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Abstract

Background: Subependymal giant cell astrocytoma (SEGA) is occasionally seen in tuberous sclerosis complex (TSC).
Two main options are currently available for treating SEGA: surgical resection or pharmacotherapy using
mammalian target of rapamycin inhibitors (mTORi). We hypothesized that opportunities for surgical resection of
SEGA would have reduced with the advent of mTORi.

Methods: We retrospectively reviewed the charts of patients treated between August 1979 and July 2020, divided
into a pre-mTORi era group (Pre-group) of patients treated before November 2012, and a post-mTORi era group
(Post-group) comprising patients treated from November 2012, when mTORi became available in Japan for SEGA.
We compared groups in terms of treatment with surgery or mTORi. We also reviewed SEGA size, rate of acute
hydrocephalus, recurrence of SEGA, malignant transformation and adverse effects of mTORi.

Results: In total, 120 patients with TSC visited our facility, including 24 patients with SEGA. Surgical resection was
significantly more frequent in the Pre-group (6 of 7 patients, 86 %) than in the Post-group (2 of 17 patients, 12 %;
p = 0.001). Acute hydrocephalus was seen in 1 patient (4 %), and no patients showed malignant transformation of
SEGA. The group treated using mTORi showed significantly smaller SEGA compared with the group treated under a
wait-and-see policy (p = 0.012). Adverse effects of pharmacotherapy were identified in seven (64 %; 6 oral ulcers, 1
irregular menstruation) of the 11 patients receiving mTORi.

Conclusions: The Post-group underwent surgery significantly less often than the Pre-group. Since the treatment
option to use mTORi in the treatment of SEGA in TSC became available, opportunities for surgical resection have
decreased in our facility.
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Background
Subependymal giant cell astrocytoma (SEGA) is often
seen in patients with tuberous sclerosis complex (TSC),
with a reported frequency of 1–27.4 % [1–7]. Manage-
ment of SEGA used to involve resection in open cranial
surgery [8, 9], because SEGA may cause hydrocephalus
[10], and, in rare cases, malignant transformation [11] or
intra-tumoral hemorrhage [12]. Patients with SEGA may
even undergo laser ablation [13, 14] or endoscopic sur-
gery [15–19]. However, as TSC is a systemic disease,
most patients with TSC suffer from not only SEGA, but
also pathologies such as renal, pulmonary, dermato-
logical, and ophthalmological diseases. This is because
the mechanisms underlying TSC involve abnormal up-
regulation of the mammalian target of rapamycin
(mTOR) pathway in patients with TSC and subsequent
tumor growth in various organs. Interdisciplinary med-
ical management is thus required for the treatment of
TSC [3, 20, 21]. The importance of interdisciplinary
medical management for TSC is nowadays acknowl-
edged by many physicians who treat patients with TSC.
This is probably due to the availability of mTOR inhibi-
tors (mTORi) [7]. As mTORi show efficacy against not
only SEGA, but also pathologies such as renal angiomyo-
lipoma [22, 23], epileptic seizures [24], neuropsychiatric
disorders [25], and lymphangioleiomyoma [26, 27] over
a wide age range [28], the situation surrounding patients
with TSC has become more complicated. Patients with
SEGA should thus be followed-up by a well-organized
interdisciplinary team including internal and surgical
physicians [3, 20]. The current treatment strategy for
SEGA entails two treatment options: surgical removal or
a pharmacotherapeutic approach using mTORi [29].
Theoretically, given these two options, the probability of
a patient undergoing resective surgery would be reduced.
In this study, we hypothesized that opportunities for
surgical treatment of SEGA would have decreased since
the introduction of mTORi. The purpose of this study
was thus to compare the frequency of surgical treatment
for SEGA between the pre- and post-mTORi eras as a
primary outcome measure. We also monitored the size
of SEGA and the adverse effects of mTORi, and exam-
ined differences in treatment goals for SEGA before and
after the advent of mTORi by reviewing rates of acute
hydrocephalus, malignant transformation and reasons
for surgery as secondary outcome measures.

