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Abstract 

Background: Malignant brain tumor diseases exhibit differences within molecular features depending on the 
patient’s age.

Methods: In this work, we use gene mutation data from public resources to explore age specifics about glioma. We 
use both an explainable clustering as well as classification approach to find and interpret age‑based differences in 
brain tumor diseases. We estimate age clusters and correlate age specific biomarkers.

Results: Age group classification shows known age specifics but also points out several genes which, so far, have not 
been associated with glioma classification.

Conclusions: We highlight mutated genes to be characteristic for certain age groups and suggest novel age‑based 
biomarkers and targets.
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Background
Incidence of cancer subtypes varies among children and 
adults. Malignant brain tumors are the leading cause of 
cancer death of younger patients, while in older cohorts 
it is lung and bronchus cancer [1, 2].

Gliomas are brain tumors holding grades from I to IV 
depending on their malignancy [3]. High Grade Gliomas 
(HGG) are brain tumors of grade III–IV. HGG are more 
likely to be found in older population, while patients 
suffering from the most aggressive form of gliomas, the 
glioblastoma multiforme (GBM), have a median age of 

65 years at diagnosis [4]. Childhood gliomas more often 
include low-grade gliomas (LGG) [5]. Regarding the 
term LGG, it is recommended by WHO to distinguish 
between diffuse gliomas and astrocytic tumors due to the 
substantially biologically heterogeneous group of grade 
I–II gliomas [6].

There are considerable molecular differences between 
pediatric and adult gliomas [7]. Age-dependent heteroge-
neity in brain tumor subgroups such as HGG and LGG 
differences have been described [8]. So far, there are sev-
eral studies on molecular features [9–11] within pediatric 
or elderly patients, however, a classification involving age 
specifics has not been included in established schemes.

Therapy-relevant glioma classification depends on the 
knowledge of underlying molecular variations [12, 13]. 
The conventional classification was updated in 2016 
and is based on gene variations. These include, primar-
ily, codeletion of chromosomal arms 1p and 19q, and 
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the genetic status of isocitrate dehydrogenase 1 (IDH1) 
[13]. Further mutations are described for Alpha thalas-
semia/mental retardation syndrome X-linked chromatin 
remodeler (ATRX) [14], tumor protein P53 (TP53) [15], 
telomerase reverse transcriptase (TERT) [16], H3 histone 
family member 3A (H3F3A) and histone cluster 1 H3 
family member B or C (HIST1H3B/C) [17], B-Raf proto-
oncogene, serine/threonine kinase (BRAF) [18] and 
KIAA1549-BRAF fusion [19], deletions of cyclin depend-
ent kinase inhibitor 2A or 2B (CDKN2A/B) [20], fusions 
of RELA proto-oncogene, NF-KB subunit (RELA) [21], 
catenin-beta 1 (CTNNB1) referred to the group of wing-
less-type MMTV integration site family (WNT) [22], or 
PTCH and SUFU within sonic hedgehog signaling mol-
ecule (SHH)-activated subgroup [13, 23].

Over time, brain tumor classification systems have 
been and are, still, evolving [24]. Molecular signatures 
in adult gliomas have been explored and show certain 
subtypes in dependence on age [25, 26]. By using graph 
analysis on existing data we highlighted disturbed signal-
ing components in brain cancer subtypes of gliomas [27]. 
Information exists on prominent mutations within glio-
mas that suggests different biomarkers for specific age 
groups [28, 29]. Further, alterations have been shown to 
be prevalent for specific age groups by the comparison of 
older and young adults [30].

Some tumors primarily occur in children, such as dif-
fuse midline gliomas with their molecular feature of 
mutated H3F3A or HIST1H3B/C [31]. Pilocytic astrocy-
tomas are common for pediatric but not elderly patients 
and frequently exhibit BRAF mutations and fusion tran-
scripts [32]. Pediatric HGG frequently include PDGFR-α 
amplification different to the adult equivalent [33]. And 
gliomas from younger children rarely exhibit IDH muta-
tions [34].

In spite of medical advances in cancer diagnosis and 
treatment, for instance, GBM treatment remains to be 
mostly the same (old) approach across all ages, surgery 
followed by radiotherapy and only occasionally more tar-
geted chemotherapy [35]. Still, a well-tolerated therapy 
by adults may not be likewise applicable for a pediatric 
patient due to the ongoing brain development.

