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Abstract
Purpose  Glioblastoma (GBM) is associated with a poorer prognosis when leptomeningeal dissemination (LMD) occurs. 
Recently, the role of both ventricular entry (VE) during surgery and subventricular zone localization of tumors in promoting 
LMD in GBM patients has been debated. This article investigates the role of VE in causing LMD in GBM patients.
Methods  We conducted a retrospective analysis of GBMs operated on at our Institution between March 2018 and December 
2020. We collected pre- and post-surgical images, anamnestic information, and surgical reports.
Results  Two hundred cases were collected. The GBM localization was periventricular in 69.5% of cases, and there was a 
VE during the surgical procedure in 51% of cases. The risk of post-surgical LMD in the case of VE was 16%. The rate of 
LMD was higher in the case of VE than not-VE (27.4% vs. 4%, p < 0.0001). The rate of LMD in periventricular GBM was 
19% (p = 0.1131).
Conclusion  According to our data, VE is an independent factor associated with a higher rate of post-surgical LMD, and the 
periventricular localization is not independently correlated to this negative outcome. Neurosurgeons should avoid VE when 
possible. The correct surgical strategy should be founded on balancing the need for maximal EOR and the risks associated 
with VE.
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Introduction

Glioblastoma (GBM) is the most frequent primary brain 
tumor in adults [1–4]. The current standard treatment, the 
Stupp protocol, employs post-surgical radiotherapy plus 
adjuvant chemotherapy and has improved median survival 
up to 16.7 months [5–8]. Many factors influencing the prog-
nosis have been cleared, such as the tumor size, the spread 
through the corpus callosum, multifocality, and the extent of 
resection (EOR) [9–13]. Earlier studies have shown a shorter 
survival after diagnosis of leptomeningeal dissemination 

(LMD) (12–20 weeks [14]), with OS sinking to 6 months [5, 
15]. The ventricular entry (VE) during surgical exeresis has 
a debated role in influencing the prognosis of GBM [16–20].

Neurosurgeons have speculated whether VE during GBM 
excision could favor the cerebrospinal fluid (CSF) dissemi-
nation of tumor cells [18, 19, 21, 22]. Due to the lack of 
clear scientific evidence, the safest surgical strategy has 
often been adopted, sometimes compromising the EOR. 
Subsequently, to the increasingly scientific solid demonstra-
tion of EOR as the main positive prognostic factor for GBMs 
and how greater EOR was associated with better outcomes 
[11, 23, 24], the problem of VE has been tackled again in the 
literature. At first, VE was associated with a higher rate of 
LMD and worst prognoses [16–19, 25]. Recent works [20, 
26] aimed at distinguishing VE from primary subventricular 
zone (SVZ) localization of GBM, identifying the latter as 
the only factor linked to higher rates of LMD of GBM. The 
SVZ, a pluripotent stem cell niche in adults, is localized 
in the wall of lateral ventricles [20, 27, 28]. In the case of 
GBM invasion, it would be linked with disease progression 
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[29]. Despite the latest reports supporting this hypothesis, 
the level of evidence is low [20].

Although the EOR should be as maximal as possible [11, 
30–32], the effect of VE on GBM progression has to be 
clarified. Our work aimed to compare the post-surgery LMD 
associated with VE and SVZ localization to determine the 
risk associated with both factors and define the best surgical 
strategy in supratentorial GBM.

Materials and methods

The prospectively collected electronic database of our 
Institute was retrospectively searched for surgically treated 
GBM (WHO grade IV) between March 2018 and Decem-
ber 2020. In all cases, the histological diagnosis was GBM 
without any other component (as PNET). Pre- and postop-
erative radiological exams (brain computed tomography 
[CT] and magnetic resonance imaging [MRI]), surgical and 
clinical reports, and histological diagnoses were retrieved. 
Brain imaging was performed on either a 3 T (Ingenia 3 T, 
Philips Medical Systems, Best, The Netherlands) or a 1.5 T 
(Magnetom Aera, Siemens Healthcare) MRI scanner. The 
protocol included bi-dimensional non-contrast and contrast-
enhanced T1-weighted spin-echo (SE), T2-weighted SE, 
T2* gradient-echo (GE), and diffusion-weighted (DWI) 
sequences, plus three-dimensional (3D) Fluid Attenuated 
Inversion Recovery (FLAIR), non-contrast and contrast-
enhanced T1 Turbo Field Echo (TFE) or Magnetization 
Prepared Rapid Gradient Echo (MPRAGE) sequences. Both 
3D-FLAIR and T1-weighted imaging were obtained with 
1 mm slice thicknesses. Postcontrast T1-weighted imag-
ing was performed after the Dynamic Susceptibility Con-
trast Perfusion Weighted (DSC-PWI) sequence for perfu-
sion imaging, acquired during intravenous administration 
of 0.1 mmol/Kg bolus of a gadolinium-based macrocyclic 
contrast agent (Gadoteridol).

Preoperative MRIs were examined in T1-weighted and 
gadolinium-enhanced T1-weighted sequences for identifying 
GBM localization (Fig. 1).

The SVZ localization was considered a contrast-enhanced 
area less than 1 cm from the ventricular wall without an 
apparent subependymal spread (Fig. 1A, B; C, D). Postop-
erative MRIs (at least one-month post-operatively to avoid 
confounding surgery-related alterations) were used to detect 
VE, which was considered present if a clear breach between 
ventricles and surgical cavities was observed(Fig. 1E, F). 
Surgical reports were screened if radiological images were 
inconclusive.

