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Abstract 

Purpose: The value of O‑(2‑[18F]fluoroethyl)‑L‑tyrosine (FET)‑positron emission tomography (PET)‑radiomics in the 
outcome assessment of patients with recurrent glioblastoma (rGBM) has not been evaluated until now. The aim of 
this study was to evaluate whether a prognostic model based on FET‑PET radiomics features (RF) is feasible and can 
identify rGBM patients that would most benefit from re‑irradiation.

Methods: We prospectively recruited rGBM patients who underwent FET‑PET before re‑irradiation (GLIAA‑Pilot trial, 
DRKS00000633). Tumor volume was delineated using a semi‑automatic method with a threshold of 1.8 times the 
standardized‑uptake‑value of the background. 135 FET‑RF (histogram parameters, shape and texture features) were 
extracted. The analysis involved the characterization of tumor and non‑tumor tissue with FET‑RF and the evaluation of 
the prognostic value of FET‑RF for time‑to‑progression (TTP), overall survival (OS) and recurrence location (RL).

Results: Thirty‑two rGBM patients constituted our cohort. FET‑RF discriminated significantly between tumor and 
non‑tumor. The texture feature Small‑Zone‑Low‑Gray‑Level‑Emphasis (SZLGE) showed the best performance for the 
prediction of TTP (p = 0.001, satisfying Bonferroni‑multiple‑test significance level). Additionally, two radiomics signa‑
tures could predict TTP (TTP‑radiomics‑signature, p = 0.001) and OS (OS‑radiomics‑signature, p = 0.038). SZLGE and 
the TTP‑radiomics‑signature additionally predicted RL. Specifically, high values for TTP‑radiomics‑signature and for 
SZLGE indicated not only earlier progression, but also a RL within the initial FET‑PET active volume.

Conclusion: Our findings suggest that FET‑PET radiomics could contribute to the prognostic assessment and selec‑
tion of rGBM‑patients benefiting from re‑irradiation.

Trial registration DRKS00000633. Registered on 8th of December in 2010.
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Introduction
Surgery, radiation therapy (RT) and chemotherapy is 
the standard treatment in glioblastoma (GBM) [1]. In 
recurrent glioblastoma (rGBM), re-irradiation (re-RT) is 
an important therapeutic alternative, which may delay 
further disease progression and improve survival [2, 3]. 
However, the re-RT can be associated with a high risk 
of brain edema, radiation necrosis, increased dose of 
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corticosteroids and impaired quality of life. Therefore, the 
selection of patients who will most probably benefit from 
this treatment is extremely important. However, apart 
from general clinical criteria, such as primary histology, 
methylation, performance status, time between first and 
second RT and age [4, 5], there are currently only few 
studies showing that imaging biomarkers could predict 
treatment outcome after re-RT in rGBM [6–8].

Generally, diagnosis, treatment planning and follow-
up of GBM are based on magnetic resonance imag-
ing (MRI): gadolinium contrast enhanced T1-weighted 
images (Gd-T1MR), T2 images, FLAIR images etc. Con-
trast enhancement is facilitated by a disruption of the 
blood–brain-barrier, highly correlating with malignant 
tumor tissue. Nevertheless, contrast enhancement could 
also occur after a recent surgery, RT or chemotherapy 
(pseudoprogression). In this case, amino-acid positron 
emission tomography (PET) has been proven to be able 
to non-invasively differentiate treatment-related changes 
from real tumor progression [8–10]. Consequently, 
the use of the radiolabeled amino acid O-(2-[18F]
fluoroethyl)-L-tyrosine (FET) has rapidly increased in the 
last decade [9–14].

Research focused on the application of radiomics at dif-
ferent cancer sites has seen a significant boost in the past 
years. The aim of radiomics is the development of mod-
els based on the analysis of quantitative features (first 
and higher order statistics) derived from different imag-
ing modalities [15, 16]. For gliomas, most of the radiom-
ics publications have focused on MRI [17, 18]. Although 
only few recent studies have involved FET-PET image 
analysis, they showed the added value of FET-PET in the 
classification of tumor grades [19] and in predicting IDH 
genotype [20].

