strength, and texture, 
are determined from radiological images to allow for 
capturing different imaging patterns. These patterns 
could be used for tumor subtyping, grading, and stag-
ing. In addition, Radiomics is usually used in systems in 
multiple variations for prediction, prognosis, monitor-
ing, and treatment response assessment [17]. There are 
two main types of radiomics: feature-based and deep 
learning-based radiomics. Unlike these clinical evalua-
tions affected by the human reader, the results are more 
stable, accurate, and reproducible. Thanks to the abil-
ity of radiomics features to be calculated using multiple 
mathematical algorithms (feature-based) or created sta-
tistically from ML-based complex computational models 
during the training phases (deep learning-based) in an 
automatic process. Figure 1 shows the general framework 
for radiomics.
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Feature‑based radiomics
Feature-based radiomics works by extracting a set of 
numerical features from a segmented region/volume of 
interest (ROI/VOI for 2D/3D). Then, feature selection 
algorithms evaluate a subset of specific features to pre-
vent overfitting and create robust prediction models. Fea-
ture-based radiomics does not necessitate large datasets 
because the measured features are specified separately 
from the data in a typically short computation time. 
Additionally, since these mathematically represented 
features are established, a biological comparison can be 
interpreted. However, most of the extracted features are 
characterized by their complex numerical nature, making 
the direct interrelation between these numerical features 
and physiological context difficult, if not impossible, to 
be achieved by human perception. The following is a list 
of the most important processing phases in the feature-
based radiomics process [18].

a) Image pre-processing Generating quantitative fea-
tures be in a good shape of repeatability and gener-
alizability from radiological images is the primary 
aim of radiomics. Several common pre-processing 
steps must be undertaken in order to accomplish this 
objective, namely corrections of MRI field inhomo-

geneities, noise reduction, spatial resampling, spatial 
smoothing, and intensity normalization. The pre-
processing of a Glioma tumor is shown in Fig. 2.

b) Tumor segmentation Precise segmentation is an 
essential step toward an accurate radiomics analysis. 
The manual segmentation of lesions, which involves 
areas of contrast enhancement, necrosis, and sur-
roundings detection, is a subjective and time-con-
suming process. To address this, many machine 
learning algorithms, such as DL-based approaches, 
are currently being implemented and tested for auto-
matic tumor localization and segmentation. While 
these methods can now be used to help with tumor 
segmentation, their efficacy must be demonstrated 
before they can be used in clinical practice. Figure 3 
shows the steps of manual segmentation on a Glioma 
tumor in two different imaging modalities (CE-MRI 
at Early Phase and T2-MRI Flair).

c) Feature extraction Medical images may be used to 
obtain a number of quantitative characteristics, the 
majority of which represent tumor heterogeneity. 
Despite the fact that tons of features can be extracted 
with different mathematical meanings, features are 
typically grouped into four subgroups, namely shape 
characteristics [18], first-order statistics (histogram-

Fig. 1 General framework showing the main steps of the radiomics
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Fig. 2 Pre‑processing step on glioma tumor subject (T2‑FLAIR imaging modality)

Fig. 3 Manual segmentation for a glioma tumor in two different imaging modalities



Page 5 of 17Abdel Razek et al. Insights Imaging          (2021) 12:152  

based) features [19], second-order statistics (textural) 
features [20], and higher-order statistics features [21]. 
Differences between features extracted from two 
Gliomas with different grades (high-grade HGG and 
low-grade LGG) are shown in Fig. 4.

d) Feature selection The extracted quantitative features 
may not be equally significant. The majority of the 
features are prone to redundancy, strong correlation 
and ambiguity which might lead to data overfitting 
and extreme increment in image noise sensitivity in 
the dependent predictive models. Running feature 
selection before learning phases is one way to reduce 
the chance of these issues. Feature selection strate-
gies take into account the relationship between the 
features and the class labels, resulting in selecting 
features regarding their contribution to the classifica-
tion issue. In other words, these techniques select the 
features that contribute the most to distinguishing 
between the classes. In radiomics, the three popu-
lar methods are filter methods (univariate meth-
ods), wrapper methods (multivariate methods), and 
embedded approaches [22].

e) Model generation and evaluation Depending on the 
purpose of the analysis, many ML-based algorithms 
can be used to produce predictive models. The Cox 
proportional hazards model in the case of exam-
ined survival data, neural networks, support vector 
machines (SVM), decision trees (e.g., random for-
ests), linear regression, and logistic regression are 
the most common algorithms in radiomics. In super-
vised ML tasks, the used dataset is often divided 
into training and validation using stratified splitting 
to ensure that the training and validation datasets 
roughly maintain the same samples distribution as 

the classes distribution in the entire data collec-
tion. Following the training and validation steps, the 
model should preferably be applied to a new unseen 
testing dataset which reflect the data that the model 
will experience in clinical practice [21–23].

Deep learning‑based radiomics
Various network architectures or stacks of linear and 
nonlinear functions, like convolutional neural networks 
(CNNs) or auto-encoders, are used in deep learning-
based radiomics to find the most important/critical char-
acteristics from the radiological images. Without any 
prior description or collection of features, single-layer 
neural networks cascaded system is included in the learn-
ing process of structures in radiological-based data that 
are important for classification [23]. This cascading pro-
cess helps to generate/reduce features gradually to obtain 
the most dominant/important features. Finally, the pre-
viously generated features can be processed further by 
the network for analysis and classification, or they can 
exit the network and go through the model generation 
process using different classifiers such as decision trees, 
regression models, or support vector machines, similar 
to the feature-based radiomics method. Techniques like 
regularization and dropout, fraction are used to prevent 
overfitting. Deep learning-based radiomics require larger 
datasets than feature-based radiomics because of the high 
correlation between the input data and the extracted fea-
tures, which prevents its applicability in multiple fields of 
research where the availability of the dataset is restricted 
such as neuro-oncological research. Transfer learning, 
on the other hand, is a technique for circumventing this 

Fig. 4 Differences between three groups of features (texture, shape, and histogram) extracted from two glioma subjects with different grades (HGG 
and LGG)
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constrain by using pre-trained neural networks that are 
used for training over a separate, but closely related pur-
pose, for example, a neural network trained with imag-
ing data for automated glioma segmentation may be used 
for segmenting brain metastases [24]. The amount of data 
needed to produce reliable performance, as well as the 
computational demand, is reduced by leveraging the net-
work’s prior knowledge.

The aim of work is to review the clinical applications of 
AI in brain tumors.

Clinical applications of AI in brain tumors
Table  1 shows the clinical applications of AI in brain 
tumors.

Radiomics of gliomas
Grading of glioma is classified by the WHO into low 
grade (I and II) and high grade (III and IV). Glioblas-
toma multiform (GBM) is a grade IV tumor and is the 
most common primary brain tumor [25–30]. Distin-
guishing glioma from non-neoplastic lesions is of utmost 

importance in the clinical practice as each entity has its 
different strategy of treatment and prognosis. Determina-
tion of glioma grade before therapy is crucial for the opti-
mization of treatment strategy, prediction of therapeutic 
response, prognosis, and survival [29–34].

Differentiation of neoplastic from non‑neoplastic lesions
High‑grade gliomas versus tumefactive demyelinating 
diseases
Tumefactive multiple sclerosis lesions (MS) with atypical 
features can mimic high-grade gliomas on conventional 
MR imaging [35]. A study used dynamic texture param-
eter analysis (DTPA) and extracted features from the first 
pass of contrast phase of DSC-enhanced perfusion maps 
and differentiated glioblastomas from tumefactive MS 
[36].

Glioma versus inflammation
Sometimes, MR diagnostic dilemma exists in differentiat-
ing atypical cases of inflammation and glioma due to sim-
ilar radiological features, subjective evaluation, and lack 
of quantitative indicators [37, 38]. A novel study tried to 
differentiate between inflammation and grade-II glioma 
using LASSO algorithms to select features and based on 
non-contrast imaging features. The study achieved prom-
ising results with (AUC) of 0.988 in the primary cohort, 
and 0.950 in the validation cohort, but the small sample 
size and retrospective design of the study limit its poten-
tial usefulness in differentiating inflammation from gli-
oma [39].

Grading of gliomas
Several studies discussed the radiomics for glioma grad-
ing. A study extracted a large set of radiomics features 
from routine brain MRI and then used a random forest 
classifier that yielded a high AUC of 0.92 for evaluation of 
glioma grade after fivefold cross-validation [40].

Low‑grade versus high‑grade gliomas
A study investigated the role of radiomics in differenti-
ating grade II from grade III and IV; they extracted the 
radiomics features from conventional, diffusion, and 
perfusion ASL MRI. An SVM classifier was used and the 
study showed a high AUC of 0.97and an accuracy of 98%. 
They concluded also that post-contrast T1 (T1C) is the 
best single sequence to be compared with multiparamet-
ric textural analysis [41]. Another study investigated the 
conventional and advanced multiparametric MRI (DTI, 
perfusion, and MR spectroscopy) to derive features to 
differentiate between low- and high-grade gliomas. Three 
different SVM classifiers were applied, and the highest 
performance was achieved with 96% accuracy and an 
AUC of 0.96. This study was limited mainly by the small 

Table 1 Clinical application of AI in neuro‑oncology

PCNSL primary central nervous system lymphoma

I—Gliomas

I—Differentiation of neoplastic from non‑neoplastic lesions

 High‑grade gliomas versus tumefactive demyelinating diseases

 Gliomas versus inflammation

II—Grading of gliomas

 Low versus high grade

 Grade II versus grade III

III—Radiogenomics

 Glioma

 Oligodendroglioma

IV—Pre‑treatment evaluation

 Tumor segmentation

 Infiltration and extent

V—Prognostic value‑survival

VI—Post‑treatment evaluation

 Pseudo‑progression

 Residual/recurrence versus post‑treatment changes

II—Non glioma

Metastasis

PCNSL

Hemangioblastoma

III—Extra-axial brain tumors

Meningioma

Schwannoma

Pituitary adenoma

IV—Pediatric brain tumors

Characterization

Radiogenomics
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patients sample size leading to bias in conducting data 
analysis, also genomic features would be used to assess 
their utility [42].

