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Abstract 

Background: This study aimed to identify the most valuable predictors of prognosis in glioblastoma (GBM) patients 
and develop and validate a nomogram to estimate individualized survival probability.

Methods: We conducted a real-world retrospective cohort study of 987 GBM patients diagnosed between Septem-
ber 2010 and December 2018. Computer generated random numbers were used to assign patients into a training 
cohort (694 patients) and internal validation cohort (293 patients). A least absolute shrinkage and selection operator 
(LASSO)-Cox model was used to select candidate variables for the prediction model. Cox proportional hazards regres-
sion was used to estimate overall survival. Models were internally validated using the bootstrap method and gener-
ated individualized predicted survival probabilities at 6, 12, and 24 months, which were compared with actual survival.

Results: The final nomogram was developed using the Cox proportional hazards model, which was the model 
with best fit and calibration. Gender, age at surgery, extent of tumor resection, radiotherapy, chemotherapy, and 
IDH1 mutation status were used as variables. The concordance indices for 6-, 12-, 18-, and 24-month survival prob-
abilities were 0.776, 0.677, 0.643, and 0.629 in the training set, and 0.725, 0.695, 0.652, and 0.634 in the validation set, 
respectively.

Conclusions: Our nomogram that assesses individualized survival probabilities (6-, 12-, and 24-month) in newly diag-
nosed GBM patients can assist healthcare providers in optimizing treatment and counseling patients.

Trial registration: retrospectively registered.
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Background
Gliomas are among the most common primary brain 
tumors in adults and account for over 81% of malignant 
brain tumors. Glioblastoma (GBM), the most malignant 

type, accounts for the majority of gliomas (56.6%) and 
has an incidence of 3.21 per 100,000 [1]. GBM patients 
have a poor prognosis. Five-year relative survival is 5.6% 
and median overall survival (OS) is 12 to 15 months [1]. 
Factors affecting prognosis include age, sex, Karnofsky 
performance status (KPS), extent of resection (EOR), 
treatment plan, and several biomarkers [2–8]. These bio-
markers include isocitrate dehydrogenase enzyme (IDH) 
mutation, telomerase reverse transcriptase (TERT), 
O6-methylguanine-DNA methyltransferase (MGMT) 
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gene promoter methylation status and epidermal growth 
factor receptor (EGFR) [5–9]. After maximal safe resec-
tion and subsequent concurrent chemoradiation and 
adjuvant chemotherapy with the alkylating agent temo-
zolomide, median survival is still < 2 years [3].

Nomograms are accessible tools that physicians can 
use to predict survival, make treatment decisions based 
on individualized cancer prognosis and create follow-up 
plans. Several nomograms have been previously devel-
oped for GBM patients [10–12]. One was developed 
using data from the European Organization for Research 
and Treatment of Cancer-National Cancer Institute of 
Canada clinical trial; however, this nomogram was only 
internally validated [10]. Another nomogram, which was 
both internally and externally validated, was developed 
from data from two independent, nonoverlapping NRG 
Oncology Radiation Therapy Oncology Group (RTOG) 
clinical trials (0525 and 0825) [11]. The analysis for this 
nomogram included only patients who completed con-
current chemoradiation from both trials and therefore 
several important treatment-related prognostic factors, 
such as IDH mutation status and use of concurrent 
chemoradiation therapy were not considered. In addi-
tion, another recent study developed a nomogram to 
estimate individualized survival probabilities for newly 
diagnosed IDH-wild-type GBM patients using data from 
the Ohio Brain Tumor Study (OBTS) that was externally 
validated using data from the University of California San 
Francisco [12].

The purpose of this study was to identify the most valu-
able prognostic indicators from real-world clinical data, 
then develop and validate a readily accessible and prac-
tical nomogram that estimates individualized survival 
probability for GBM patients.

Methods
Study population and design
A total of 987 GBM patients diagnosed between Sep-
tember 2010 and December 2018 at Huashan Hospital 
(an affiliate of Fudan University) were retrospectively 
enrolled in this cohort study. Computer generated ran-
dom numbers were used to assign patients to a train-
ing cohort (n = 694) and an internal validation cohort 
(n = 293). This study was approved by the ethics review 
committee of Huashan Hospital, and written informed 
consent was obtained from all individual participants 
included in the study.