To the best of our knowledge, the prognostic role of 
FET-PET radiomics in patients with rGBM scheduled for 
re-irradiation has not yet been evaluated. The aim of the 
current study was to assess the feasibility of developing 
a model based on FET radiomics features (RF), with the 
objective of selecting rGBM patients that would most 
benefit from re-irradiation.

Materials and methods
Patients
Our study involved patients with rGBM (WHO grade 
IV) who had undergone standard radiochemotherapy 
after primary diagnosis. Thirty-two patients were pro-
spectively enrolled in the open label mono-center pilot 
trial (DRKS00000633) of the GLIAA trial (NOA 10/ARO 
2013-1) [21]. The clinical information for the patient 
cohort is summarized in Table 1. For all patients, the time 
between the first RT and re-RT was at least 6 months and 
the recurrent tumor was visible on baseline FET-PET 

with a diameter ranging from 1 to 6 cm. High-precision 
re-irradiation was performed in a stereotactic setup 
according to clinic standards. Dose specifications, con-
touring and constraints for organs at risk were identical 
to the ongoing GLIAA trial [21]. The prescribed dose was 
39 Gy, 3 Gy/d, 5x/week and was set to ensure coverage of 
at least 95% of the planning target volume. Progression 
was diagnosed on conventional MRI in interdisciplinary 
tumor conferences of the Comprehensive Cancer Center 
Freiburg, by taking the updated RANO-criteria [22] and 
the patients’ clinical condition into consideration. Addi-
tional FET-PET and/or histological confirmation were 
used in unclear progression cases. Time-to-tumor-pro-
gression (TTP) and overall survival (OS) were defined 
as the times between the start of the re-irradiation treat-
ment and the first progression for TTP and death for OS. 
Recurrence location (RL) distinguished between inside 
(> 50% volume) or outside the initial FET-PET active vol-
ume (see  VPET definition in subsection “Segmentation”).

FET‑PET imaging
The 18F-labeled amino acid was synthesized via 
 [18F]-fluoroalkylation of tyrosine with a specific activ-
ity larger than 18.5 GBq/μmol. The FET-PET acquisition 
protocol for our patient cohort was defined as follows: a 

Table 1 Clinical information of  the  patient cohort. TTP: 
time interval between  the  start of  the  re-irradiation 
treatment and the first progression

OS time interval between the start of re-irradiation and death

Patient cohort (n = 32)

Age (years, median, range) 52 (30–77)

Sex

 Male 17 (53.1%)

 Female 15 (46.9%)

GBM

 Unifocal 18 (56.3%)

 Multifocal 14 (43.7%)

IDH‑mutation

 Mutated 10 (31.2%)

 Wild‑type 14 (43.8%)

 Unknown 8 (25%)

MGMT‑status of recurrent tumor

 Methylated
 Not methylated
 Unknown

7 (21.9%)
8 (25%)
17 (53.1%)

Surgery of recurrent tumor before re‑irradia‑
tion

 Yes
 No

25 (78.1%)
7 (21.9%)

Time to progression (TTP) (days, median, 
range)

91 (18–405)

Overall survival (OS) (days, median, range) 296.5 (18–1334)
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static 15  min scan was performed 20  min post intrave-
nous injection of 200–300  MBq FET. Scans were per-
formed on two different PET/CT systems from Philips 
(Netherlands): GEMINI TF TOF 64 (TF64) and GEMINI 
TF 16 Big Bore (BB). BB was employed for 14 of the 32 
patients. The scanners fulfilled the requirements indi-
cated in the European Association of Nuclear Medi-
cine (EANM) imaging guidelines and obtained EANM 
Research Ltd. (EARL) accreditation. The transverse 
spatial resolution at 1  cm from the central axis of the 
scanner was 4.8  mm. PET data was corrected for ran-
dom coincidences, scatter and attenuation, based on the 

corresponding CT dataset. The reconstruction meth-
ods was a LOR-based ordered-subset iterative time-of-
flight algorithm using spherical coordinates (BLOB) with 
three iterations, 33 subsets and a relaxation parameter 
for smoothing of 0.35. PET images had a voxel size of 
2 × 2 × 2  mm3 and were normalized to decay-corrected 
injected activity per kg body weight (standardized-
uptake-value SUV [g/ml]).