Grade II versus grade III gliomas
A study investigated MR textural features derived from 
DCE MRI in differentiating grade II from grade III glio-
mas and grade III from grade IV and reported that AUC 
obtained from entropy textural features was 0.885 and 
from the inverse different moment (IDM) was 0.901 [43]. 
Another study extracted radiomics features from conven-
tional MRI and perfusion-weighted imaging using the 
SVM classifier to differentiate between grade II and III 
and yielded low classification errors of about 3.7% [44].

Radiogenomics
Glioma radiogenomics
The WHO 2016 classification update of gliomas com-
prises genetic information for diagnosis. Specific genetic 
alterations are substantially linked with tumorigenesis. 
The molecular genotype of the tumor, as well as its histo-
pathology, significantly affects survival. Radiogenomics is 
an emerging field that refers to the relationship between 
imaging phenotypes and gene expression patterns, this 
might allow improved diagnosis, decision-making, and 
predicting patient outcomes [27, 45, 46]. Important 
prognostic glioma biomarkers include isocitrate dehy-
drogenase (IDH), chromosome arms 1p/19q-codeletion, 
methylguanine-DNA methyltransferase status (MGMT). 
Combined immunohistochemistry with genome 
sequencing is a standard method for distinguishing gli-
oma mutations [46, 47]. Table 2 shows radiogenomic fea-
tures of the most important glioma biomarkers.

IDH mutations
Isocitrate dehydrogenase (IDH) is an enzyme of Krebs 
cycle, which converts isocitrate to a-ketoglutarate (aKG). 
Currently, glioma is classified into subtypes based on 
IDH mutations (IDH 1 and IDH 2) genotype. The mutant 
type is IDH positive, while the wild-type glioma is IDH 
negative [25]. Accumulation of alpha-ketoglutarate from 
isocitrate occurs in wild type, but with IDH mutations, 
the isocitrate becomes 2-hydroxyglutarate, an onco-
metabolite that is absent in wild type. Accumulation of 
2-hydroxyglutarate can be detected by MR spectroscopy 
at 7 T with high specificity, but it is not available in most 
centers which limit its utility [48].

IDH mutant gliomas are associated with improved sur-
vival as they demonstrate lower regional cerebral blood 
flow and volume on perfusion studies, also higher appar-
ent diffusion coefficient (ADC) values on DW-MRI. 
Predominantly hypoenhancing diffuse gliomas are IDH 
mutants and comprise about 80% lower-grade gliomas 

and 10% GBM with better survival. On the other hand, 
predominantly enhancing gliomas are IDH wild type and 
comprise 90% of GBM with worse survival [49].

Conventional MRI features that differentiate IDH 
mutant from IDH wild type includes indistinct margins, 
T2 hyperintensity of tumor regions but hypointense 
in FLAIR images (T2-FLAIR mismatch). A retrospec-
tive study with a limited sample size applied CNNs to 
the conventional MR features, showed an accuracy of 
92% and demonstrated that IDH wild-type tumors have 
more infiltrative margins [50]. A more recent study has 
correlated multiparametric imaging features with glioma 
IDH mutations using 3D-CNN trained with 94 patients 
of IDH mutation, and 120 wild-type gliomas have shown 
greater success achieving 98% sensitivity, 97% specificity, 
with an AUC of 99% [51].

MGMT promoter
Another important prognostic molecular marker is the 
methylation of O-6-methylguanine-DNA-methyltrans-
ferase (MGMT). The MGMT is an enzyme of DNA 
repair. Methylation of MGMT deactivates a gene, medi-
ates DNA damage, and dealkylates DNA. This mutation 
occurs approximately in 33–57% of patients with diffuse 

Table 2 Radiogenomic features of glioma biomarkers

IDH isocitrate dehydrogenase, MGMT methylation of O-6-methylguanine-DNA-
methyltransferase, EGFR epidermal growth factor receptor

Glioma biomarker Features

1 IDH IDH mutant

 Predominantly hypoenhancing diffuse 
gliomas

 80% LGG and 10% GBM

 Better survival

IDH wild type

 Predominantly enhancing gliomas

 90% of GBM

 Worse survival

2 1P/19q codeletion 30% of LGG

1P/19q codeletion + IDH mutant glioma

 Defines oligodendroglioma

 “poorly circumscribed” margins

1P/19q non codeletion + / − IDH mutant 
glioma

 Defines astrocytoma

 “circumscribed” margins

 (T2‑FLAIR mismatch) pattern

3 MGMT mutation 33–57% of diffuse glioma patients

Better prognosis

4 EGFR mutation 40% of glioblastoma patients

Splice variant (EGFRvIII)

31% of glioblastoma
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glioma. Patients with this mutation have a better progno-
sis and respond better to alkylating agents (temozolomide 
chemotherapy) [45, 49]. Several studies have correlated 
multimodal MRI (T1, T2, FLAIR, and T1C) with glioma 
MGMT mutation status. Their predictive accuracies 
ranged from 61 to 80% on cohort ranged from 82 to 193 
patients [52–54]. Another study added perfusion MRI to 
the multimodal MRI and demonstrated important fea-
tures for identifying MGMT as increased relative CBV in 
T1C and a higher ratio of contrast-enhancing tumor to 
complete tumor volume [52]. A radiogenomic study per-
formed with 2D–3D hybrid CNNs achieved 83% accu-
racy in the prediction of MGMT promoter [50].

1P19Q codeletion
About 30% of low-grade gliomas have 1p19q codeletion 
of the chromosome arm. 1p19q codeletion is not pre-
sent in glioblastoma. The presence of 1p19q codeletion 
with IDH mutant gliomas defines oligodendroglioma. 
While, the 1p19q non-co deleted tumors are classi-
fied as astrocytomas with or without IDH1/2 mutation 
and have more “circumscribed” margins and display the 
(T2-FLAIR mismatch) pattern [25, 32, 49]. A study used 
an SVM classifier, and based on conventional MRI; it 
allowed classification of IDH mutation and 1p19q codele-
tion status with 88% and 96% accuracy, respectively [55]. 
Another study applied CNNs to conventional imaging 
features and found that increased enhancement, infiltra-
tive margins, and left frontal lobe predilection are associ-
ated with 1p19q codeletion with 93% accuracy. Applying 
CNN helped in automatic lesion and pattern recognition, 
although an insufficient number of samples to train a reli-
able model still of technical concern [56].

Epidermal growth factor receptor
EGFR is a tyrosine kinase receptor that governs normal 
epithelial cell growth. The mutations of EGFR are found 
in about 40% of glioblastomas but are seldom present in 
lower-grade gliomas. The splice variant III (EGFRvIII) is 
the most common EGFR mutation in glioblastoma and 
is found in 31% of patients [49]. Prediction of EGFR has 
been performed in several radiomic studies using SVM 
classifiers with approximately 80–85% accuracy in defin-
ing EGFRvIII mutation in glioblastoma which exhibits 
more aggressive features and deep peritumoral infiltra-
tion [57, 58]. Another study based on complex multipara-
metric MRI features has shown increased neovascularity, 
cell density, and preferential location in the frontal and 
parietal regions [59].

Transcriptomic delineation of glioblastomas (GBMs)
Transcriptomic profiling is a technique used to char-
acterize glioma heterogeneity. It identifies the tumors 

into four molecular subtypes; classical, mesenchymal, 
proneural, and neural [27]. A study that applied SVM and 
based on conventional MRI sequences showed 71% accu-
racy in delineating the four subtypes [60].

Other genotypes Multiple other less commonly associ-
ated mutations in gliomas such as Vascular endothelial 
growth factor, Platelet-derived growth factor (PDGF), 
PTEN (Phosphatase and tensin homolog), Cyclin-depend-
ent kinase inhibitor (CDKN2A), Proliferating cell nuclear 
antigen (PCNA) TERT promoters, and TP53 have also 
been reported [27].

Radiogenomics of oligodendroglioma
The presence of 1p19q codeletion with IDH1/2-mutant 
gliomas defines oligodendroglioma and is associated with 
“poorly circumscribed” margins, slight frontal lobe pre-
dilection, heterogeneous T1 and T2 signals, and lower 
ADC values. Oligodendroglioma and astrocytoma have 
mutations in IDH with TERT promoter and are prefer-
entially located in the medial frontal cortex region. The 
radiomic features showed high accuracy in discriminat-
ing IDH1/2-mutant, IDH1/2-mutant with TERT pro-
moter mutation, and IDH wild type [61].