The older population can also be subdivided into an 
adult group and patients with a more advanced age. 
Thereby, elderly show different clinical pictures, such as 
larger tumor mass and distinct prognostic biomarkers 
[36]. The elderly population commonly refers to patients 
older than 65 or 70 years of age, while the term “elderly” 
is defined as a specific age threshold. This threshold, 
however, varies with geographical, social, and cultural 
factors [37].

Overall, novel biomarkers of brain tumors will be 
used for more detailed diagnostics, prognosis, therapy 

response control as well as targets for anti-cancer ther-
apy towards personalized medicine [38]. So far, various 
targets within the signaling cascades of growth factor 
receptors, cell cycle, angiogenesis, antitumor immune 
responses and epigenetic modulators have been inves-
tigated for therapy [39]. In general, cancer signaling in 
glioma is predominated by angiogenesis-related path-
ways involving MAPK, VEGF and EFGR [40]. There are 
several therapeutics targeting for instance VEGF, EGFR, 
PDGFRa, PTEN, MDM2 [38]. Still, the heterogeneous 
intra-tumor microenvironment demands for new strate-
gies. Furthermore, meaningful biological subgroups are 
necessary to guide the design of future clinical trials [41].

We use an explainable artificial intelligence (XAI) 
method, i.e. SHAP, on clinical and gene mutation data to 
classify and explain age-related subgroups within various 
gliomas.

Methods
Data and preprocessing
The graphical abstract is shown in Fig.  1. We use data 
from glioma samples, including both LGG and HGG, 
out of 18 different projects from pedcbioportal [42, 43] 
via https ://tinyu rl.com/y5d8g ubl and of 5 more projects 
from cbioportal via https ://tinyu rl.com/y2s2o gez. Both 
web-portals offer clinical data such as age as well as 
mutation details. Clinical data can be obtained through 
the “download” option in both web-portals. The column 
“mutated genes” within the overview of the web user 
interface (UI) can be further used to download mutation 
details. To overcome the query limit of max 167 differ-
ent gene IDs, we further sorted the exported clinical data 
file by mutation count and selected only those genes that 

Classifier with 
novel age clusters 

Genomic Mutation Data 
 from LGG and HGG samples

Identify age group clusters

Classifier of 
  literature suggested 

age groups

Top 140 mutated genes

Relate to age cohorts

vs

 Find potential novel age group specific gene markers 

Fig. 1 Graphical abstract
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have ≥ 2% mutations. Thereby, we limited the query to 
the 140 top mutated genes. This list contains genes with 
highest mutation frequency, preceded by TP53, fol-
lowed by TERT, then IDH1, etc. The 140 genes are pro-
vided as list of gene symbols as additional file 1 and on 
https ://githu b.com/radia nce/gliom a-mutat ions-xai/. 
Filtered mutation data can be downloaded by querying 
the selected 140 gene names within the 18 projects from 
pedcbioportal as well as the 5 selected studies from cbio-
portal, each specified as link above.

Queried genes in pedcbioportal’s projects’ data are 
altered in 4210 (77%) of queried patients and 4614 (77%) 
of queried samples. Queried genes in cbioportal’s pro-
vided projects’ data are altered in 3032 (96%) of queried 
patients and 3165 (96%) of queried samples.

We extracted those columns that are relevant for clus-
tering and classification including sample id, age and 
mutation count. We removed duplicated rows (such as 
from pbta_all and plgg_cbttc that contain parts of the 
same samples). We further processed the different stud-
ies’ columns by merging similar columns. Labels for clini-
cal metadata concerning age can vary from capitalized 
“Age” (phgg_jones_meta_2017) and uppercase “AGE” 
(pbta_all, pbta_pnoc, phgg_cbttc), or “Diagnosis Age” 
(lgg_tcga, lgg_ucsf, gbm_tcga). We thereby excluded sam-
ples with empty or incomplete information on age as well 
as recurrence samples or duplicates.

We further processed mutation data. The value “na” 
stands for 0 mutations. Any other string represents a 
mutated gene. If there is a blank between characters, 
there are multiple mutations listed within the field. 
“Mutation strings” per gene can be found in the muta-
tions.txt file. Mutation details on amino acid-changes 
within the specified genes are included.