Data collection
Histological diagnosis of GBM was based on specimens 
obtained during surgical resection. Haematoxylin–eosin 
stained sections of all specimens were reviewed by two 
blinded neuropathologists and classified according to 

the 2016 World Health Organization Classification of 
Tumors of the Central Nervous System. The following 
variables were obtained for each patient: gender, age 
at surgery, KPS score before surgery, number of days in 
hospital, tumor location, EOR, number of operations, 
tumor laterality, IDH1 status, MGMT status, TERT sta-
tus, Ki67 index, radiotherapy, chemotherapy, adjuvant 
therapy, and recurrence and survival status. IDH1 test-
ing was performed by immunohistochemistry. Standard 
pyrosequencing was performed to test MGMT methyla-
tion. All testing results were reviewed by an expert neu-
ropathologist. Tumor recurrence was determined using 
the Response Assessment in Neuro-Oncology criteria.

Statistical analyses
The t-test and Chi-square test were used to compare con-
tinuous variables and categorical variables, respectively, 
between the two datasets. A penalized Cox model was 
applied to select variables for constructing a predictive 
model. The R package glmnet was used to apply the least 
absolute shrinkage and selection operator (LASSO) to 
the model. After cross-validation methods were used to 
test the robustness of the selected significant candidate 
characteristics, the model was used to weight the coef-
ficients from the training cohort to build the prediction 
model [13].

Based on the results from these variables, patients in 
the training and validation datasets were classified into 
high-risk score and low-risk score groups. The Kaplan–
Meier method was used to calculate OS in each dataset 
and the log-rank test was used to compare the difference. 
Cox proportional hazards (CPH) regression was used to 
assess OS. The models were trained using the training set 
and internally validated using the test set. The bootstrap 
method was used to internally validate the models to gen-
erate individual predicted survival probabilities at 6, 12, 
18, and 24 months, which were compared with observed 
actual survival to measure prediction accuracy. The CPH 
OS prediction model was evaluated by the concordance 
index, which ranges from 0.5 (completely random pre-
diction) to 1 (perfect prediction). The final nomogram 
was developed using the Cox method with the greatest 
prediction accuracy to individualize estimated survival 
probability. Calibration curves were also drawn for each 
dataset. All analyses were performed using R version 
3.6.3. P < 0.05 was considered significant.

Results
Patient characteristics
Patient demographics for all patients (N = 987) and the 
training (N = 694) and validation datasets (N = 293) 
are presented in Table  1. There were no significant 
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Table 1 Baseline characteristics of the glioblastoma patients overall and in the training and validation datasets

Variable Overall (N = 987) Training set (N = 694) Validation set (N = 293) P-value

Gender [N (%)]

 Female 365 (37.0) 265 (38.2) 100 (34.1) 0.257

 Male 622 (63.0) 429 (61.8) 193 (65.9)

Age_at_surgery [mean (SD)] 52.60 (14.12) 52.89 (13.62) 51.91 (15.23) 0.322

KPS score before surgery [mean (SD)] 85.53 (8.73) 85.50 (8.80) 85.62 (8.57) 0.846

Days_in_hospital [mean (SD)] 18.99 (9.35) 18.79 (9.75) 19.46 (8.36) 0.338

Surgical_resection [N (%)]

 Total resection 620 (80.7) 438 (81.1) 182 (79.8) 0.67

 Subtotal resection 138 (18.0) 94 (17.4) 44 (19.3)

 Partial resection 10 (1.3) 8 (1.5) 2 (0.9)

Number_of_operations [N (%)]

 1 810 (94.0) 571 (94.2) 239 (93.4) 0.093

 2 50 (5.8) 35 (5.8) 15 (5.9)

 3 2 (0.2) 0 (0.0) 2 (0.8)

Laterality [N (%)]