Pre‑treatment evaluation
Tumor segmentation
Malignant tumors have a characteristic growth patterns 
and tissue changes. Tumor components comprise com-
partments or “segments” like the solid enhancing por-
tion, necrotic core, non-enhancing tumor, and perifocal 
edema. Contouring of these segments is essential in the 
planning of radiotherapy for measuring the gross tumor 
volume and the clinical target volume, as well as after 
tumor resection for imaging follow-up [28, 32]. Manual 
3-D segmentation methods are time-consuming and sub-
jective. With the advance in computational capabilities, 
numerous algorithms have been developed and used in 
semiautomated and automated segmentation methods 
for brain gliomas [28, 62]. Machine learning has emerged 
with fast and reliable brain tumor segmentation methods, 
based on voxel-level classification tasks which differenti-
ate each given voxel whether it belongs to normal brain 
tissue, glioma, or edema, and extract those features. Cur-
rently, segmentation tools are based on DL using CNNs 
and classifier methods such as SVM and random forests 
[31, 32, 63]. Recently, CNNs have achieved outstanding 
performance with about 90% accuracy in voxel labeling 
[64].

Infiltration and extent of brain tumors
Differentiation between tumor infiltration and edema 
is crucial for pre-surgical planning and safety margin 
consideration, and it is usually difficult by conventional 
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MRI. Machine learning methods provide a roadmap for 
evaluating tumor infiltration on preoperative imaging. 
Features extraction from FLAIR and ADC maps using 
voxel-wise logistic regression model is able to predict 
areas of tumor infiltration or future tumor recurrence 
sufficiently [49, 65]. Some studies used an SVM classi-
fier to register areas of tumor recurrence to preopera-
tive MRI, and based on their features on conventional 
and advanced MRI, they yielded predictive peritumoral 
marginal infiltration maps with 90% accuracy [57, 66]. 
Another study developed an approach to register biopsy 
sites to preoperative imaging using a CNN method. 
They used multimodal MRI measures at biopsy sites and 
applied a network on a cell density counting method to 
the pathology images. This approach assessed the rela-
tionship between cell density and degree of enhancement 
and generated non-invasive maps of cell density to iden-
tify infiltrative tissue margins [67].

Prognostic value‑survival
Currently, poor overall prognostication of tumors is 
based on independent risk factors like histological grade 
and clinical models comprising elder age more than 
60  years, male gender, functional status of the patient 
(preoperative Karnofsky scores), partial resection of the 
advanced tumor, and surgery without chemo-radiother-
apy. In addition, molecular markers are important for the 
diagnosis and prognosis of brain tumors [25, 49]. Previ-
ous studies had applied different imaging modalities 
depending on measuring the maximal dimensions, the 
volume of enhancing lesion, and white matter tract infil-
tration. They showed higher predictiveness than clinical 
models [68–70].

With the advent of AI algorithms, several studies 
derived radiomics features for predicting the overall 
survival (OS) of gliomas. A study extracted radiomics 
features from conventional and advanced MRI metrics 
including tumor volume, angiogenesis, peritumoral 
infiltration, and cell density. They used the SVM model 
to predict the OS of gliomas and classified it into low, 
medium, and high survival; they achieved 80% accu-
racy in training and prospective replication cohorts [71]. 
Another study investigated the effectiveness of two-stage 
multi-channel 3D deep learning applications on the OS 
of 68 high-grade glioma patients. The first stage used 
3D-CNNs to automatically extract imaging features from 
multimodal preoperative MRI, DTI, and resting-state 
functional MRI (rs-fMRI). The second stage added the 
clinical features including the patient’s age, sex, histo-
logical grade, location, and size of the tumor. The deep 
learning imaging features along with the clinical tumor 
features were fed into an SVM classifier and achieved 

90.66% accuracy in the prediction of long versus short-
term OS in high-grade glioma [72].

Post‑treatment evaluation
Pseudo‑progression (PSP)
Pseudo-progression is defined as an increase in enhance-
ment and/or T2/FLAIR signal abnormality on MRI 
within 12  weeks after radiotherapy or combined radio-
therapy and chemotherapy with spontaneous resolu-
tion or stabilization without change in management. 
Pseudo-progression occurs in 15–50% of patients with 
gliomas particularly MGMT methylated and IDH mutant 
tumors undergoing standard therapy. On the other hand, 
antiangiogenic drugs may induce pseudo-response which 
means the striking reduction in enhancement due to 
changing the blood–brain barrier with no or little change 
in the progression of infiltrating portion [73, 74].

The differentiation of PSP from true progression (TP) is 
difficult on MRI despite its importance on patient man-
agement. Artificial intelligence methods are trying to 
solve the diagnostic dilemma. A study used conventional 
MRI, DWI, and PWI for differentiating PSP from TP in 
61 glioblastoma patients within 3  months after radio-
chemotherapy and surgical resection. The selection of 
imaging features was done by LASSO logistic regression 
model. They confirmed that the multiparametric radiom-
ics model had better performance (AUC = 0.90) than any 
other single parameter. This model should be verified in 
a multicenter setting independently and prospectively to 
become a useful tool in the differentiation of PSP from 
TP [75]. Another study performed on 78 glioma patients, 
using the hybrid deep and machine learning CNN-LSTM 
(long short-term memory) method and comprised clini-
cal and imaging features extracted from post-contrast 
MRI, showed AUC of 0.83 to classify PSP from TP [76].

Residual/recurrent tumor versus post‑treatment changes
One of the most challenging decisions in the treatment 
planning of gliomas is the differentiation between tumor 
recurrence and post-treatment changes. The stand-
ard combined treatment of glioma by radiotherapy and 
chemotherapy usually leads to radiation necrosis which 
commonly occurs within two years after treatment of 
glioma. Conventional MRI usually has limited ability in 
differentiating radiation necrosis from tumor recurrence 
[77]. Currently, the application of artificial intelligence 
has been used to classify radiation necrosis and glioma 
recurrence using either handcrafted radiomics features 
or deep features alone but they did not fully characterize 
tumor heterogeneity [78, 79]. A novel study incorporated 
handcrafted features with deep features on multimodal-
ity MRI and constructed logistic regression models. The 
best model achieved the highest AUC of 0.99, sensitivity 
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of 0.99, and specificity of 0.97 in the validation set with 
improved performance in the characterization of tumor 
heterogeneity and classification of radiation necrosis and 
recurrence [80].

Radiomics of non‑gliomas
Metastasis
The ability to discriminate glioblastomas from solitary 
brain metastasis is still challenging, particularly when 
using conventional MR, due to their similar MR imag-
ing features. Although advanced MRI techniques such as 
DTI, MR spectroscopy, and perfusion studies have shown 
important differences between glioblastoma and solitary 
metastasis, they are not widely used in clinical practice 
[81–83].

Differentiation of glioblastomas from solitary brain 
metastasis
Currently, a few recent studies used different artificial 
intelligence techniques to differentiate both entities. A 
study based on post-contrast 3D T1W gradient-echo 
sequence radiomics, and data classification using SVM, 
showed an accuracy of 85% and an AUC of 0.96 [83]. A 
study based on contrast-enhanced images used multiple 
feature selection and classification methods like SVM 
and LASSO. This study constructed radiomics classifiers 
that showed favorable accuracy and AUC performance 
of 0.90. Moreover, the clinical performance of the best 
classifiers was better than expert neuroradiologists [84]. 
Another study based on DTI metrics (Fractional anisot-
ropy and ADC) and used MR texture analysis showed 
significantly higher heterogeneity of the peritumoral 
edema of glioblastoma and metastasis due to its infiltra-
tive nature. This study was limited by its retrospective 
nature, manual ROI drawing, and absence of histological 
verification of tumor infiltration [85].

Classification of the subtypes of brain metastasis
Classification of the subtypes of brain metastasis was 
achieved also by radiomics using SVM classifier with 
high performance, AUC was 0.83, 0.81 for lung and 
breast metastases, respectively [83]. Another study used 
quantitative MRI features to discriminate between met-
astatic subtypes. The selected classifier reached AUCs 
ranging from 0.64 for non-small lung cancer and 0.82 for 
breast cancer [86].

Primary central nervous system lymphoma
Differentiation of PCNS from glioma
Primary central nervous system lymphoma (PCNSL) 
and glioblastoma have very similar conventional MRI 
visual features that may fail to solve the problem of dif-
ferentiating both entities. Yet, both are having different 

management. Therefore, an early and accurate diagnosis 
is highly important to improve the prognosis. Generally, 
PCNSL is treated with chemotherapy and whole-brain 
radiotherapy, whereas patients with glioblastomas com-
monly undergo gross surgical resection followed by 
chemo-radiotherapy [87, 88].

Several studies based on extracted MRI features and 
ADC parameters have reviewed the performance of dif-
ferent ML algorithms as SVM classifier, random forest 
analysis, or decision tree ML algorithms in the differen-
tiation between PCNSL and gliomas. They showed pre-
dicting high-accuracy results up to 96.8% and AUC up to 
0.99 [88]. Another study selected the extracted (DTPA) 
from the first pass of contrast phase of DSC-enhanced 
perfusion maps and differentiated glioblastomas from 
PCNSLs [36].