Segmentation
Delineation on FET-PET took place in three steps 
(Fig.  1). Firstly, two spheres of constant diameter were 

Fig.1 FET‑PET segmentation steps: a for each patient a segmentation  (VThreshold) was performed by a threshold of 1.8 times the FET uptake in 
background SUV(Bg.), with background defined by two spheres placed manually in cerebrum and cerebellum; b a radiation oncologist expert 
removed the regions which were not tumor‑relevant and c two segmentations were defined on the remaining volume:  VPET3mm resulted from 
applying a margin of 3 mm around the whole PET volume  (VPET) and  VPETmax was defined as the contiguous volume containing  SUVmax
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manually placed in cerebrum and cerebellum. SUV of the 
background, SUV(Bg.), was defined by means of the aver-
age SUV values derived from the two spheres. Secondly, 
a threshold defined as 1.8 × SUV(Bg.) was applied. From 
the resulting volume  (VThreshold), an experienced radia-
tion oncologist removed the regions that were considered 
not tumor-related (e.g. blood vessels and extra cerebral 
enhancement), based on anatomical information con-
veyed by MRI and CT. Finally, from the remaining vol-
ume  (VPET) two different contours  (VPETmax and  VPET3mm) 
were generated. For the volume  VPET3mm, a margin of 
3  mm was applied to  VPET. It was defined to cover all 
regions of FET uptake as well as the surrounding volume 
that could contain information concerning microscopic 
tumor cell spread, equivalent to the clinical target volume 
used for RT. For the high-risk volume defined as  VPETmax, 
only the contiguous contour containing the maximum 
SUV was considered. The analysis of the  VPETmax was 
based on the hypothesis that the region with higher FET-
uptake should be the most metabolically and mitotically 
active one and could therefore provide prognostic infor-
mation concerning radiotherapy outcome.

Radiomics features extraction
135 RF were computed using in-house software based on 
MATLAB® (The MathWorks Inc., Natick, MA). Defini-
tion of RF was done according to the 3D definition from 
Image Biomarker Standardization Initiative [23]. His-
togram based statistics were validated with the Medical 
Imaging Interaction Toolkit (MITK) [24]. The validation 
of geometric and texture features was done with an open 
source code [25]. For texture feature computation, SUV 
values of the voxels within the contour were discretized 
with a fixed bin width (W = 0.01) [26, 27], resulting in dif-
ferent numbers of bins (from 35 to 936, with average 237) 
depending on the range of SUV values in the contour. 
Texture features were derived from five matrices: the 3D 
version of the gray-level co-occurrence matrix (GLCM 
[28, 29]); the gray-level run length matrix (GLRLM 
[30, 31]), the gray-level size zone matrix (GLSZM [30, 
32]) and the neighborhood gray tone difference matrix 
(NGTDM [33]). In addition, on the voxel intensities 
within the contour we applied: (i) a Wavelet band-pass 
filtering (WF), with a weight ratio 1:2 between band-pass 
sub-bands and other sub-bands and (ii) an equal-proba-
bility quantization algorithm (Q), by using the function 
histeq of MATLAB®. The RF used in this study are listed 
in the Additional file 1: Table S1.