Methods
Study design
Participants in this cross-sectional, observational, non-
randomized study were identified from a retrospective
review of medical charts for patients treated between
August 1979 and July 2020 by the Tuberous Sclerosis
Board at Seirei Hamamatsu General Hospital. This study

was conducted as an analytical comparative study, and
not as a descriptive study, so it did not represent a case-
series study. Moreover, since results were obtained
retrospectively and interventions were not applied to
patients to obtain the data for this study, it did not rep-
resent an interventional study.

Clinical information
We retrospectively reviewed patients with TSC who
were diagnosed genetically or clinically in accordance
with the clinical diagnostic criteria [30]. Inclusion
criteria were: (1) uni- or bilateral SEGA observed on
magnetic resonance imaging (MRI) of the brain; (2) MRI
or computed tomography (CT) of the brain performed
every 1–3 years; and (3) follow-up at > 1 year. The
neuroradiological criterion was included in accordance
with the recommendations of the International Tuber-
ous Sclerosis Complex Consensus Conference [31, 32].
SEGAs in this study were defined as lesions within the
cerebral ventricles with maximum diameter ≥10 mm.
We regarded lesions with maximum diameter < 10 mm
as subependymal nodules and excluded those cases from
the present study [33, 34].

Outcome measurements
Among the enrolled patients, those patients diagnosed
with SEGA before November 2012 were categorized into
the pre-mTORi era group (Pre-group). Patients diag-
nosed with SEGA after November 2012 were categorized
into the post-mTORi era group (Post-group). The cut-
off of November 2012 was applied as the time when
mTORi (everolimus) became available in Japan. Patients
in the Post-group who exhibited tumor growth on serial
MRI or CT took everolimus at 3 mg/m2/day. If no
tumor growth was observed and other pathologies did
not require everolimus, we adopted a wait-and-see
policy. When a patient exhibited adverse effects from
everolimus, the dose was reduced to every other day to 3
days/week, depending on symptoms. If adverse effects
lasted a long time, patients could suspend the use of
everolimus for a period of up to 1 month. Patients who
stopped use of everolimus for > 1 month were excluded
from analysis in this study. We compared groups in
terms of surgical and mTORi treatment.
We also reviewed the rate of acute hydrocephalus, the

reason for surgical resection, rates of SEGA recurrence
in the surgical and non-surgical subgroups, and the rate
of malignant transformation. We monitored SEGA size
before and after mTORi administration by serial MRI or
CT for patients who receiving mTORi. Serial neuroi-
mages were obtained every 1–3 years, in line with the
recommendations of the International TSC consensus
conference [32]. SEGA size was defined as the largest
diameter on axial, coronal or sagittal MRI or axial CT.
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We also reviewed adverse effects attributed to mTORi.
For the reference, we also measured SEGA size just be-
fore SEGA resective surgery in the Pre-group.

Statistical analysis
For statistical analyses of clinical data, we used Student’s
t-tests, and the Mann-Whitney U-tests, as well as Fish-
er’s exact probability tests to compare patients who
underwent resective surgery in the pre- and post-
mTORi eras. Values of p < 0.05 were considered statisti-
cally significant. All statistical analyses were performed
using Sigma Plot version 14.0 software (Systat Software,
San Jose, CA, USA).

Results
Clinical information
A total of 120 patients with TSC visited our facility, in-
cluding 23 patients (19 %) with SEGA who met the in-
clusion criteria for the study. One patient (Patient 4) had
bilateral SEGAs. In that patient, one SEGA was surgi-
cally removed in the pre-mTORi era and the other was
treated using mTORi. This patient was therefore
counted twice. As a result, we analyzed 24 patients (16
males, 8 females) in total (Table 1). Age at presentation
to our hospital (p = 0.031) and current age (p = 0.002)
were both significantly lower in the Post-group than in
the Pre-group.