Hemangioblastomas (HB)
Differentiation of HB from brain metastasis
Hemangioblastomas and metastasis are the most com-
mon cerebellar masses in adults. Discrimination between 
the two diseases is important as HBs are benign tumors 
of vascular origin having good survival rate than brain 
metastasis. Therefore, their therapeutic approaches and 
prognosis are quite different [89]. The role of machine 
learning algorithms in differentiating the two entities is 
still not established. A recent study performed on a large 
cohort of intra-axial posterior fossa tumors applied dif-
ferent machine learning algorithms like the random for-
est, CNN, SVM, and others. The study was based on 
extracted structural MRI features and ADC histogram 
analysis. The decision tree model with terminal nodes 
classified the most common tumor pathologies with 
90% accuracy. While random forest models classified the 
most common 5 tumors including HB and posterior fossa 
metastasis with an AUC of 0.961 in training datasets, and 
0.873 in validation sets [90].

Radiomics of extra‑axial brain tumors
Meningioma
Meningiomas are the most frequent extra-axial central 
nervous system tumors. The majority are benign lesions 
(> 80%) and classified as (WHO grade I), atypical type 
is < 15% (WHO grade II), and malignant type is < 5% 
(WHO grade III). Differentiation between histological 
grades is crucial before treatment decisions. Meningi-
omas may exhibit intratumoral heterogeneity with varia-
ble degrees of vascularity, necrosis, infiltration, and rarely 
transformation from low to high grade. Conventional 
MRI remains the standard imaging modality for provi-
sional diagnosis and follow-ups of meningiomas despite 
lacking the ability to determine the biological behavior 
and recurrence potential of the tumor [91, 92]. Advanced 
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MRI techniques like DWI and PWI have been applied 
previously in the diagnosis and grading of meningiomas 
but with overlapping results [93].

Several studies have introduced machine learning as a 
radiological tool to improve diagnostic accuracy, progno-
sis, subtypes, and grading of meningiomas.

Grading of meningiomas
Multiple studies have investigated the use of conven-
tional radiomic features as tumor morphology, texture, 
histogram, and deep learning radiomics to distinguish 
between low- and high-grade meningioma [94, 95].

Radiomic analysis has shown successful discrimination 
between meningothelial, fibrous, and transitional menin-
giomas with achieved accuracy of the validation model as 
94.2% [96].

Prognosis of meningiomas
An important morphological radiomic feature in the 
prognosis of meningiomas is the sphericity, previous 
studies demonstrated that high-grade meningioma tends 
to be less spherical than low-grade meningioma and is 
associated with local recurrence and less favorable OS 
[95, 97].

Regarding the prediction of relapse, a study applied a 
binary tree model based on extracted radiomic features 
from T2WI, T1C, and ADC metrics to predict recur-
rence of skull base meningiomas, the study yielded 90% 
accuracy [98].

Prediction of brain invasion in meningiomas
A study has shown successful preoperative prediction of 
brain invasion in meningiomas, they applied SVM mod-
els derived from T2WI, and T1C images and achieved an 
AUC of 0.819. The addition of clinical features yielded 
better predictive performance with an AUC of 0.857 [99].

Differentiation of meningioma from craniopharyngioma
A recent study has constructed a binary logistic regres-
sion model to distinguish craniopharyngiomas and men-
ingiomas; they achieved an AUC of 0.776 [100].

Differentiation of meningioma from hemagioperictyoma
Solitary fibrous tumor/hemangiopericytoma(SFT/
HPC) is a rare tumor of vascular origin that became one 
entity in 2016 WHO classification. Malignant SFT/HPC 
is WHO grade II and III with aggressive behavior with 
high rates of recurrence and metastasis [101]. In MRI, 
SFT/HPC may mimic angiomatous meningioma which 
is often benign. Consequently, their treatment strategy is 
largely different, and proper preoperative assessment is 
crucial [101, 102].

The application of ML has exhibited a promising ability 
in the differentiation of angiomatous meningiomas from 
SFT/HPC; a study used SVM models based on textural 
features derived from T2WI, FLAIR, T1C, and DWI to 
test their usefulness in differentiating the two tumor enti-
ties found that the T1C-based classifier (AUC = 0.90) had 
significantly better performance than other classifiers 
[102].

Pituitary adenoma
Pituitary adenoma is the most common sellar region 
tumor. Resection through the trans-nasal trans-sphe-
noidal approach is the preferred technique for mac-
roadenomas as well as functioning tumors. Preoperative 
assessment by MRI is mandatory to assess tumor mor-
phology, extension, and behavior like invasion of the cav-
ernous sinus. Also, MRI helps in differentiating pituitary 
adenoma from craniopharyngioma which often shares 
the same clinical presentation. Proper MRI assessment 
guides the surgical plan either gross tumor resection 
or resection followed by neo-adjuvant radiotherapy for 
adenomas with cavernous sinus invasion. Therefore, an 
accurate predictive model selecting the most informa-
tive radiomic features will be helpful in surgical decision-
making [103, 104].

Prediction of cavernous sinus invasion
A study aimed to predict cavernous sinus invasion by 
pituitary adenomas; selected features were based on T1C 
and T2WI using an SVM classifier with an AUC of 0.826 
for the test set [103].

Differentiation between pituitary adenoma 
and craniopharyngioma
A study extracted the qualitative MRI features and tex-
ture features from preoperative MRI based on T1C and 
T2WI to test the difference between pituitary adenoma 
and craniopharyngioma and demonstrated a significant 
difference between the tumor entities [104].

Prediction of pituitary macroadenomas ki‑67 proliferation 
index
In 2017, the WHO introduced the definition of “high-
risk” adenomas that show aggressive behavior and the 
unpredictable outcome, these tumors are characterized 
by rapid growth, radiological invasion, and high Ki-67 
proliferation marker. A study demonstrated the effec-
tiveness of ML to preoperatively predict the pituitary 
macroadenomas ki-67 proliferation index class; they 
extracted features from T2WI from 89 patients, and a 
k-nearest neighbors (k-NN) classifier was applied to pre-
dict macroadenoma high or low proliferation index and 
achieved 91.67% accuracy in patient’s classification [105].
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Schwannoma
Vestibular schwannoma treatment options differ accord-
ing to the tumor size. Surgical resection is preferred for 
large tumors, whereas radiosurgery is usually recom-
mended for small- and medium-sized schwannomas. 
Gamma knife radiosurgery (GKRS) is effective and safe 
radiosurgery for controlling tumor growth. Accurate 
tumor delineation is mandatory before GKRS to identify 
tumor location, measure tumor volume and detect the 
tumor response [106, 107].

Prediction of prognosis
A study constructed a two-level machine learning model 
that achieved an accuracy of 85% in the prediction of 
pseudo-progression after GKRS. This study was based 
on five radiomic features and showed an inhomogene-
ous hypointensity pattern of contrast enhancement and 
variation in T2-weighted intensity [107]. Another study 
used a series of multiparametric MRI before radiosurgery 
to capture areas of tumor inhomogeneous intensity like 
solid enhancing part and cystic part, they proposed an 
end-to-end DL segmentation scheme and further com-
pared it with the manual segmentation method, with 
an exceeding accuracy of the AI model to 99% in deter-
mining the tumor progression, pseudo-progression, and 
regression following radiosurgery [108].

Radiomics of pediatric brain tumors
Characterization
Post fossa tumors
Among pediatric brain tumors, posterior fossa tumors 
are the most common solid tumors. The most common 
pediatric posterior fossa subtypes include medulloblas-
toma, pilocytic astrocytoma, and ependymoma. Differen-
tiation between the subtypes is crucial as each tumor has 
different management and prognosis [109]. Accurate pre-
operative diagnosis is required to tailor surgery and drug 
therapy. Conventional MRI is the key imaging tool for the 
qualitative assessment of pediatric tumors. Yet, definite 
tumor histopathological classification is done by biopsy. 
At present, radiomics and DL methods are developing 
non-invasive tumor classification models for predicting 
pediatric posterior fossa tumors [109–111].

A retrospective study that included 288 children with 
posterior fossa tumors (medulloblastoma, pilocytic 
astrocytoma, and ependymoma) applied the tree-based 
automatic pipeline optimization model and extracted 
the radiomics features from T1C, T2WI, and ADC maps. 
The automatic radiomics model achieved an AUC of 0.91 
and an accuracy of 0.83. Moreover, the tree-based auto-
matic pipeline optimization model achieved significantly 
higher accuracy when compared with standard manual 

optimization by a qualitative machine learning expert 
(0.83 vs. 0.54, p = 0.001) for binary classification [112]. 
Another study investigated a large cohort of 617 children 
with posterior fossa tumors including pontine diffuse 
midline glioma, medulloblastoma, pilocytic astrocytoma, 
and ependymoma, and the study constructed a 2D deep 
learning architecture model and used T2WI as input for 
tumor extraction. The performance of the deep learning 
model was compared with that of four radiologists and 
yielded an AUC of 0.99 in the accuracy of tumor detec-
tion and accuracy of 92% in tumor classification. Despite 
high accuracy, this study was limited by model overfitting 
due to the increased number of input data from T1 + C, 
ADC, and T2. Also, there was a lower scan resolution of 
ADC images when compared to T1 and T2 images [111].

Radiogenomics
Table  3 shows the radiogenomic features of the impor-
tant biomarkers of pediatric brain tumors.