 Left 383 (48.7) 261 (47.1) 122 (52.6) 0.186

 Right 403 (51.3) 293 (52.9) 110 (47.4)

Location [N (%)]

 Callosum 43 (5.2) 26 (4.5) 17 (6.9) 0.419

 Frontal lobe 368 (44.3) 267 (45.8) 101 (40.7)

 Parietal lobe 87 (10.5) 65 (11.1) 22 (8.9)

 Temporal lobe 267 (32.1) 178 (30.5) 89 (35.9)

 Occipital lobe 33 (4.0) 25 (4.3) 8 (3.2)

 Insular lobe 27 (3.2) 18 (3.1) 9 (3.6)

 Cerebellum 6 (0.7) 4 (0.7) 2 (0.8)

IDH1 status [N (%)]

 Wild-type 680 (91.3) 471 (91.3) 209 (91.3) 1

 Mutant-type 65 (8.7) 45 (8.7) 20 (8.7)

Ki-67 index [N (%)]

 Less than 5% 38 (4.0) 27 (4.0) 11 (3.9) 0.568

 5–20% 559 (58.7) 401 (59.8) 158 (56.2)

 More than 20% 355 (37.3) 243 (36.2) 112 (39.9)

MGMT status [N (%)]

 Unmethylated 457 (61.0) 323 (61.8) 134 (59.3) 0.58

 Methylated 292 (39.0) 200 (38.2) 92 (40.7)

TERT status [N (%)]

 Wild-type 85 (43.6) 57 (41.9) 28 (47.5) 0.575

 Mutant-type 110 (56.4) 79 (58.1) 31 (52.5)

Radiotherapy [N (%)]

 No 192 (19.5) 136 (19.6) 56 (19.1) 0.93

 Yes 795 (80.5) 558 (80.4) 237 (80.9)

Chemotherapy [N (%)]

 No 219 (22.2) 160 (23.1) 59 (20.1) 0.355

 Yes 768 (77.8) 534 (76.9) 234 (79.9)

Adjuvant therapy [N (%)]

 Radiotherapy and chemotherapy 728 (73.8) 508 (73.2) 220 (75.1) 0.619

 Radiotherapy only 67 (6.8) 50 (7.2) 17 (5.8)

 Chemotherapy only 39 (4.0) 25 (3.6) 14 (4.8)

 No adjuvant therapy 153 (15.5) 111 (16.0) 42 (14.3)
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differences in any of the measured variables between the 
training and validation datasets.

Feature selection and risk score building
In terms of prognostic factors, 12 features were reduced 
to 6 potential predictors based on 374 patients in the 
training set (Fig. 1a, b), which were features with nonzero 
coefficients in the LASSO-Cox model. These features are 
presented in the risk score calculation formula:

Development of an individualized prediction model
Cox regression analysis identified gender, age at surgery, 
EOR, IDH1 status, radiotherapy, and chemotherapy as 
independent predictors (Table 2). The final concordance 
index of the CPH model was 0.635. In the multivariable 
CPH analyses of the two datasets, female gender, radio-
therapy, chemotherapy, IDH1 mutant and total resection 
were significantly associated with better OS (all P < 0.05). 
Younger age at time of surgery trended toward better OS 
but was not statistically significant (P = 0.088). There was 
a significant OS difference between total resection and 
partial resection (P = 0.027), but not between total resec-
tion and subtotal resection (P = 0.785).

The model that incorporated the above independent 
predictors was developed and is presented as the nom-
ogram (Fig.  2). The nomogram to estimate 6-, 12-, and 
24-month survival probabilities was established using the 
training and validated dataset using the CPH model.

Survival
Patients in the training dataset were divided into high-
risk score and low-risk score groups. Kaplan–Meier 

Risk score = 0.1822× gender

+ 0.0002× age at surgery

+ 0.1320× surgical resection

− 0.1133× IDH1 status

− 0.2062× radiotherapy

− 0.4353× chemotherapy

curves were generated for each group and median sur-
vival rates with 95% confidence intervals (CIs) were cal-
culated (Fig.  3). In the high-risk score group, median 
survival was 14.0 months (95% CI 13.0–15.9). In the low-
risk score group, median survival was 21.6 months (95% 
CI 19.0–24.9). The difference was significant (P < 0.0001, 
Fig.  3a). In the validation dataset, median survival 
also significantly differed between the two groups 
(13.0 months (95% CI 11.2–16.0) vs. 21.2 months (95% CI 
19.0–35.0); P < 0.0001; Fig. 3b).