Outcome measurements
Six of the seven patients in the Pre-group underwent
surgical resection of SEGA, while a wait-and-see policy
was adopted for the remaining patient. In the Post-
group, two of the 17 patients underwent surgical resec-
tion. An mTORi was administered (11 patients) or a
wait-and-see policy was adopted (four patients) in the
remaining 15 patients. Surgical resection of the SEGA
was thus significantly more frequent in the pre-Group
(p = 0.001).
Clinical characteristics of the eight patients who

underwent surgical resection across both eras are shown
in Table 2. Five of these eight patients displayed an en-
larged lateral ventricle on neuroimaging, but only one
patient (Patient 3) exhibited symptoms of increased
intracranial pressure (iICP), was diagnosed with

symptomatic acute hydrocephalus and underwent emer-
gency surgery. All patients who did not undergo surgery
were asymptomatic. Thus, only one of the 24 patients
(4 %) presented with acute iICP.
Only one patient (Patient 4) experienced SEGA

growth, arising on the contra-surgical side. We adminis-
tered mTORi for this tumor growth, and the tumor sub-
sequently decreased in size. No cases of recurrence or
malignant transformation were seen in any other
patients.
Size of the SEGA treated by mTORi and size of the

SEGA treated under a wait-and-see policy are shown in
Fig. 1. SEGA size in the group administered mTORi
ranged from 10.19 mm to 23.18 mm (mean, 12.87 mm;
SD, 3.68 mm; median, 11.42 mm). SEGA size in the
wait-and-see policy group ranged from 10.23 mm to
15.42 mm (mean, 12.72 mm; SD, 2.69 mm; median, 12.6
mm). The group treated by mTORi showed a signifi-
cantly reduced SEGA size compared with the group
treated using a wait-and-see policy (p = 0.012). Adverse
effects from mTORi were identified in seven (64 %) of
the 11 patients. Of these, six patients (54 %) exhibited
oral ulcers and one (10 %) exhibited irregular menstru-
ation. SEGA size just before resective surgery ranged
from 10.98 mm to 31.1 mm (mean, 19.39 mm; SD, 7.65
mm; median, 18.62 mm). SEGA size in the group treated
by resective surgery was not significantly larger than that
in the mTORi treatment group (p = 0.054). These data
were only for the reference because neuroimages could
not be collected just before the resective surgery from
two of the patients and thus were not included in this
measurement.

Discussion
Obviously, the Post-group used mTORi more frequently
than the Pre-group in our facility. This study, however,
confirmed that the frequency of surgical resection was
indeed reduced following the advent of mTORi.
In this study, only one of the 24 patients (4 %) clinic-

ally exhibited acute iICP symptoms. However, other
studies have reported a high rate of acute hydrocephalus,
even with high mortality rates [9]. In the present study,
only one patient showed acute hydrocephalus and no
mortality occurred. SEGA size is related to the rate of

Table 1 Clinical information for the pre- and post-mTORi eras

pre-mTORi era post-mTORi era p-value

Age at SEGA removal operation (years) 6, 6-19 years, mean 10, median 8.5, SD 5.02 2, 1-9 years, mean 5, median 5, SD 5.65 0.407

Age at mTORi administration (years) n/a 11, 0.8-24 years, mean 12.3, median 14, SD 8.17 n/a

Age at presentation to our hospital 7, 9-41 years, mean 22.6, median 19, SD 11.3 17, 0.8-23 years, mean 10.5, median 12, SD 7.7 0.031*

Current age (years) 7, 19-43 years, mean 29.9, median 29, SD 8.78 17, 1-29 years, mean 14, median 15, SD 8.16 0.002*

Sex (male / female) 3 f / 4 m 5 f / 12 m

mTORi Mammalian target of rapamycin inhibitor, n/a Not available, SD Standard deviation, SEGA Subependymal giant cell astrocytoma