Medulloblastoma
Medulloblastoma is the most common pediatric brain 
tumor. It was classically thought that medulloblastoma 
has a single tumor entity. Currently, according to the 
WHO classification of CNS tumors, four molecular 
subgroups have been recognized, they are named sonic 
hedgehog (SHH), wingless-type, group 3, and group 4, 
each subgroup has its different therapy and prognosis. A 
favorable outcome is seen with WNT-pathway-activated 
tumors, and patients have a nearly 90% 5-year survival 
rate, but patients with group 3 tumors have less than 
50% overall survival. Definite tumor subtyping is done 
with tissue sampling obtained from surgical resection or 
a single biopsy. However, these are invasive techniques 
and limited by extensive cost as well [113, 114]. Artificial 
intelligence is an emerging technology that aims to link 

Table 3 Radiogenomic features of pediatric brain tumors 
biomarkers

SHH sonic hedgehog, PLGGs pediatric low-grade gliomas, DMG diffuse midline 
gliomas

Genetic biomarker Features

1—Medulloblastoma SHH

Wingless‑type  ~ 90% 5‑year survival rate

Group 3  < 50% overall survival

Group 4

2—PLGG BRAF fusion Favorable outcome

BRAF V600E High risk of progression

3—DMG H3 K27M mutation Shorter median survival

Wild‑type H3 K27M Improved survival
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imaging features with the tumor molecular subtype [114, 
115].

A study included 109 pediatric patients with medul-
loblastoma applied two predictive test models; a double 
tenfold cross-validation model and a 3-dataset cross-
validation model. Patients underwent molecular analy-
sis from tissue sampling, and the four distinct subgroups 
were identified. Image data were extracted from T1WI, 
T1C, and T2WI. The best performance is achieved with 
the double tenfold cross-validation model for the predic-
tion of SHH, group 3, and group 4 tumors with combined 
use of T1WI- and T2WI, AUC was 0.79, 0.70, and 0.83, 
respectively [115].

Low‑grade glioma
Pediatric low-grade gliomas (pLGGs) account for approx-
imately 40% of childhood central nervous system tumors 
and comprise a heterogeneous form of tumors accord-
ing to the WHO classification, as grades I or II. PLGGs 
include juvenile pilocytic astrocytoma (JPA), gangli-
oglioma, dysembryoplastic neuroepithelial tumor, pleo-
morphic xanthoastrocytoma, and diffuse low-grade 
glioma. The standard treatment is surgical excision when 
possible, but when total resection is not possible, multi-
ple recurrences may occur, and the 10-year progression-
free survival is less than 50% [116].

Common alterations occur in the mitogen-activated 
protein kinase pathway, either fusions or mutations in the 
B-Raf proto-oncogene, serine/threonine kinase (BRAF) 
gene, and they have named the BRAF fusion and BRAF 
V600E point mutation (p.V600E). Recently, it was known 
that patient prognosis differed in pLGGs according to 
the molecular alteration. A favorable outcome is seen in 
patients with BRAF fusion and neurofibromatosis type 
1, while those with the BRAF V600E show a high risk of 
progression and transformation [117, 118].

A recent study investigated a radiomics model to pre-
dict BRAF fusion and BRAF V600E mutation. The study 
included 115 patients with low-grade glioma. Radiomics 
features were extracted from tumor segmentation and 
based on FLAIR MRI. The predictive model was tested 
using a random forest approach for all available tumor 
types. BRAF status was predicted with an AUC of 0.75 
(SD, 0.12) and (95% confidence interval 0.62–0.89) for the 
internal validation cohort through a fourfold cross-vali-
dation scheme, and AUC for the external validation was 
0.85. Age and tumor location were significant predictors 
of BRAF status, while sex was not a significant predictor 
[119].

Diffuse midline gliomas (DMG)
Pediatric diffuse midline gliomas are an aggressive het-
erogeneous group of brainstem tumors and account for 

10% of childhood cancer-related deaths. Previously, these 
tumors were named diffuse intrinsic pontine gliomas 
(DIPG). Diffuse tumor location limits its surgical resec-
tion. Radiotherapy has been considered the standard pal-
liative treatment. Conventional and advanced MRIs play 
a major role in the diagnosis and evaluation of tumor 
therapy response; however, they have no value in pre-
dicting patients’ survival [120]. Molecular biomarkers 
such as H3 K27M mutation status are helpful as tumor 
histopathology in diagnosing tumors. H3 K27M muta-
tion is an independent predictor of overall survival and is 
described in midline structures like the thalamus, brain-
stem, and spinal cord. Patients carrying H3 K27M muta-
tion have a shorter median survival time than patients 
who have wild-type H3 K27M. Midline gliomas with H3 
K27M mutation exhibit different imaging features [121, 
122]. Radiomics is a non-invasive method connecting 
the quantitative features from imaging, such as com-
puted tomography and MRI to the molecular status of 
the tumors. A study tested the MR textural analysis to 
predict the OS of pediatric DMG. The study used com-
mercially available TexRAD research software, images 
extracted from T2 WI and ADC maps. The best predic-
tor stratified the patients into poor and good prognostic 
groups; the more homogeneous texture is related to the 
worse prognosis. The median survival was 7.5  months 
for poor prognosis and 17.5 months for a good prognosis 
[123].

Another study used the automated machine learning 
method and included 40 patients with H3 K27M muta-
tions and 60 wild-type patients. Radiomics features were 
extracted from FLAIR images; the Tree-based Pipeline 
Optimization Tool (TPOT) was applied to select radiom-
ics features. The model achieved an AUC of 0.903 in the 
test cohort providing high performance in the prediction 
of H3 K27M status [121].

Merits and challenges
Merits
The deployment of AI in the field of neuro-oncology 
imaging has many merits. First, it is a fully automated 
system merged with the radiological workflow for image 
analysis, quantification, and segmentation that shortens 
the time consumed in tedious and repetitive tasks, with 
subsequent improved productivity and efficiency of the 
clinical workflow for better and quicker diagnosis and 
decision-making. Second, it could help in image regis-
tration with the ability to compare numerous images to 
track and monitor treatment in real-time. Third, AI can 
connect patient data such as molecular biomarkers with 
the non-invasive prediction of neoplasm type or grade 
and generation of prognostic or predictive models for 
patient stratification and outcome [3, 8, 49].
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Challenges
Despite of good and promising results, there is still some 
discrepancy between results in research studies and lim-
ited applications in the clinical practice caused by some 
obstacles. First, the system must be fully integrated well 
into the radiologist’s workflow. Second, manual segmen-
tation is time-consuming; therefore, application of the 
semiautomated or fully automated segmentation method 
is helpful. Third, limited information obtained from pre-
vious publications in translating tools and sharing the 
methodology of this system hinders generalizability [49].

Some important challenges are needed to be consid-
ered when building a robust radiologic model including; 
the generalizability of AI models as most models are built 
from limited data that is assuming to be representative of 
all other data in the future for different institutions [124]. 
One of the premier challenges that developers face is the 
availability of sufficient data to overcome measurement 
errors, most annotated data are stored within the hospi-
tal systems, sharing of these data among institutions will 
improve the generalizability [125]. Another crucial chal-
lenge is an inter-scanner variability; radio-phenotypic 
characterization is based on the type of MRI machine, 
field strength, homogeneity, and acquisition parameters. 
Harmonizing radiomics can help avoiding the inter-scan-
ner variability by focusing on the radiomics discrimina-
tive features and make it reproducible [126].

Most research studies are deficient in validation of 
their generated models; this hampers the applicability of 
AI methods [8]. The performance of each model is task-
dependent and dataset-dependent. The American Col-
lege of Radiology Data Science Institute is concerned 
with standardization and benchmarking of standard 
use cases that can help in annotation tools and datasets 
[49]. Another important challenge is the lack of genomic 
ground truth data which means more tissue biopsy to 
better prediction and characterization of MRI [25].

Conclusion
We concluded that AI is a promising tool that combines 
clinical, radiomics, and molecular markers essential to 
improve patient’s outcome with differentiation of brain 
tumors from simulating lesions, characterization, and 
grading of brain tumors, pre-and post-treatment assess-
ment, and discrimination of tumor recurrence from post-
treatment changes. However, many encounter challenges 
that need much work to be done to deploy AI into daily 
practice to enhance radiologists’ accuracy and efficiency.

Abbreviations
AI: Artificial intelligence; DL: Deep learning; ML: Machine learning; PCNSL: 
Primary Central Nervous System Lymphoma.

Acknowledgements
This work is granted to the soul of Professor Ahmed Abdel Khalek Abdel Razek 
who passed away in July 2021.

Authors’ contributions
All authors sharing in the same degree in manuscript writing and editing. All 
authors read and approved the final manuscript.

Funding
No funding was received.

Availability of data and materials
Data and material are available from the corresponding author upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interest
The authors declare no competing interest.

Author details
1 Department of Diagnostic Radiology, Faculty of Medicine, Mansoura Univer‑
sity, Elgomheryia Street, Mansoura 3512, Egypt. 2 Biomaging Lab, Depart‑
ment of Bioengineering, University of Louisville, Louisville, KY 40292, USA. 
3 Internship at Mansoura University Hospital, Mansoura Faculty of Medicine, 
Mansoura, Egypt. 4 Department of Diagnostic Radiology, Faculty of Medicine, 
Port Said University, Port Said, Egypt. 