Most studies provide age data as integer values. There-
fore, a few samples with floating point numbers were 

rounded to be comparable to other integer values. We 
removed samples without suitable age information. 
Merged, filtered and reduced data covers only 2894 sam-
ple lines of 14 different projects with an age range from 0 
to 90, a mutation count from 0 to 14063 and the several 
mutation types according to the 140 selected mutated 
genes. Due to this filtering process of incomplete data, 87 
genes remain of the previously 140 selected genes.

Age distribution is visualized in Figs. 2a and 3. Sample 
count per study distribution is visualized in Fig. 2b. Pro-
cessed data is available as additional file 2 and on https ://
githu b.com/radia nce/gliom a-mutat ions-xai/.

Workflow
Both clustering and classification were used to explore 
age-related differences in glioma diseases. We took an 
XAI approach to compare conventional age groups and 
to explore possible new age groups. Within the first 

a  Age distribution b  Samples per cancer studies
Fig. 2 Glioma sample data distribution

Fig. 3 Top 10 mutated genes distribution

https://github.com/radiance/glioma-mutations-xai/
https://github.com/radiance/glioma-mutations-xai/
https://github.com/radiance/glioma-mutations-xai/
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classification approach the following age groups were 
assumed:

• Age group 0: age below 19
• Age group 1: age 19 to 70
• Age group 2: age greater than 70

We compared classifier performance by using means and 
standard deviation from stratified k-fold cross-validation. 
We selected a Random Forest approach, the best algo-
rithm according to results from the classifier comparison, 
shown in Table 1. We selected the top 20 mutated genes 
as features. To better explain classifier results we applied 
SHAP (SHapley Additive exPlanations) [44] to summa-
rize the effects of all the selected features. In parallel, we 
started a separate clustering approach to explore possible 
novel age groups. We applied a K-Means algorithm. We 
further used XAI principles and visually analyzed each 
step. Final clustering results are visualized in Fig. 5.

We applied the clustering for the number of clusters 
to n = 2, 3, 4, 5, 6, 7, 8 , as suggested by the elbow method 
and the silhouette coefficient, shown in Fig. 4.

Based on the visual clustering results, shown in Fig. 5, 
we repeated the first classification approach adapted 
to the three age groups as well as the four groups 
accordingly.

Implementation
We implemented both a clustering as well as a classifica-
tion algorithm in Python. Source code for both clustering 
as well as classification is available on https ://githu b.com/
radia nce/gliom a-mutat ions-xai.

Clustering
Clustering is based on a K-Means algorithm using Scikit-
learn [45]. We further used the python libraries Pandas 
[46], Numpy, Matplotlib and Seaborn for data processing 
and visualizing results.

Classification
We used Scikit-learn [45] for implementing the classifi-
ers. We used Pandas [46] for data structuring and manip-
ulation. SHAP (SHapley Additive exPlanations) [44] was 
used for explainable artificial intelligence (XAI) results. 

Table 1 Model comparison for classifying traditional and updated age groups (bold: best results)

Ages 0–18, 19–70, 70+ Ages 0–22, 23–48, 48+ Ages 0–9, 10–26, 27–50, 50+

Mean SD Mean SD Mean SD

Random Forest 0.792226 0.018431 0.709313 0.035924 0.580960 0.034479

Linear Discriminant 0.733046 0.028101 0.671703 0.031654 0.545130 0.031640

K Neighbors 0.738271 0.027061 0.603038 0.037627 0.473873 0.020474

Decision Tree 0.758096 0.012999 0.683384 0.031697 0.552452 0.033747

Gaussian Naive Bayes 0.225052 0.018959 0.500274 0.052508 0.358057 0.059829

C‑Support Vector 0.718389 0.015940 0.561992 0.038804 0.445800 0.027187

Logistic Regression 0.750756 0.019220 0.665224 0.035580 0.549440 0.029133

a elbow method b mean silhouette coefficient
Fig. 4 Performance functions for different number of clusters

https://github.com/radiance/glioma-mutations-xai
https://github.com/radiance/glioma-mutations-xai
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We processed data and visualized the results using SHAP, 
Pandas and Matplotlib library.