Radiomics features selection: experimental phantom 
evaluation
In order to avoid misinterpretation of the results derived 
from our investigation, experimental phantom evaluation 

was performed to select the RF that should be included 
in the different parts of our analysis. In the analysis of the 
prognostic value of FET-RF an experimental phantom 
evaluation was necessary to identify the RF robust to the 
different PET/CT systems employed in our cohorts. In 
the analysis of RF for tumor characterization, we com-
pared volumes with different sizes, i.e. RF computed in 
tumor against RF computed in a 4 cc-sphere within the 
background. It was therefore necessary to identify the RF 
independent of the size of the volume (number of vox-
els within the contour). For the experimental evaluation 
we employed the PET images resulted from the EARL 
(ResEARch for Life – European Association of Nuclear 
Medicine initiative) accreditation measurement of the 
NEMA NU2 Phantom (NP). To analyze the robustness 
of RF for different PET/CT systems 18 contours were 
delineated: 12 spherical contours (5.7–8.4 cc) were man-
ually delineated in the background of NP and the 6 fill-
able spheres of the phantom (0.5–25 cc) were segmented 
by applying a threshold of 40% of the maximum uptake 
within the sphere. To analyze the intrinsic dependency 
of RF with the volume 102 contours (0.8–234  cc) were 
delineated in the background of the NP.

Statistical analysis
The statistical analysis was performed using in-house 
software based on Wolfram Mathematica v 11.2. Wil-
coxon signed rank test was used when comparing two 
data samples. Correlations were analyzed in terms of 
Spearman’s correlation tests and strong correlation was 
identified by p < 0.05 and r > 0.8. For TTP and OS analy-
sis, Kaplan–Meier curves were estimated and compari-
son between groups was evaluated with the log-rank 
test. Multivariate Cox regression was used for estimation 
of hazard ratios (HR) with 95% CI. For modelling with a 
binary output, an open source multivariate binary logistic 
regression analysis [25] was performed involving imbal-
ance-adjusted bootstrap resampling (i.e. a resampling 
method alternative to the cross validation) in prediction 
performance estimation and computation of model coef-
ficients. To correct for multiple test comparisons, the 
Bonferroni correction method was applied: the signifi-
cance level was lowered to a value p < α/K, where K is the 
number of comparisons and α is the significance level set 
to 0.05.

Results
Radiomics features selection: experimental phantom 
evaluation
Results of the experimental phantom evaluation are 
summarized in the Additional file  2: Table  S2. 61% RF 
were robust (Wilcoxon signed rank test) to the different 
PET/CT systems and 53% RF had no strong correlation 



Page 5 of 10Carles et al. Radiat Oncol           (2021) 16:46  

(Spearman´s correlation test) with the number of voxels 
within the contour.

FET radiomics features for tumor characterization
RF computed on  VPETmax and  VPET3mm were compared 
with respect to the RF computed on the 4  cc-sphere 
defined as background in cerebrum  (VBg). The impact of 
the intrinsic dependency of some RF on the size was min-
imized by: (i) using the same size for  VBg in all patients 
and (ii) rejecting the RF with intrinsic dependence on 
size, based on results derived from an experimental 
phantom evaluation (see subsection  Radiomics features 
selection: experimental phantom evaluation). Conse-
quently, only the RF that did not show statistically signifi-
cant strong correlation with the size were involved in the 
current analysis. 75% of RF showed significant differences 
(Wilcoxon signed rank test, Bonferroni) between  VPETmax 
and  VBg. For  VPET3mm, only 21% of RF had statistically 
different values with respect to  VBg. Detailed results are 
listed in Additional file 2: Table S2.

Added value of radiomics features with respect to 
conventional indices (SUVmax and volume)
For our patient cohort, we evaluated the added value of 
FET-RF with respect to the conventional indices  SUVmax 
and volume. Overall, 64 RF for  VPETmax and 60 RF for 
 VPET3mm were simultaneously independent of volume 
and  SUVmax. Results are presented in Additional file  2: 
Table S2.