Received: 18 May 2021   Accepted: 26 September 2021

References
 1. Kaka H, Zhang E, Khan N (2021) artificial intelligence and deep learn‑

ing in neuroradiology: exploring the new frontier. Can Assoc Radiol J 
72:35–44

 2. Aneja S, Chang E, Omuro A (2019) Applications of artificial intelligence 
in neuro‑oncology. Curr Opin Neurol 32:850–856

 3. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018) Deep 
learning in neuroradiology. AJNR Am J Neuroradiol 39:1776–1784

 4. Duong MT, Rauschecker AM, Mohan S (2020) Diverse applications 
of artificial intelligence in neuroradiology. Neuroimaging Clin N Am 
30:505–516

 5. Muthukrishnan N, Maleki F, Ovens K, Reinhold C, Forghani B, Forghani 
R (2020) Brief history of artificial intelligence. Neuroimaging Clin N Am 
30:393–399

 6. Bodalal Z, Trebeschi S, Beets‑Tan R (2018) Radiomics: a critical step 
towards integrated healthcare. Insights Imaging 9:911–914

 7. Pinker K, Shitano F, Sala E et al (2018) Background, current role, and 
potential applications of radiogenomics. J Magn Reson Imaging 
47:604–620

 8. Lohmann P, Galldiks N, Kocher M et al (2020) Radiomics in 
neuro‑oncology: basics, workflow, and applications. Methods 
S1046–2023(19):30317–30322

 9. Sarkiss CA, Germano IM (2019) Machine learning in neuro‑oncology: 
can data analysis from 5,346 patients change decision making para‑
digms? World Neurosurg 6:66

 10. Razek AAKA (2018) MR imaging of neoplastic and non‑neoplastic 
lesions of the brain and spine in neurofibromatosis type I. Neurol Sci 
39:821–827

 11. Abdel Razek AAK, Talaat M, El‑Serougy L, Gaballa G, Abdelsalam M 
(2019) Clinical applications of arterial spin labeling in brain tumors. J 
Comput Assist Tomogr 43:525–532



Page 15 of 17Abdel Razek et al. Insights Imaging          (2021) 12:152  

 12. Abdelrasoul AA, Elsebaie NA, Gamaleldin OA, Khalifa MH, Razek AAKA 
(2019) Imaging of brain infarctions: beyond the usual territories. J 
Comput Assist Tomogr 43:443–451

 13. Razek AAKA, Taman SE, El Regal ME, Megahed A, Elzeny S, El Tantawi 
N (2020) Diffusion tensor imaging of microstructural changes in the 
gray and white matter in patients with Crigler–Najjar syndrome type I. J 
Comput Assist Tomogr 44:393–398

 14. Razek AA, Abdalla A, Gaber NA et al (2013) Proton MR Spectroscopy of 
the brain in children with neuronopathic Gaucher’s disease. Eur Radiol 
23:3005–3011

 15. Nagoev ZV, Sundukov ZA, Pshenokova IA, Denisenko VA (2020) 
Architecture of CAD for distributed artificial intelligence based on self‑
organizing neuro‑cognitive architectures. News Kabardin–Balkar Sci 
Center RAS 2:40–47

 16. Rao MS, Reddy BE (2021) Parametric analysis of texture classification 
using modified weighted probabilistic neural network (MWPNN). 
Modern approaches in machine learning and cognitive science: a 
walkthrough: latest trends in AI, vol 2. Springer, p 459

 17. Aerts HJWL (2016) The potential of radiomic‑based phenotyping in 
precision medicine: a review. JAMA Oncol 2:1636–1642

 18. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics: the facts and the 
challenges of image analysis. Eur Radiol Exp 2:36

 19. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge 
between medical imaging and personalized medicine. Nat Rev Clin 
Oncol 14:749–762

 20. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL (2018) 
Artificial intelligence in radiology. Nat Rev Cancer 18:500–510

 21. Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in brain tumor: 
image assessment, quantitative feature descriptors, and machine‑
learning approaches. AJNR Am J Neuroradiol 39:208–216

 22. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) 
Radiomics‑based prognosis analysis for non‑small cell lung cancer. Sci 
Rep 7:46349

 23. Cha YJ, Jang WI, Kim MS et al (2018) Prediction of response to stereo‑
tactic radiosurgery for brain metastases using convolutional neural 
networks. Anticancer Res 38:5437–5445

 24. Ueda D, Shimazaki A, Miki Y (2019) Technical and clinical overview of 
deep learning in radiology. Jpn J Radiol 37:15–33

 25. Zlochower A, Chow DS, Chang P, Khatri D, Boockvar JA, Filippi CG (2020) 
Deep learning AI applications in the imaging of glioma. Top Magn 
Reson Imaging 29:115–121

 26. Chow DS, Khatri D, Chang PD, Zlochower A, Boockvar JA, Filippi CG 
(2020) Updates on deep learning and glioma: use of convolutional 
neural networks to image glioma heterogeneity. Neuroimaging Clin N 
Am 30:493–503

 27 Gore S, Chougule T, Jagtap J, Saini J, Ingalhalikar M (2020) A review of 
radiomics and deep predictive modeling in glioma characterization. 
Acad Radiol 10:66

 28. Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW (2019) State of the 
art: machine learning applications in glioma imaging. AJR Am J Roent‑
genol 212:26–37

 29. Jin W, Fatehi M, Abhishek K, Mallya M, Toyota B, Hamarneh G (2020) 
Artificial intelligence in glioma imaging: challenges and advances. J 
Neural Eng 17:021002

 30. Booth TC, Williams M, Luis A, Cardoso J, Ashkan K, Shuaib H (2020) 
Machine learning and glioma imaging biomarkers. Clin Radiol 75:20–32

 31. Shaver MM, Kohanteb PA, Chiou C et al (2019) Optimizing neuro‑oncol‑
ogy imaging: a review of deep learning approaches for glioma imaging. 
Cancers 11:829

 32. Kocher M, Ruge MI, Galldiks N, Lohmann P (2020) Applications of 
radiomics and machine learning for radiotherapy of malignant brain 
tumors. Strahlenther Onkol 196:856–867

 33. Bonm AV, Ritterbusch R, Throckmorton P, Graber JJ (2020) Clinical imag‑
ing for diagnostic challenges in the management of gliomas: a review. J 
Neuroimaging 30:139–145

 34. El‑Serougy L, Abdel Razek AA, Ezzat A, Eldawoody H, El‑Morsy A (2016) 
Assessment of diffusion tensor imaging metrics in differentiating low‑
grade from high‑grade gliomas. Neuroradiol J 29:400–407

 35. Razek AAKA, Elsebaie NA (2020) Imaging of fulminant demyelinat‑
ing disorders of the central nervous system. J Comput Assist Tomogr 
44:248–254

 36. Verma RK, Wiest R, Locher C et al (2017) Differentiating enhancing 
multiple sclerosis lesions, glioblastoma, and lymphoma with Dynamic 
texture Parameters Analysis (DTPA): a feasibility study. Med Phys 
44:4000–4008

 37. Zoccarato M, Valeggia S, Zuliani L et al (2019) Conventional brain 
MRI features distinguishing limbic encephalitis from mesial temporal 
glioma. Neuroradiology 61:853–860

 38. Hiremath SB, Muraleedharan A, Kumar S et al (2017) Combining dif‑
fusion tensor metrics and DSC perfusion imaging: Can it improve the 
diagnostic accuracy in differentiating tumefactive demyelination from 
high‑grade glioma? AJNR Am J Neuroradiol 38:685–690

 39. Han Y, Yang Y, Shi ZS et al (2021) Distinguishing brain inflammation 
from grade II glioma in population without contrast enhancement: a 
radiomics analysis based on conventional MRI. Eur J Radiol 134:109467

 40. Cho HH, Lee SH, Kim J, Park H (2018) Classification of the glioma grad‑
ing using radiomics analysis. PeerJ 6:5982

 41. Tian Q, Yan LF, Zhang X et al (2018) Radiomics strategy for glioma 
grading using texture features from multiparametric MRI. J Magn Reson 
Imaging 48:1518–1528

 42. Vamvakas A, Williams SC, Theodorou K et al (2019) Imaging biomarker 
analysis of advanced multiparametric MRI for glioma grading. Phys Med 
60:188–198

 43. Xie T, Chen X, Fang J et al (2018) Textural features of dynamic contrast‑
enhanced MRI derived model‑free and model‑based parameter maps 
in glioma grading. J Magn Reson Imaging 47:1099–1111

 44. Sengupta A, Ramaniharan AK, Gupta RK, Agarwal S, Singh A (2019) 
Glioma grading using a machine‑learning framework based on opti‑
mized features obtained from  T1 perfusion MRI and volumes of tumor 
components. J Magn Reson Imaging 50:1295–1306

 45. Seow P, Wong JHD, Ahmad‑Annuar A, Mahajan A, Abdullah NA, Ramli 
N (2018) Quantitative magnetic resonance imaging and radiogenomic 
biomarkers for glioma characterisation: a systematic review. Br J Radiol 
91:20170930

 46. Korfiatis P, Erickson B (2019) Deep learning can see the unseeable: 
predicting molecular markers from MRI of brain gliomas. Clin Radiol 
74:367–373

 47. Soni N, Priya S, Bathla G (2019) Texture analysis in cerebral gliomas: a 
review of the literature. AJNR Am J Neuroradiol 40:928–934

 48. Verma G, Mohan S, Nasrallah MP et al (2016) Non‑invasive detection 
of 2‑hydroxyglutarate in IDH‑mutated gliomas using two‑dimensional 
localized correlation spectroscopy (2D L‑COSY) at 7 Tesla. J Transl Med 
14:274

 49. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S (2019) 
Emerging applications of artificial intelligence in neuro‑oncology. 
Radiology 290:607–618