For comparison, we repeated the classification using 
suggested age groups from clustering.

Results
Glioma sample disposition across age and clustering 
of age groups
Age groups are defined by using gene mutation data col-
lected from various glioma projects. Distribution met-
rics of downloaded samples are shown in Figs. 2a, b and 
3. Raw data included an overall of 9264 data rows, with 
5961 from the studies selected via pedcbioportal and 
3303 via cbioportal. After first filtering and merging data, 
the comma-separated values (csv) file included only 5478 
data rows. The other 3786 were removed due to incom-
pleteness and/or inappropriateness of available meta-
data. The column mutation count is available for only 
5628 out of 6396 (768 samples not available and/or 0). 

This means that the 140 queried genes are altered in only 
77% of selected data. The overall mutation count is not 
available for all samples and non-uniformly distributed 
over age. On the one hand, this can be explained by the 
fact that web portals limit query size, at least via the web 
user interface we used. On the other hand, pedcbioportal 
offered more resources on children than adult patients. 
Therefore, we added additional adult samples from cbio-
portal in order to have a more balanced age distribution. 
Still, we find a higher number of different mutated genes 
in younger patients. Finally, we excluded samples with 
empty or incomplete information on age and/or muta-
tion count as well as recurrence samples and duplicates. 
After data cleansing, 2894 samples are left for clustering 
and classification experiments.

The number of clusters n of the K-Means algorithm can 
be adjusted. By computing both the sum of the squared 
error (SSE) as well as the silhouette coefficient, shown 
in Fig. 4, cluster numbers of n ≤ 8 are suggested. Differ-
ent clustering results for n = 2, 3, 4, 5, 6, 7, 8 are shown in 
Fig. 5. The K-Means clustering for n = 3 clusters reveals 
three distinctive age groups after multiple iterations:

• Class 1: age below 23
• Class 2: age 23 to 48
• Class 3: age greater than 48

The K-Means clustering for n = 4 clusters reveals the 
four distinctive age groups:

• Class 1: age below 10
• Class 2: age 10 to 26
• Class 3: age 27 to 50
• Class 4: age greater than 50

Figure  5 shows a cluster number n > 4 to show higher 
dissimilarity within at least one cluster (the red group in 
n = 5, 6, 7, 8 ). In case of n = 5, 6, 7, 8 there is at least one 
cluster distributed over a wide range of age.

Figure  14 and Table  2 illustrate top mutated genes of 
age groups from conventional and updated classes. The 
chart illustrates several genes associated with age. For 
instance, H3F3A, AHNAK2, SOX1, SUSD2 and KMT2C 
are most frequently mutated in young age classes. 
PIK3CA and TERT are upon top mutated genes within 
adult samples and RYR2 mutations are more frequent 
within older adults.

Classification of age‑related mutation data among gliomas
Selected age groups are compared and classified by their 
gene mutation signatures. At least three age groups can 
be distinguished from incidence reports and further stud-
ies [47, 48]. Therefore, the first classification approach is 

n = 2 n = 3

n = 4 n = 5

n = 6 n = 7

n = 8

a

c

e f

g

d

b

Fig. 5 Results from gene‑based clustering of age groups with 
different number of clusters n 
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based on conventional age groups from 0–18, 19–70 and 
70+.

The comparison of classifier performances suggests a 
Random Forest algorithm, as shown in Table 1, resulting 
in the best mean and standard deviation (SD). The first 
classification approach with 0–18, 19–70, 70+ has an 
accuracy of 78.41% and shows important features for age 
classes.

Adapting the classifier regarding the younger group 
to 0–22, 23–70, 70+ the accuracy drops minimally to 
78.07%. Adapting the classifier regarding the older group 
to 0–18, 19–48, 48+ the accuracy drops to 73.58%. The 
adapted classifier with both groups adapted to 0–22, 
23–48, 48+, as suggested by clustering results, has again 

a minimal lower accuracy of 72.54%. Adapting the clas-
sifier to the four suggested classes 0–9, 10–26, 27–50, 
50+ lowers the accuracy further to 59.24%. An increased 
range of the adult age group, such as for 0–9, 10–18, 
19–70, 70+, increases the accuracy to 69.08%. The use of 
two clusters ranging from 0–34 and 34+ leads to a classi-
fier accuracy of 75.82%.