Prognostic value of FET radiomics features
Univariate analysis
To avoid misinterpretation of the results, only RF that 
have been proven in the phantom evaluation to be robust 
to the different PET/CT scanners were included (see 
subsections  Radiomics features selection: experimental 
phantom evaluation). In Table  2 the RF with the best 
Kaplan–Meier curve performance (log-rank test: p < 0.05) 
are presented. Overall, only the texture feature Small-
Zone-Low-Gray-Emphasis (SZGLE) could predict earlier 
time-to-tumor progression (TTP) when the significance 
level was lowered by the Bonferroni multiple-test correc-
tion (statistically significant for p < 0.0013).

Multivariate analysis: radiomics‑signatures
To build radiomics-signatures, i.e. combinations of RF for 
the prognosis of OS and for TTP, we focused our analy-
sis on the RF presented in Table 2, i.e. the RF robust to 
the PET/CT scanner and with the best Kaplan–Meier 
performance for the univariate analysis. To remove 
redundancy, we assessed the correlations between these 
RF. From each of the resulted correlated-feature groups, 
only the RF with more statistically significant prediction 
(lower p  value in log-rank test), was selected. These RF 
were combined (radiomics-signature) into a multivariate 
Cox proportional hazards regression model for predic-
tion of OS and of TTP. The resulting radiomics-signa-
tures consisted:

Table 2 Radiomics features derived from  the  two contours  (VPETmax and   VPET3mm) showing significant p values < 0.05 
in the Log-rank test for the Kaplan–Meier curves of overall-survival (OS) and time-to-tumor-progression (TTP)

Italics represent p values lower than the significance level lowered by Bonferroni multiple-test correction

Correlation with overall survival 
(OS): p value

Correlation with time‑to‑
progression (TTP): p value

Radiomics features 
extracted from  VPETmax

SUVmin 0.038 SZLGE 0.001

Busyness 0.006

WF_TS 0.012

QVarianceCM 0.029

Radiomics features 
extracted from  VPET3mm

SUVmean 0.041 Eccentricity 0.004

GLV 0.033

GLV2 0.011

WF_GLV 0.002

QAcor 0.013

QHGZE 0.013

QSZHGE 0.013

QGLN2 0.033

QHGRE 0.008

QSRHGE 0.008

QLRHGE 0.008
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 (i) for the prediction of OS (OS-radiomics-signature) 
in the combination of  SUVmean, WF_GLV and 
QLRHGE for  VPET3mm and  SUVmin for  VPETmax

 (ii) for the prediction of TTP (TTP-radiomics-sig-
nature) in the combination of SZLGE, Busyness 
and  QVarianceCM for  VPETmax and Eccentricity for 
 VPET3mm.

The p  value for all three overall tests (Likelihood-Ratio, 
Wald, and Score) was significant (p < 0.05) for both radiom-
ics-signature models. In Fig.  2 the Kaplan–Meier curves 
and log-rank test for the resulted radiomics-signature mod-
els are shown. For the TTP-radiomics-signature, results 
from the Kaplan–Meier curve and log-rank test (Fig.  2b) 
showed the same performance as when only considering 
the texture feature SZLGE.

For TTP-radiomics-signature and SZLGE we additionally 
evaluated their power as predictors of RL. Results showed 
moderate RL predictions with an area-under-the-curve 
(AUC) and sensitivity of 0.66 and 0.78 for the TTP-radi-
omics-signature and 0.63 and 0.79 for SZLGE, respectively. 
Therefore, for TTP-signature and for SZLGE, high values 
indicated not only earlier progression (TTP), but also a RL 
within the initial FET-PET active volume (Fig. 3).