 50. Chang P, Grinband J, Weinberg BD et al (2018) Deep‑learning convolu‑
tional neural networks accurately classify genetic mutations in gliomas. 
AJNR Am J Neuroradiol 39:1201–1207

 51. Bangalore Yogananda CG, Shah BR, Vejdani‑Jahromi M et al (2020) A 
novel fully automated MRI‑based deep‑learning method for classifica‑
tion of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411

 52. Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenom‑
ics of glioblastoma: machine learning‑based classification of molecular 
characteristics by using multiparametric and multiregional MR imaging 
features. Radiology 281:907–918

 53. Hajianfar G, Shiri I, Maleki H et al (2019) Noninvasive  O6 methylguanine‑
DNA methyltransferase status prediction in glioblastoma multiforme 
cancer using magnetic resonance imaging radiomics features: 
univariate and multivariate radiogenomics analysis. World Neurosurg 
132:e140–e161

 54. Li ZC, Bai H, Sun Q et al (2018) multiregional radiomics features from 
multiparametric MRI for prediction of MGMT methylation status in 
glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650

 55. Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning‑based radiomics 
for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436

 56. Akkus Z, Ali I, Sedlář J et al (2017) Predicting deletion of chromosomal 
arms 1p/19q in low‑grade gliomas from MR images using machine 
intelligence. J Digit Imaging 30:469–476

 57. Rathore S, Akbari H, Rozycki M et al (2018) Radiomic MRI signature 
reveals three distinct subtypes of glioblastoma with different clinical 



Page 16 of 17Abdel Razek et al. Insights Imaging          (2021) 12:152 

and molecular characteristics, offering prognostic value beyond 
IDH1. Sci Rep 8:5087

 58. Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression 
in lower grade gliomas: a voxel‑based radiomic analysis. Eur Radiol 
28:356–362

 59. Akbari H, Bakas S, Pisapia JM et al (2018) In vivo evaluation of EGFRvIII 
mutation in primary glioblastoma patients via complex multipara‑
metric MRI signature. Neuro Oncol 20:1068–1079

 60. Rathore S, Akbari H, Bakas S et al (2019) Multivariate analysis of pre‑
operative magnetic resonance imaging reveals transcriptomic clas‑
sification of de novo glioblastoma patients. Front Comput Neurosci 
13:81

 61. Bisdas S, Shen H, Thust S et al (2018) Texture analysis‑ and support 
vector machine‑assisted diffusional kurtosis imaging may allow 
in vivo gliomas grading and IDH‑mutation status prediction: a pre‑
liminary study. Sci Rep 8:6108

 62. Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor 
image segmentation benchmark (BRATS). IEEE Trans Med Imaging 
34:1993–2024

 63. Havaei M, Davy A, Warde‑Farley D et al (2017) Brain tumor segmenta‑
tion with deep neural networks. Med Image Anal 35:18–31

 64. Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quan‑
titative tumour response assessment of MRI in neuro‑oncology with 
artificial neural networks: a multicentre. Lancet Oncol 20:728–740

 65. Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A (2017) Predicting 
glioblastoma recurrence by early changes in the apparent diffusion 
coefficient value and signal intensity on FLAIR images. AJR Am J 
Roentgenol 208:57–65

 66. Akbari H, Macyszyn L, Da X et al (2016) Imaging surrogates of infiltra‑
tion obtained via multiparametric imaging pattern analysis predict 
subsequent location of recurrence of glioblastoma. Neurosurgery 
78:572–580

 67. Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric 
model for mapping cellularity in glioblastoma using radiographically 
localized biopsies. AJNR Am J Neuroradiol 38:890–898

 68. Abdel Razek AAK, El‑Serougy L, Ezzat A, Eldawoody H, El‑Morsy A 
(2020) Interobserver agreement of white matter tract involvement in 
gliomas with diffusion tensor tractography. J Neurol Surg A Cent Eur 
Neurosurg 81:233–237

 69. Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predic‑
tors of molecular profile and survival: multi‑institutional study of the 
TCGA glioblastoma data set. Radiology 267:560–569

 70. Zinn PO, Sathyan P, Mahajan B et al (2012) A novel volume‑age‑KPS 
(VAK) glioblastoma classification identifies a prognostic cognate 
MicroRNA‑gene signature. PLoS One 7:e41522

 71. Macyszyn L, Akbari H, Pisapia JM et al (2016) Imaging patterns 
predict patient survival and molecular subtype in glioblastoma via 
machine learning techniques. Neuro Oncol 18:417–425

 72. Nie D, Lu J, Zhang H et al (2019) Multi‑channel 3D deep feature 
learning for survival time prediction of brain tumor patients using 
multi‑modal neuroimages. Sci Rep 9:1103

 73. Galldiks N, Kocher M, Langen KJ (2017) Pseudoprogression after 
glioma therapy: an update. Expert Rev Neurother 17:1109–1115

 74. Tipping M, Eickhoff J, Ian RH (2017) Clinical outcomes in recurrent 
glioblastoma with bevacizumab therapy: an analysis of the literature. 
J Clin Neurosci 44:101–106

 75. Kim JY, Park JE, Jo Y et al (2019) Incorporating diffusion‑and 
perfusion‑weighted MRI into a radiomics model improves diagnostic 
performance for pseudoprogression in glioblastoma patients. Neuro 
Oncol 21:404–414

 76. Jang BS, Jeon SH, Kim IH, Kim IA (2018) Prediction of pseudopro‑
gression versus progression using machine learning algorithm in 
glioblastoma. Sci Rep 8:12516

 77. Razek AAKA, El‑Serougy L, Abdelsalam M, Gaballa G, Talaat M (2018) 
Differentiation of residual/recurrent gliomas from postradiation 
necrosis with arterial spin labeling and diffusion tensor magnetic 
resonance imaging‑derived metrics. Neuroradiology 60:169–177

 78. Lao J, Chen Y, Li ZC et al (2017) A deep learning‑based radiomics 
model for prediction of survival in glioblastoma multiforme. Sci Rep 
7:10353

 79. Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion meth‑
odology for breast cancer diagnosis demonstrated on three imaging 
modality datasets. Med Phys 44:5162–5171

 80. Zhang Q, Cao J, Zhang J et al (2019) Differentiation of recurrence from 
radiation necrosis in gliomas based on the radiomics of combinational 
features and multimodality MRI images. Comput Math Methods Med 
2019:2893043

 81. Abdel Razek AAK, Talaat M, El‑Serougy L, Abdelsalam M, Gaballa G 
(2019) Differentiating glioblastomas from solitary brain metastases 
using arterial spin labeling perfusion‑ and diffusion tensor imaging‑
derived metrics. World Neurosurg 127:e593–e598

 82 El‑serougy LG, Abdel Razek AA, Mousa A, Eldowoudy H, El‑morsy A 
(2015) Differentiation between the high‑grade glioma and metastatic 
brain tumor using DTI metrics. Egypt J Radiol Nucl Med 46:1099–1104

 83. Artzi M, Bressler I, Ben BD (2019) Differentiation between glioblastoma, 
brain metastasis and subtypes using radiomics analysis. J Magn Reson 
Imaging 50:519–528

 84. Qian Z, Li Y, Wang Y et al (2019) Differentiation of glioblastoma from 
solitary brain metastases using radiomic machine‑learning classifiers. 
Cancer Lett 451:128–135

 85. Skogen K, Schulz A, Helseth E, Ganeshan B, Dormagen JB, Server A 
(2019) Texture analysis on diffusion tensor imaging: discriminating 
glioblastoma from single brain metastasis. Acta Radiol 60:356–366

 86. Kniep HC, Madesta F, Schneider T et al (2019) Radiomics of brain MRI: 
utility in prediction of metastatic tumor type. Radiology 290:479–487

 87. Abdel Razek AAK, El‑Serougy L, Abdelsalam M, Gaballa G, Talaat M 
(2019) Differentiation of primary central nervous system lymphoma 
from glioblastoma: quantitative analysis using arterial spin labeling and 
diffusion tensor imaging. World Neurosurg 123:e303–e309

 88. Nguyen AV, Blears EE, Ross E, Lall RR, Ortega‑Barnett J (2018) Machine 
learning applications for the differentiation of primary central nervous 
system lymphoma from glioblastoma on imaging: a systematic review 
and meta‑analysis. Neurosurg Focus 45:E5

 89. Cha J, Kim ST, Nam DH et al (2017) Differentiation of hemangioblas‑
toma from metastatic brain tumor using dynamic contrast‑enhanced 
MR imaging. Clin Neuroradiol 27:329–334

 90. Payabvash S, Aboian M, Tihan T, Cha S (2020) Machine learning decision 
tree models for differentiation of posterior fossa tumors using diffusion 
histogram analysis and structural MRI findings. Front Oncol 10:71

 91 Neromyliotis E, Kalamatianos T, Paschalis A et al (2020) Machine learn‑
ing in meningioma MRI: past to present. A narrative review. J Magn 
Reson Imaging. https:// doi. org/ 10. 1002/ jmri. 27378

 92. Gu H, Zhang X, di Russo P, Zhao X, Xu T (2020) The current state of 
radiomics for meningiomas: promises and challenges. Front Oncol. 
10:567736

 93. Svolos P, Kousi E, Kapsalaki E et al (2014) The role of diffusion and perfu‑
sion weighted imaging in the differential diagnosis of cerebral tumors: 
a review and future perspectives. Cancer Imaging 14:20