Figure 6 shows that the updated 0–22, 23–48, 48+ clas-
sifier results in a lower number of correct predictions 
than the first classifier with 0–18, 19–70, 70+ (420 ver-
sus 454 from overall 579). The classifier in case of four 
age groups shows 343 correct predictions out of 579. 
By comparing Tables 1 and 3 it is also shown that com-
puted clusters are not improving the classifier’s overall 

Table 2 Age class-specific top mutated genes: top 20 mutated genes within  traditional or  updated age groups 
from clustering within selected glioma projects

0–9 0–18 0–22 9–26 18–70 23–48 26–50 48+ 70+

TTN TTN TTN TP53 TP53 IDH1 IDH1 TP53 TP53

AHNAK2 TP53 TP53 ATRX IDH1 TP53 TP53 PTEN PTEN

TP53 AHNAK2 AHNAK2 IDH1 ATRX ATRX ATRX TTN TTN

AHNAK H3F3A AHNAK TTN PTEN CIC CIC EGFR TERT

H3F3A AHNAK H3F3A AHNAK2 TTN TTN TTN IDH1 EGFR

MUC17 FLG2 ATRX H3F3A TERT TERT TERT NF1 NF1

MUC16 MUC17 FLG2 FLG2 EGFR NOTCH1 PTEN MUC16 PIK3R1

FLG2 MUC16 MUC17 NF1 CIC PTEN PIK3CA PIK3CA PIK3CA

PHLPP1 PHLPP1 MUC16 ERBB2 NF1 PIK3CA NOTCH1 PIK3R1 MUC16

OBSCN RAMP2 OBSCN BRAF PIK3CA NF1 NF1 FLG RB1

KMT2D ATRX NF1 RAMP2 MUC16 FUBP1 FUBP1 TERT MUC17

SUSD2 KMT2D RAMP2 MUC16 NOTCH1 EGFR EGFR CIC PCLO

SOX1 OBSCN KMT2D AHNAK PIK3R1 KMT2D KMT2D RYR2 RYR2

NF1 NF1 PHLPP1 MUC17 FUBP1 MUC16 MUC16 ATRX IDH1

ATRX BRAF BRAF CIC KMT2D SMARCA4 SMARCA4 RB1 FLG

KMT2C SUSD2 IDH1 KMT2D FLG PIK3R1 PIK3R1 PCLO USH2A

RAMP2 SOX1 KMT2C TEX13D RB1 ARID1A ARID1A SPTA1 CIC

SVIL KMT2C SUSD2 KMT2C RYR2 RB1 RB1 LRP2 PDGFRA

MKI67 TEX13D SOX1 CTNNB1 LRP1 BCOR RYR2 MUC17 ATRX

ISM2 SVIL TEX13D PIK3CA SMARCA4 NOTCH2 ATM PKHD1 HMCN1

a 0-18, 19-70, 70+ b 0-22, 23-48, 48+ c 0-9, 10-26, 27-50, 50+
Fig. 6 Comparison of classifier confusion matrices, showing classifier performance (darker means better prediction)
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performance but have impact on age group specifics. 
Table 3 shows precision and recall scores for the classi-
fier versions 0–18, 19–70, 70+ and 0–22, 23–48, 48+ and 
0–9, 10–26, 27–50, 50+. Comparing the youngest age 
group, both 3 age groups classifiers show similar results, 
while the 0–18, 19–70, 70+ classifier suits the middle 
group better, and the updated version with 0–22, 23–48, 
48+ classifier performs well for the older age group. Pre-
dicting age group 50+ works best with the 0–9, 10–26, 
27–50, 50+ classifier of four age groups.

Feature importance of the classifiers 0–18, 19–70, 70+ 
and 0–22, 23–48, 48+ are shown in Fig. 7.

IDH1 and TP53 stay most important for classifica-
tion among all classification schemes. There is a shift 
in importance of some other features and their asso-
ciation with individual age groups is changed. TERT, for 
instance, is highly important for the middle age group 
from traditional classes, its importance is shifted to the 
older adults from the updated classes. MUTYH has a 
smaller importance on the updated middle age class. So 

far, MUTYH mutations are infrequent and have been 
shown in pediatric patients to increase risk of malignant 
brain tumors [49].