Model discrimination validation
After tenfold cross-validation of the training and valida-
tion datasets, the concordance index of each dataset was 
computed to predict survival at 6, 12, 18, and 24 months. 
For the respective 4 time points, the CPH analysis results 
of the training dataset were 0.776, 0.677, 0.643, and 0.629; 
those for the validation dataset were 0.725, 0.695, 0.652, 
and 0.634. Concordance index curves for the predicted 
6-, 12-, 18-, and 24-month OS rates of the training and 
validation datasets are illustrated in Fig.  4 for a visual 
comparison.

Model calibration validation
We also constructed calibration curves of the training 
and validation datasets to visually compare the predicted 
survival at 6, 12, and 24 months (Fig. 5a–f). For the pre-
dicted survival curves, the observed, and ideal survival 
rates lines are essentially identical, which suggests that 
the model’s predictions are in line with expectations. For 
the predicted 12-month survival curves (Fig.  5b, e), the 
observed and ideal lines essentially overlap.

Discussion
In this real-world cohort study, we identified the most 
valuable prognostic indicators for patients with GBM, 
and then developed and validated an individual survival 
nomogram. According to bootstrap validation, the CPH 
survival model was the model with best fit and calibra-
tion. This model was then internally validated.

KPS Karnofsky performance status, IDH1 isocitrate dehydrogenase 1, MGMT O6-methylguanine-DNA methyltransferase, TERT telomerase reverse transcriptase

Table 1 (continued)

Variable Overall (N = 987) Training set (N = 694) Validation set (N = 293) P-value

Recurrence status [N (%)]

 No recurrence 174 (17.6) 129 (18.6) 45 (15.4) 0.261

 Recurrence 813 (82.4) 565 (81.4) 248 (84.6)

Survival status [N (%)]

 Alive 221 (22.4) 161 (23.2) 60 (20.5) 0.393

 Dead 766 (77.6) 533 (76.8) 233 (79.5)
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The most decisive factors in GBM prognosis are age at 
diagnosis, EOR and KPS [2, 14]. In our study, we consid-
ered up to 15 prioritized clinical features for each patient 
as possible prognostic factors. Using LASSO-Cox analy-
sis, we found the six most valuable variables, namely gen-
der, age at surgery, EOR, radiotherapy, chemotherapy, 
and IDH1 mutation status. These variables are easily 
acquired from patients, allowing easy application of the 
model in real-world practice. The incidence of GBM is 
1.6 times higher in males compared to females [1] and 
5-year cancer-specific survival rates in males and females 
are 6.8% and 8.3%, respectively [15]. Multivariable Cox 
proportional hazards models for patients with newly 
diagnosed IDH wild-type GBM from the OBTS showed a 
hazard ratio of 1.596 when comparing males with females 
(P = 0.011); however no significant difference was found 
when using data from University of California San Fran-
cisco (hazard ratio 1.206, P = 0.402) [12]. In another 
study that used data from the NRG Oncology RTOG 
clinical trial 0525, the hazard ratio was 1.596 (P = 0.0014) 
[11]. Our results are in agreement: females have a signifi-
cantly better survival outcome.

Increased age is related to shorter survival [1] and GBM 
patients older than 75  years have a significantly higher 
risk of death than those aged 65–69  years  [16]. Poorer 
survival in elderly GBM patients is due to coexisting dis-
ease as well as decreased ability to withstand neurologi-
cal damage caused by the tumor, surgery and/or adjuvant 
therapy [15, 17, 18]. In addition, primary GBM and genes 
associated with poorer prognosis are more common in 
older patients [1, 6]. As in previous nomogram studies, 
[11, 12] we also found that age was an important predic-
tor of prognosis.