 94. Zhu Y, Man C, Gong L et al (2019) A deep learning radiomics model for 
preoperative grading in meningioma. Eur J Radiol 116:128–134

 95. Park YW, Oh J, You SC et al (2019) Radiomics and machine learning may 
accurately predict the grade and histological subtype in meningi‑
omas using conventional and diffusion tensor imaging. Eur Radiol 
29:4068–4076

 96. Niu L, Zhou X, Duan C et al (2019) Differentiation researches on 
the meningioma subtypes by radiomics from contrast‑enhanced 
magnetic resonance imaging: a preliminary study. World Neurosurg 
126:e646–e652

 97 Morin O, Chen WC, Nassiri F et al (2019) Integrated models incorporat‑
ing radiologic and radiomic features predict meningioma grade, local 
failure, and overall survival. Neurooncol Adv 1:1vdz011

 98. Zhang Y, Chen JH, Chen TY et al (2019) Radiomics approach for 
prediction of recurrence in skull base meningiomas. Neuroradiology 
61:1355–1364

 99. Zhang J, Yao K, Liu P et al (2020) A radiomics model for preoperative 
prediction of brain invasion in meningioma non‑invasively based on 
MRI: a multicentre study. EBioMedicine 58:102933

 100. Tian Z, Chen C, Zhang Y et al (2020) Radiomic analysis of craniophar‑
yngioma and meningioma in the sellar/parasellar area with MR images 
features and texture features: a feasible study. Contrast Media Mol 
Imaging 2020:4837156

https://doi.org/10.1002/jmri.27378


Page 17 of 17Abdel Razek et al. Insights Imaging          (2021) 12:152  

 101. He W, Xiao X, Li X et al (2019) Whole‑tumor histogram analysis of appar‑
ent diffusion coefficient in differentiating intracranial solitary fibrous 
tumor/hemangiopericytoma from angiomatous meningioma. Eur J 
Radiol 112:186–191

 102. Li X, Lu Y, Xiong J et al (2019) Presurgical differentiation between malig‑
nant haemangiopericytoma and angiomatous meningioma by a radi‑
omics approach based on texture analysis. J Neuroradiol 46:281–287

 103. Niu J, Zhang S, Ma S et al (2019) Preoperative prediction of cavernous 
sinus invasion by pituitary adenomas using a radiomics method based 
on magnetic resonance images. Eur Radiol 29:1625–1634

 104. Zhang Y, Chen C, Tian Z, Xu J (2020) Discrimination between pituitary 
adenoma and craniopharyngioma using MRI‑based image features and 
texture features. Jpn J Radiol 38:1125–1134

 105. Ugga L, Cuocolo R, Solari D et al (2019) Prediction of high proliferative 
index in pituitary macroadenomas using MRI‑based radiomics and 
machine learning. Neuroradiology 61:1365–1373

 106. Lee WK, Wu CC, Lee CC et al (2020) Combining analysis of multi‑para‑
metric MR images into a convolutional neural network: precise target 
delineation for vestibular schwannoma treatment planning. Artif Intell 
Med 107:101911

 107. Yang HC, Wu CC, Lee CC et al (2021) Prediction of pseudoprogression 
and long‑term outcome of vestibular schwannoma after gamma knife 
radiosurgery based on preradiosurgical MR radiomics. Radiother Oncol 
155:123–130

 108. Lee CC, Lee WK, Wu CC et al (2021) Applying artificial intelligence to 
longitudinal imaging analysis of vestibular schwannoma following 
radiosurgery. Sci Rep 11:3106

 109. Abdel Razek AAK, Elsebaie NA, Zamora C, Castillo M (2020) Imaging 
of neuronal and mixed glioneuronal tumors. J Comput Assist Tomogr 
44:356–369

 110 Fetit AE, Novak J, Rodriguez D et al (2018) Radiomics in pediatric neuro‑
oncology: a multicentre study on MRI texture analysis. NMR Biomed 
31(1):66

 111. Quon JL, Bala W, Chen LC et al (2020) Deep learning for pediatric poste‑
rior fossa tumor detection and classification: a multi‑institutional study. 
AJNR Am J Neuroradiol 41:1718–1725

 112. Zhou H, Hu R, Tang O et al (2020) Automatic machine learning to differ‑
entiate pediatric posterior fossa tumors on routine MR imaging. AJNR 
Am J Neuroradiol 41:1279–1285

 113. Ramaswamy V, Remke M, Bouffet E et al (2016) Risk stratification of 
childhood medulloblastoma in the molecular era: the current consen‑
sus. Acta Neuropathol 131:821–831

 114. Archer TC, Mahoney EL, Pomeroy SL (2017) Medulloblastoma: molecu‑
lar classification‑based personal therapeutics. Neurotherapeutics 
14:265–273

 115. Iv M, Zhou M, Shpanskaya K et al (2019) MR Imaging‑based radiomic 
signatures of distinct molecular subgroups of medulloblastoma. AJNR 
Am J Neuroradiol 40:154–161

 116. Sturm D, Pfister SM, Jones DTW (2017) Pediatric gliomas: current 
concepts on diagnosis, biology, and clinical management. J Clin Oncol 
35:2370–2377

 117. AlRayahi J, Zapotocky M, Ramaswamy V et al (2018) Pediatric brain 
tumor genetics: what radiologists need to know. Radiographics 
38:2102–2122

 118. Lassaletta A, Zapotocky M, Mistry M et al (2017) therapeutic and prog‑
nostic implications of BRAF V600E in pediatric low‑grade gliomas. J Clin 
Oncol 35:2934–2941

 119. Wagner MW, Hainc N, Khalvati F et al (2021) Radiomics of pediatric 
low‑grade gliomas: toward a pretherapeutic differentiation of BRAF-
mutated and BRAF‑fused tumors. AJNR Am J Neuroradiol. https:// doi. 
org/ 10. 3174/ ajnr. A6998

 120. Calmon R, Puget S, Varlet P et al (2017) Multimodal magnetic resonance 
imaging of treatment‑induced changes to diffuse infiltrating pontine 
gliomas in children and correlation to patient progression‑free survival. 
Int J Radiat Oncol Biol Phys 99:476–485

 121. Su X, Chen N, Sun H et al (2020) Automated machine learning based 
on radiomics features predicts H3 K27M mutation in midline gliomas of 
the brain. Neuro Oncol 22:393–401

 122. Pan CC, Liu J, Tang J et al (2019) A machine learning‑based prediction 
model of H3K27M mutations in brainstem gliomas using conventional 
MRI and clinical features. Radiother Oncol 130:172–179

 123. Szychot E, Youssef A, Ganeshan B et al (2020) Predicting outcome in 
childhood diffuse midline gliomas using magnetic resonance imaging 
based texture analysis. J Neuroradiol S0150–9861(20):30131

 124. Choy G, Khalilzadeh O, Michalski M et al (2018) Current applications and 
future impact of machine learning in radiology. Radiology 288:318–328

 125. Loken E, Gelman A (2017) Measurement error and the replication crisis. 
Science 355:584–585

 126. Fortin JP, Cullen N, Sheline YI et al (2018) Harmonization of corti‑
cal thickness measurements across scanners and sites. Neuroimage 
167:104–120

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.3174/ajnr.A6998
https://doi.org/10.3174/ajnr.A6998

	Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
	Abstract 
	Key points
	Introduction and background
	Brain tumors
	Methods of examination
	Artificial intelligence (AI)
	Machine learning (ML)
	Deep learning (DL)
	Radiomics
	Feature-based radiomics
	Deep learning-based radiomics

	Clinical applications of AI in brain tumors

	Radiomics of gliomas
	Differentiation of neoplastic from non-neoplastic lesions
	High-grade gliomas versus tumefactive demyelinating diseases
	Glioma versus inflammation

	Grading of gliomas
	Low-grade versus high-grade gliomas
	Grade II versus grade III gliomas

	Radiogenomics
	Glioma radiogenomics
	IDH mutations
	MGMT promoter
	1P19Q codeletion
	Epidermal growth factor receptor
	Transcriptomic delineation of glioblastomas (GBMs)
	Radiogenomics of oligodendroglioma

	Pre-treatment evaluation
	Tumor segmentation
	Infiltration and extent of brain tumors

	Prognostic value-survival
	Post-treatment evaluation
	Pseudo-progression (PSP)
	Residualrecurrent tumor versus post-treatment changes


	Radiomics of non-gliomas
	Metastasis
	Differentiation of glioblastomas from solitary brain metastasis
	Classification of the subtypes of brain metastasis

	Primary central nervous system lymphoma
	Differentiation of PCNS from glioma

	Hemangioblastomas (HB)
	Differentiation of HB from brain metastasis


	Radiomics of extra-axial brain tumors
	Meningioma
	Grading of meningiomas
	Prognosis of meningiomas
	Prediction of brain invasion in meningiomas
	Differentiation of meningioma from craniopharyngioma
	Differentiation of meningioma from hemagioperictyoma

	Pituitary adenoma
	Prediction of cavernous sinus invasion
	Differentiation between pituitary adenoma and craniopharyngioma
	Prediction of pituitary macroadenomas ki-67 proliferation index

	Schwannoma
	Prediction of prognosis


	Radiomics of pediatric brain tumors
	Characterization
	Post fossa tumors

	Radiogenomics
	Medulloblastoma
	Low-grade glioma
	Diffuse midline gliomas (DMG)


	Merits and challenges
	Merits
	Challenges

	Conclusion
	Acknowledgements
	References