The SHAP summary plot for the four classes 0–9, 
10–26, 27–50, 50+ shows feature importance for the 
classification of the four suggested age groups from 
the clustering results. It is indicated, that IDH1 is most 
important for the age group of 27 to 50. TERT is most 
important for age group 50+.

Figures 8 and 9 show SHAP values for the top 20 fea-
tures for each class separately. A positive SHAP value 
increases the prediction, a negative value decreases the 
prediction. Features are ranked in descending order. 
X-axes positions refer to low up to high impact on pre-
diction. Dots are stacked on the y-axes and refer to the 
concentration or respective amount of observations for 
a shap value. The color shows whether a shap variable is 
high (in red) or low (in blue) for an observation.

IDH1 has a negative impact on class 0–18 and 0–22, a 
positive one on class 19–70 and on 23–48, and a nega-
tive on 48+ and 70+. BCORL1 has a positive impact 
on classes 0–18 and 0–22 and a negative on the classes 
18–70, 23–48, 48+ and 70+. KMT2D has a positive 
impact on young and a negative one on older age classes, 
whereas a high value of KMT2A has a negative impact 
on young and a positive on older age classes. Many other 
features are ambiguous.

Comparison of HGG and LGG classifications
We further filtered data on LGG and HGG, respec-
tively. Only a small subset of the data can be used for 
this comparison of subtypes. This is due to the fact 
that most studies contain general glioma data. Only a 
few studies explicitly contain either LGG-specific sam-
ples (lgg_tcga, lgg_tcga_pan_can_atlas, lgg_ucsf_2014, 
plgg_cbttc) or HGG-specific samples (gbm_tcga, 

Table 3 Performance report for  classifier with  traditional 
and  updated age groups (bold: highest performing age 
group compared to other age groups)

Age classes id Precision Recall f1 score

0–18 1 0.79 0.76 0.77
19–70 2 0.81 0.87 0.84
70+ 3 0.11 0.05 0.07

0–22 1 0.75 0.85 0.80
23–48 2 0.69 0.67 0.68

48+ 3 0.72 0.64 0.68
0–9 1 0.57 0.60 0.58

10–26 2 0.46 0.34 0.39

26–50 3 0.65 0.64 0.64

50+ 4 0.62 0.71 0.66

a 0-18 (orange), 19-70 (blue),
70+ (green)

   b 0-22 (orange),23-48 (blue),
48+ (green)

c 0-9 (green), 10-26 (red),
27-50 (orange), 50+ (blue)

Fig. 7 Comparison of classifier features (classes sorted by performance)
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gbm_tcga_pan_can_atlas, phgg_cbttc, phgg_herby, 
phgg_jones_meta_2017).

LGG specific data rows are 1047, HGG are 511. Fig-
ure 10 shows the distribution of data on LGG and HGG 
filtered samples. The prediction of the HGG classi-
fier for the three age classes 0–18, 19–70 and 70+ has 
an accuracy of 67.96%, and the accuracy for LGG is 
93.33%.

The prediction accuracy of the updated HGG Classifier 
is 77.67% and for LGG 73.33%. So, the updated version 
performs better for HGG, while the more traditional age 
classes perform better with LGG-filtered data. Figure 11 
shows IDH1 and TERT to be most relevant in LGG for 
the younger and middle age class, while BCORL1 being 
more dominant in HGG. Feature importance of updated 
classes to classify LGG and HGG are shown in Fig.  12, 
which highlights IDH1 as important feature for classify-
ing the HGG younger and middle age class, and BCORL1 

is more dominant for classifying the LGG younger and 
middle age class.

Figure 13 shows estimates for classifier feature impor-
tance of classifying the 4 suggested age classes 0–9, 
10–26, 27–50 on each HGG and LGG filtered data. 
When using n = 4 different instead of the updated n = 3 
classes, IDH1 remains a dominant feature for age class 
27–50 regarding LGG. TERT is the most important fea-
ture for classifying the youngest age group 0–9 regarding 
LGG. Regarding HGG, BCORL1 becomes more impor-
tant for age class 50+. Comparing Feature importance 
for the four age classes in Figs. 12 as well as 13 shows that 
ATRX is less important for the youngest age group 0–9.