Many studies have confirmed the importance of aggres-
sive surgical resection when feasible. The prognosis of 
GBM patients with a greater EOR tends to be better, as 
maximum resection volume is associated with longer 
progression-free survival (PFS) and OS [19–22]. One pre-
vious study retrospectively analyzed 416 newly diagnosed 
and recurrent GBM patients and concluded that > 98% 
resection is necessary to significantly improve survival 
[2]. Multiple other studies have confirmed this, prov-
ing that OS in GBM patients is associated with greater 
EOR, [23] even in elderly patients, who are considered 
to have poorer outcomes regardless of intervention [24, 
25]. A large study of 500 newly diagnosed GBM patients 

demonstrated that even EOR as low as 78% is related to 
improved OS, and when EOR exceeds 78%, OS contin-
ues to increase with the increase in EOR [26]. In a ret-
rospective systematic meta-analysis of more than 41,000 
newly diagnosed GBM patients, gross total resection 
was superior to subtotal resection, showing increases of 
61% and 51% in 1-year OS and PFS, respectively  [27]. 
Another study found that even 70% resection resulted in 
significant improvement in OS and seizure control [7]. 
However, although we found that EOR was an important 
predictor of prognosis, our analysis showed a significant 
difference only between total and partial resection, not 
between total and subtotal resection. The same results 
have been found in studies that used other databases [11, 
12].

IDH1  mutations in GBM were first reported by Par-
sons et al. in 2008, [28] who pointed out that “mutations 
in  IDH1  occurred in a large fraction of young patients 
and in most patients with secondary glioblastomas and 
were associated with an increase in OS.” Although IDH 
mutations can be found in up to 80% of grade II–III 
gliomas and secondary GBMs, they are rare in primary 
GBMs [6, 29–31]. GBMs are divided into three sub-
groups according to IDH mutation status: mutant, wild-
type and not otherwise specified (NOS) [6, 9, 32, 33]. 
One analysis of GBM patients who underwent surgery 
and radiotherapy showed that mean OS in IDH1 mutant 
patients was 27.1 months, while mean OS in IDH1 wild-
type patients was only 11.3 months [31]. Another study 
of GBM patients treated with radio/chemotherapy found 
that mean OS was 31 months in IDH1 mutant patients, 
which was twice that of IDH1 wild-type [30]. The role of 
IDH1 mutation as a predictor of prognosis was not con-
sidered in studies prior to these. In our study, IDH1 was 
found to be a more important predictor than MGMT 
and TERT. In our model, MGMT does not become one 
of the predictive model variables, however, in previous 
studies, MGMT became a predictive variable, which may 
be caused by the data in previous studies [11, 12]. In the 
study based on the NRG Oncology RTOG Clinical Trial 
0525 database, there was no IDH mutation status in the 
model because no information related to IDH muta-
tion status was provided in the database [11]. In another 
study that used data from Ohio Brain Tumor Study and 
University of California San Francisco, only the data of 
IDH wild-type patients were used, so the weight of IDH 

(See figure on next page.)
Fig. 1 Prognostic factor selection using the least absolute shrinkage and selection operator (LASSO) Cox regression model. a Tuning parameter (λ) 
selection in the LASSO model used tenfold cross-validation via minimum criteria. The partial likelihood deviance curve was plotted versus log(λ). 
Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the one standard error of the minimum criteria (the 1-SE 
criteria). A λ value of 0.1201, with log (λ), − 2.1193 was chosen (1-SE criteria) according to tenfold cross-validation. b LASSO coefficient profiles of 
the 12 prognostic factors. A coefficient profile plot was produced against the log (λ) sequence. A vertical line was drawn at the value selected using 
tenfold cross-validation, where optimal λ resulted in six nonzero coefficients
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mutation status on prognosis was not reflected. [12] 
When our model was established, we did not artificially 
select the variables needed for prediction. Instead, we 
used LASSO to reduce the dimension of clinical vari-
ables. In this process, MGMT in real world data did not 
show the same results as other studies.