Discussion
To our knowledge, this is the first evaluation of the prog-
nostic role of FET-RF in patients with rGBM scheduled 
for re-irradiation. The feasibility of developing a prog-
nostic model based on FET-RF could be demonstrated, 
with the texture feature Small-Zone-Low-Grey-Emphasis 
(SZLGE) showing the best performance for the prediction 
of time-to-progression (TTP) and in field versus distant 
RL. Considering that re-irradiation can be associated with 
side effects like radiation necrosis, brain edema, increased 
corticosteroid use or need for bevacizumab treatment, 
these results could have a significant clinical importance 
in the selection of suitable patients. These results are to be 
further validated in larger and multi-institutional patient 
cohorts (e.g. patients in the multicenter GLIAA trial [21]) 
and could therefore be considered for the development of 
future prognostic scores.

In the past decade, the number of radiomics publica-
tions has dramatically increased. However, few articles 
have properly addressed the unique challenges that a 
model development based on PET-radiomics may pose, as 
a result of the dependence of the RF variability on multiple 
factors. In the following, we detailed the main considera-
tions applied in the methodology of this study in order to 
minimize redundancy and to maximize robustness of RF, 
as recommended in previous PET-radiomics guideline 
publications [34–37]. Firstly, the definition of RF was per-
formed according to the Image Biomarker Standardization 

Initiative [23] and recommendations for resampling and 
3D definition [26, 27] were followed in order to minimize 
the impact on RF variability caused by the definition of 
texture feature matrices [29]. Additionally, our in-house 
code was validated with the open source software MITK 
[24] and an open source MATLAB code [25]. It permits 
to easily reproduce the computation of the RF involved in 
our study. Secondly, the impact of different reconstruction 
parameters and scanner design on PET RF variability [38] 
was assessed with experimental phantom evaluation. The 
intrinsic dependence of some RF on the statistics implied 
by the number of voxels within the volume [36] was also 
evaluated with experimental phantoms. Consequently, only 
the RF robust with respect to the different PET/CT scan-
ners and independent of the number of voxels within the 
contour were involved in the development of the prognosis 
model and in the evaluation of the tumor characterization, 
respectively. Thirdly, in order to minimize the well-known 
inter- and intra-user variability observed by manual con-
touring and therefore its impact on RF variability [26, 34], 
a semi-automatic segmentation algorithm was employed. 
In addition, the added value of the RF (not redundancy) 
with respect to the parameters conventionally used for 
tumor characterization (volume and  SUVmax) was assessed. 
Results showed that texture features provided comple-
mentary information with respect to these conventional 
parameters and therefore their evaluation in the design of 
prognostic models could be supported. Finally, the gener-
alizability of the results has been evaluated by internal vali-
dation, using imbalance-adjusted bootstrap as a resampling 
strategy in model development [25] and a strong criterion 
for multiple test correction (Bonferroni) was applied in 
order to reject false positives.

Conventionally, radiomics for brain tumors has primar-
ily focused on MRI. However, recent publications have also 
evaluated the use of FET-PET radiomics for differentiation 
of grade III and IV primary tumors [18], the diagnosis of 
pseudoprogression in high-grade glioma [19, 39] and the 
correlation with isocitrate dehydrogenase genotype [20]. 
In agreement with previous publications, results of our 
investigation confirmed that FET-PET can have a prog-
nostic value in the field of neuro-oncology [6–14, 40]. We 
presented the first evaluation of FET-PET radiomics for the 
prognosis assessment of rGBM patients scheduled for re-
irradiation. Although the size of our cohort was limited by 
its prospective character, it was comparable or larger than 
the cohorts evaluated in previous publications [36, 39].

The texture feature that showed the most statistically 
significant prognostic value was SZLGE derived from 
the high-risk volume  VPETmax. More precisely, high val-
ues of SZLGE and of the TTP-radiomics-signature in the 
FET-PET tumor volume before re-irradiation were cor-
related with earlier recurrence and a localization of the 
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Multivariate Cox proportional hazards regression model

Overall Survival OS
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Fig. 2 Kaplan–Meier curves and log‑rank test for the radiomics‑signatures predicting overall survival (OS‑radiomics‑signature) (a) and 
time‑to‑progression (TTP‑radiomics‑signature) (b)
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recurrence within the gross-tumor-volume defined on 
PET. These patients would therefore probably benefit less 
from re-irradiation and could be considered for alterna-
tive therapies (surgery, chemotherapy) or irradiation dose 
escalation. Low values of SZLGE and of the TTP-radi-
omics-signature correlated with longer TTP and distant 
recurrences, which is consistent with previous publica-
tions showing longer progression-free survival in patients 
with non-local recurrences [41]. Furthermore, we also 
identified an OS-radiomics-signature with statistical sig-
nificance (p = 0.038, Fig. 2).