Figures  11, 12 and 13 further illustrate comparable 
importance of ATRX for all classifiers. ATRX functions 
as tumor suppressor and is involved in p53 signaling 
[50]. It has been negatively associated with TERT muta-
tions [51]. TERT is among top 4 mutated genes in LGG 

a class 1: 0-18 b class 2: 19-70 c class 3: 70+
Fig. 8 Impact of the top 20 features for each of the classes 0–18, 19–70, 70+

22 23-48 48+a    class 1: 0- b     class 2: c     class 3:
Fig. 9 Impact of the top 20 features for each of the classes 0–22, 23–48, 48+
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and less important in HGG classes. IDH1 is the most 
important gene mutation succeeding TERT within 
LGG classification using the traditional age classes, 
and remains important in updated classifiers. In case of 
HGGs, IDH1 holds only 7th place, and in updated age 
classes 5th and 4th. BCORL1 is involved in tumor pro-
gression and respective mutations occur in HGGs and 
LGGs [52]. Still, BCORL1 is relevant for classification 
of HGG only. KMT2 proteins occur both in HGG and 
LGG under top 10 features in all classifiers. Thereby, 
KMT2A appears in top 5 most important features in 
HGG, whereas KMT2D under top 8 in LGG.

Discussion
The main idea is to use classification as well as cluster-
ing to explore age-related differences in glioma diseases 
in order to find possible novel age group-specific bio-
markers. We already highlighted top ten mutated genes 
within pediatric glioma samples from data amongst sev-
eral pediatric resources, namely BRAF, TP53, KIAA1549, 
H3F3A, ATRX, IDH1, CDR2, PIK3CA, NF1, C17ORF47, 
in this order regarding mutation frequency [28]. The 
summary of all selected projects from pedcbioportal and 
cbioportal indicate age-specific mutation frequency for 
several genes.

a HGG distribution b LGG distribution
Fig. 10 LGG and HGG specific sample data distribution per age

a HGG b LGG
Fig. 11 Comparison of Classifier feature importance for age classes 0–18 (blue), 19–70 (orange), 70+ (green); classes sorted by performance



Page 10 of 14Jean‑Quartier et al. BMC Med Inform Decis Mak           (2021) 21:77 

Prognostic and therapeutic biomarkers for brain can-
cers differ between patients depending on their age. 
Genetic alterations in brain tumor samples show dis-
tinct gene mutation signatures related to age groups 
and may support the identification of novel biomarkers.

Glioma classification could be updated according to 
age-groups in relevance to diagnostics, therapy possi-
bilities and clinical decision-making. We present unu-
sual age groups for glioma classification based on gene 
mutation signatures. Therefrom several genes emerge as 

a HGG b LGG
Fig. 12 Comparison of updated classifier features for age classes 0–22 (blue), 23–48 (orange), 48+ (green), classes sorted by performance

a HGG b LGG
Fig. 13 Comparison of updated classifier features for age classes 0–9 (green), 10–26 (red), 27–50 (orange), 50+ (blue); classes sorted by 
performance
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characteristics for specific age classes. The view on top 
ranked mutated genes in distinct age groups highlights 
differences in regard to diagnostics. Some genes relevant 
to one group could be irrelevant to another group but 
a previous unimportant gene could emerge as a major 
biomarker.

Representative age clusters disclose gene mutations 
as age-specific biomarkers. The clustering algorithm 
depicted several distinct groups but also some adjacent 
and marginally overlapping clusters. In case of three age 
clusters there is a young group up to 22 years and the 
middle group up to 48 years. Some sample points within 
the region of cluster borders may be falsely allocated. 
This problem would be of less importance if age was cal-
culated in days or months instead of years.

Regarding classification performance there are sev-
eral optimization possibilities. First, the higher the 
sample number within an age class, the higher the clas-
sifier’s accuracy. Including a higher number of data 
samples will improve the accuracy. Regarding data 
quality, even a great portal as pedcbioportal depends 

on data providers to allocate comparable study data. 
Therefore, improving the quality of clinical data, such 
as consistently providing more details on age at diag-
nosis, would further improve accuracy and specific-
ity. Moreover, identifying cancer subtype-specific 
top mutated genes and using these instead of the 140 
selected gene symbols, may also improve the classifier’s 
performance.