Because of the highly malignant nature of GBM, post-
operative radiotherapy and chemotherapy are usu-
ally required. Our study found that postoperative 

radiotherapy and chemotherapy are also important pre-
dictors of prognosis. Radiotherapy can be used as either 
primary treatment or post-operatively and both can 
improve PFS and OS [34, 35]. Temozolomide adminis-
tration with radiotherapy significantly increases OS in 
patients with newly diagnosed GBM from 12.1  months 
with radiotherapy alone to 14.6  months with radio-
therapy and temozolomide [36]. Although radiation 
in combination with temozolomide is recommended 

Table 2 Cox proportional hazards model results from the training set

IDH1 isocitrate dehydrogenase 1

Variable HR 95% CI Wald Z P-value

Gender (Male vs. female) 1.309 (1.033–1.659) 2.229 0.026

Age at surgery (< 55 years vs. > 55 years) 1.008 (0.999–1.018) 1.705 0.088

Surgical resection (Partial vs. Total) 2.242 (1.098–4.579) 2.215 0.027

Surgical resection (Subtotal vs. Total) 1.066 (0.674–1.686) 0.272 0.785

IDH1 status (Mutant vs. wild-type) 0.489 (0.3116–0.768) − 3.108 0.002

Radiotherapy (Yes vs. No) 0.675 (0.454–1.002) − 1.949 0.051

Chemotherapy (Yes vs. No) 0.505 (0.347–0.734) − 3.576 0.000

Fig. 2 Nomogram for predicted 6-, 12-, and 24-month survival probabilities in glioblastoma patients. Gender (1 = male, 0 = female); age_at_
surgery: age at the time of surgery; surgical_resection: status of surgical excision (0 = gross total resection, 1 = subtotal resection, 2 = partial 
resection); IDH1_status: IDH1 gene mutation status (0 = wild-type, 1 = mutant); radiotherapy: receipt of radiation therapy (1 = yes, 0 = no); 
chemotherapy: receipt of chemotherapy (1 = yes, 0 = no)
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Fig. 3 Kaplan–Meier survival curves for glioblastoma patients. a Training dataset and b validation dataset
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over single-modality therapy for newly diagnosed GBM 
patients who are older than 70 years of age and have good 
performance status, the results of two phase III studies 
support the recommendation that temozolomide alone 
as initial therapy may be a reasonable option for elderly 
patients who have MGMT promoter-methylated tumors 
and would be initially preferred to delayed radiation 
treatment [37, 38].

Since our study is a real-world retrospective cohort 
study, it reflects problems encountered in actual clini-
cal practice better than previous studies based on data 
from specific clinical databases. The nomogram study 
used to estimate individualized survival probability of 
GBM patients based on the RTOG database may not 
be suitable for GBM patients who do not meet their 
study criteria [12]. In addition, although radiotherapy 

and chemotherapy after maximal safe tumor resection 
is optimal, this treatment approach may not apply to 
all patients in the real world for various reasons. Using 
EOR, radiotherapy and chemotherapy as separate predic-
tive model variables is more applicable in actual practice. 
Furthermore, the variables used in our prediction model 
were screened by LASSO regression, not set in advance, 
which is more objective.

There are several limitations to this study. First, due 
to its retrospective design, there was missing data in 
some of the variables. Second, the prediction model was 
not externally verified. Third, since we only examined 
patients from China, the model may not generalize to 
other populations. Future studies to validate the predic-
tion model in various populations are warranted.

Fig. 4 Concordance indices of the Cox proportional hazard model. Concordance indices of the Cox proportional hazard model at 6, 12, 18, and 
24 months in the training dataset (a) and validation dataset (b)
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Conclusions
This study developed and validated a nomogram to esti-
mate OS in GBM patients that uses six prioritized vari-
ables for prognosis prediction in real-world clinical 
scenarios. Instead of a population-based estimate, our 
model provides an individualized estimate of OS based 
on specific patient characteristics and can be easily 
adopted by health care providers to counsel patients and 
their caregivers regarding treatment decision-making, 
clinical follow-up, and prognosis.
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