From the two FET-PET quantification parameters with 
prognostic value (SZGLE and the TTP-radiomics-signa-
ture), SZGLE should be preferred because of its easier 
computation. In addition, SZGLE has been previously 
reported to be robust with respect to analogical/digital 
PET/CT systems, CT artefacts, segmentation methods 
and lesion motion [26, 42]. Consequently, the repro-
ducibility of SZLGE for the PET/CT imaging protocols 
conveyed by different institutions could be expected. 
SZLGE quantifies the amount and the signal intensity 
of small zones of low uptake. SZLGE prediction of TTP 
and RL and its statistically significant discrimination 
between tumor and background suggested that small 
low FET-uptake regions may also play an important role 
in the characterization of aggressive tumors. In addition, 
SZLGE is derived from the gray-level size zone matrix 
(GLSZM [30, 32]), which has been previously reported to 
provide quantitative parameters for non-invasive predic-
tion of the IDH genotype in gliomas [20].

The main limitation of our study was that our results 
could not be validated on a second patient cohort with 
similar characteristics. We attempted an internal vali-
dation by retrospective selection of rGBM patients 
treated at our institution. We were able to collect 22 
patients who underwent the same FET-PET acquisi-
tion protocol, but clinical characteristics differed sig-
nificantly from the original cohort: IDH status, use of 
surgery, delivered dose, follow-up time, percentage 
of patients with recurrence, etc. Consequently, this 
cohort was considered not appropriate for the valida-
tion of our findings and future validation in a larger 
prospective cohort with similar clinical characteristics 
is still required. However, it is worth mentioning that 
for the patients of the retrospective cohort with recur-
rence (45%), values for SZLGE and the TTP-radiom-
ics-signature confirmed the pattern observed in the 
initial cohort (Fig.  3) and significance was achieved 
for the prediction of RL. Specifically, patients with 
distant recurrence presented low SZLGE (average 
0.019 < median) and late progression (average 155 days, 
with 180  days for the initial cohort), while patients 
with local recurrence showed high SZLGE (average 
0.035 > median) and early progression (average 94 days, 
with 77  days for the initial cohort). Furthermore, the 
TTP-radiomics-signature (and SZGLE) predicted RL 
with AUC = 0.68 (0.58) and sensitivity = 0.79 (0.84).

Future work will involve all the patients prospectively 
enrolled in the multicenter GLIAA trial [21] and will 
therefore allow an additional external validation of our 
preliminary results. After confirmation, SZLGE could 

Fig. 3 Scheme of the pattern observed for values of SZLGE and TTP‑radiomics‑signature in regards to the recurrence location (AUC SZLGE = 0.63 
and AUC TTP‑radiomics‑signature = 0.66) and time‑to‑progression (Kaplan–Meier curves  pSZLGE = pTTP‑radiomics‑signature = 0.001): high SZGLE for early in field 
recurrence after re‑RT (blue) and low SZGLE for late distant recurrence after re‑RT (red)
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therefore be suggested for the improvement of individ-
ualized patient and treatment selection in rGBM.

Conclusions
We presented the first evaluation of the role of FET-
PET RF in the prognosis of patients with rGBM sched-
uled for re-irradiation. Our findings have shown that 
the radiomic feature SZLGE and two TTP- and OS-
radiomics-signatures could significantly distinguish re-
irradiation responders from non-responders. Further 
analysis in a larger prospective validation cohort is war-
ranted and planned.
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