By comparing classifier performance, as can be seen 
in Fig.  6, the updated classifier for the middle group is 
worse rated, compared to the younger and the older 
age groups, which perform better. The quality of perfor-
mance is demonstrated by the count in the diagonal from 
top left to bottom right. A higher count refers to better 
performance.

It can be observed, that in the first classifier version 
with age classes 0–18, 19–70, 70+, the middle group per-
forms best. Nonetheless, if the goal is to detect members 
of one specific class rather than having a minimal better 
overall accuracy, one may have a closer look at the feature 
importance comparison, as shown in Fig. 7.

Fig. 14 Distribution of top mutated genes within various age groups: examples from top 20 mutated genes among selected age groups of 
children, young adults and elderly patients suffering from glioma
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Some features are more important for specific 
classes. Exemplary, IDH1 is less important for the old-
est age group. This can be explained insofar as IDH1 is 
known to be most common in LGG [53] and a substan-
tial number of samples are from patients with LGG. By 
comparing both plots of classifier feature importance, 
shown in Fig.  7, one may observe certain changes in 
feature rankings.

Class-specific top mutated genes point out several 
genes in correlation to age. In case of young age groups, 
there are some genes implicated to other cancers whose 
role in glioma has to be elucidated, yet, like AHNAK2 
and SUSD2 [54, 55]. SOX1 has been implicated with 
glioma, while SOX2 has been depicted as unfavorable 
prognostic marker [56, 57]. Older age groups include 
well-known biomarkers such as TERT, PTEN and NF1 
which are not within the most frequent mutated genes 
within younger patients [58, 59].

The comparison of high and low grade gliomas fur-
ther depicts several gene mutations distinct to glioma 
grades. Top 20 mutated gene lists from classifica-
tion experiments on HGG or LGG data include either 
KMT2A in HGG, or KMT2D in LGG in all classifi-
cation modes. Additionally, KMT2A was negatively 
implicated in young age classes and positively impli-
cated in older age groups. KMT2D was inversely asso-
ciated. Such observations can help elucidate the role of 
KMT2 proteins in tumor progression and as driver or 
passenger mutations in future aspect of clinical impli-
cation for the Lysine Methyltransferase 2 family [60]. 
Within the top 20 list of HGG age group classification 
several genes are highlighted that have not been associ-
ated with glioma classification, yet. Depending on their 
shap value they could become important for a defined 
age-group. Future studies will elucidate a possible clini-
cally relevant role.

Possible misconceptions when quantifying feature 
relevance using Shapley values were described by [61]. 
Therefore, future work should further test SHAP expla-
nations with different stakeholders [62, 63].

Amongst the top 20 mutated genes of pediatric-only 
patient data from pedcbioportal, there are e.g. LRP1 and 
HSPG2 that are not within the list of selected 140 query-
genes. This query-list consists of the overall top 140 
mutated genes from all the selected pedcbioportal data.

We attempted to compare various subgroups of glioma 
diseases, however, the lack of meta-information regard-
ing cancer type specificity of samples did not allow for 
sub-classification of LGG. Thus, future studies and addi-
tional data resources are necessary for a more detailed 
analysis. Still, the comparison of the distinct subgroups 
of HGG and LGG highlights the differences within 
the heterogeneous disease group of gliomas. Likewise, 

classification by grades I-IV would require more detailed 
meta-information or sample designation.

For future studies, it can be useful taking other vari-
ables into account in combination with age, such as ana-
lyzing fusion genes, gene expression, post-translational 
modifications depending on data availability or addi-
tional clinical data including therapy details.

Conclusions
The idea of questioning known age groups in glioma clas-
sification offers new perspectives. Certain biomarkers are 
already associated with certain age groups. Changing age 
margins results in the movement of features to other age 
groups. These age-associated features resemble possible 
targets and biomarkers, that may lead to different diag-
nosis and treatment strategies. Nonetheless, it would be 
interesting to see better classifier difference when dealing 
with specific glioma subclasses. Therefore, future work 
based on the extension of this research requires addi-
tional glioma-grade-specific data to better compare spe-
cific glioma subtypes.
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