Tomoto et al. BMC Neurology          (2021) 21:139 Page 3 of 7



hydrocephalus [35] and early diagnosis and early treat-
ment by the mTORi are reported to successfully prevent
hydrocephalus [36]. As age at presentation to our hos-
pital was lower in the Post-group than in the Pre-group
in this study, SEGA identification while still small might
explain the lower rate of acute hydrocephalus.
Many reports have stated that SEGA grows near and

occludes the foramen of Monro, leading to obstructive
hydrocephalus. However, we know that some cases show
apparent occlusion of the foramen on MRI while not
exhibiting iICP symptoms and others do not show clear
occlusion of the foramen but still exhibit symptoms of
iICP. The theory of obstructive and communicating
hydrocephalus is now known to be inadequate for
explaining the pathophysiology of hydrocephalus. More
complicated causative mechanisms must therefore be in-
volved in hydrocephalus, such as brain compliance and
osmotic pressure due to cerebrospinal fluid protein [37–
40]. However, the classical theory is still often applied to
the mechanisms underlying hydrocephalus with SEGA.
The actual rate of acute hydrocephalus remains unclear,

with a wide variation in reported values of 38–80 % [8,
9, 29, 41–44]. A huge discrepancy exists between the
present study (4 %) and those previous investigations.
This was probably due to differences between treatment
by an interdisciplinary team or a single department. A
single department such as neurosurgery may see a pa-
tient with SEGA who visits their department with iICP
symptoms. However, as tumor growth is age-dependent
and the natural history of this pathological entity is well-
known [45], expertise ranging from pediatrics to adult
neurology and neurosurgery is required in terms of deal-
ing with the hydrocephalus. Surgical and internal med-
ical treatments have both positive and negative aspects
[36, 46–48]. Among these, we must choose the best
treatment for patients with SEGA in a well-organized
interdisciplinary team. The present study found that we
mostly treated SEGA prophylactically for fear of possible
hydrocephalus, with only one patient with symptomatic
hydrocephalus undergoing emergency tumor resection.
Considering the high mortality and morbidity rates in
patients with SEGA [45, 49], shifting the treatment

Table 2 Clinical characteristics of 8 cases with surgically resected SEGA associated with TSC

Patient no. Sex Age at
operation

Date of
operation

Approaches to the SEGA Symptoms of SEGA (reason for surgery)

1 M 6 pre-mTORi era surgical removal enlarged lateral ventricle (prophylactic)

2 M 10 pre-mTORi era surgical removal (+ frontal lobe focus resection) enlarged lateral ventricle (prophylactic)

3 F 19 pre-mTORi era surgical removal (emergency) acute hydrocephalus (cure of iICP)

4 F 6 pre-mTORi era VP shunt, then surgical removal enlarged lateral ventricle (prophylactic)

5 M 12 pre-mTORi era surgical removal none (prophylactic)

6 M 7 pre-mTORi era surgical removal, then VP shunt enlarged lateral ventricle (prophylactic)

7 M 9 post-mTORi era surgical removal none (prophylactic)

8 F 1 post-mTORi era surgical removal (+ total corpus callosotomy) none (prophylactic)

F Female, M Male, SEGA Subependymal giant cell astrocytoma, VP shunt Ventriculoperitoneal shunt, iICP Increased intracranial pressure

Fig. 1 At the time of latest follow-up, patients receiving mammalian target of rapamycin inhibitors (mTORi) showed reduced size of the SEGA
compared with the wait-and-see policy group (p = 0.012). The number in parentheses after each case shows total follow-up in months.
Neuroradiological follow-up was performed every 1–3 years
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concept of SEGA from emergent hydrocephalus treat-
ment by a single department to prophylactic treatment
by an interdisciplinary team appears warranted.
Some differences between SEGA with and without

iICP, such as variations in immunohistochemical fea-
tures, genetic differences, and anaplastic features [50–
52] or protein-producing functions [53, 54], may relate
to brain compliance or osmotic pressure. However, this
study could not address this question. In addition,
whether mTORi ceased or reduced the protein-
producing function of SEGA was also unclear in this
study. As a perspective on future investigations, studies
involving multiple facilities are required to clarify risk
factors for SEGA with iICP in advance of determining
optimal treatments.

Conclusions
Since the treatment option to use mTORi in the treat-
ment of SEGA in TSC became available, opportunities
for surgical resection have decreased in our facility.
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