Postoperative brain MRIs (one month and six months 
after surgery) were examined to identify LMD, and FLAIR 
and gadolinium-enhanced T1-weighted sequences were 
analyzed by two independent observers (DG and FB), 

blinded to the violation of ventricular walls during sur-
gery. We used a numerical code instead of the patients' 
names to identify them: this allowed us to examine the two 
scans independently, preventing a potential bias related to 
the previous knowledge of VE. The LMD was defined as 
leptomeningeal contrast enhancement along the contours 
of the gyri and sulci, as nodular enhancement in the suba-
rachnoid space, or along the subependymal zone [15]. A 
six-month follow-up was considered the cut-off for the 
absence of LMD. Patients with consolidated disease recur-
rence at early postoperative imaging were excluded from 
the analysis since LMD could develop directly from the 
relapsing tumor.

To highlight the specific risk of LMD associated with VE, 
we analyzed the LMD rate in the subgroup of periventricular 

Fig. 1   periventricular GBM (A, B); not periventricular GBM (C, D); 
VE (E, F); VE ventricular entry, GBM glioblastoma multiforme
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GBM. We subdivided this subgroup into VE and not-VE and 
calculated each LMD rate.

A forward and backward logistic regression analysis was 
performed to evaluate the association of periventricular loca-
tion and VE with LMD, considering demographic data and, 
when available, molecular biomarkers (Isocitrate dehydro-
genase [IDH]1/2 and ATRX gene mutations, O-6-Methyl-
guanine-DNA Methyltransferase [MGMT] promoter meth-
ylation) as covariates. Variables with p values < 0.2 in the 
univariate analysis were included in the multivariate analy-
sis. Odds ratios (OR) and corresponding 95% confidence 
intervals (95% CI) were thus estimated by a logistic regres-
sion model. Statistical analysis was performed with Med-
Calc (version 9.6.2.0; Mariakerke, Belgium). The statistical 
significance threshold was set at p < 0.05.

Results

All results are summarized in Table 1.
During the study period, 200 patients (110 male and 90 

female, 55% vs. 45%) with a median age of 63.28 years 
(± 10.32, range 21–86) underwent exeresis of intracranial 
GBM (191 patients [95.5%] were GBM of the first diagno-
sis; nine patients [4.5%] were recurrences).

The mean follow-up was 8.6  months (± 6.7). GBM 
localization was periventricular in 139 patients (69.5%) and 
far from the ventricle in 61 patients (30.5%). The VE was 
observed in 102 cases (51%), and MRI was inconclusive 
for VE in 10 of these patients. In these cases, we searched 
for VE in surgical reports, which was present in 6 of these 
10 cases.

The IDH status was available for 50 patients (25%), and 
an IDH-1 or -2 mutation was detected in 11 cases (5.5%). 
The MGMT promotor methylation was present in 119 cases 
(59.5%) and not reported in 12 cases (6%). The localiza-
tion was periventricular in 139 cases (69.5%), and the VE 
was more frequent in peri-ventricular GBM (80 patients) 
than in cases of GBM far from the ventricle (22 patients) 
(58% vs. 36%). LMD was observed in 32 cases (16%): in 13 
cases among these (40.6%), LMD arose between one and 
six months of follow-up, and in 19 cases (59.4%) occurred 6 
months after surgery. LMD was strongly associated with VE 
(p < 0.0001) (see also Table 1). We did not find higher rates 
of post-surgical LMD in periventricular GBM: in this group, 
the rate of LMD was 19% (26 patients), and in non-periven-
tricular GBM, it was 10% (6 cases) (p = 0.11) (Fig. 2).

Concerning VE during surgical exeresis, LMD rates in 
periventricular GBM was 31% when VE was performed (25 
cases), whereas it was 4% when VE did not occur (1 patient) 
(p = 0.01).

Analyzing data in univariate logistic regression, VE was 
the only factor significantly associated with LMD (OR 8.89, 

CI 2.98–26.47, p < 0.001). The periventricular localization 
was included in the multivariate analysis since it seemed 
to be associated with LMD, although not significantly (OR 
2.1, CI 0.82–5.42, p = 0.121). Both forward and backward 
multivariate logistic regression analyses gave the same 
results and, thus, the same OR. Only VE showed a strong 
significant association with LMD (OR 8.36, CI 2.78–25.11, 
p < 0.001), whereas periventricular localization did not (OR 
1.48, CI 0.54–4.02, p 0.436). A univariate logistic regression 
included the IDH status and the MGMT promotor meth-
ylation. Detailed results of logistic regression analyses are 
reported in Tables 2 and 3. 

Discussion

In this work, we aimed to clarify the influence of VE during 
GBM exeresis on the spread of glial tumor cells through 
CSF. LMD related to GBM is associated with shorter OS [5, 
15, 22], thereby representing an adverse prognostic factor. 
We observed higher rates of LMD when VE was performed 
than in cases where this surgical event did not occur.

Table 1   Final population characteristics (GBM glioblastoma multi-
forme, VE ventricular entry)

Total number 200

Sex
- Male 110 (55%)
- Female 90 (45%)
Type of resection
- First exeresis 191 (95.5%)
- Exeresis of recurrences 9 (4.5%)
Mean age 63.28 (± 10.32)
Mean time of follow-up (months) 8.6 (± 6.7)
Relationship with ventricle
- Periventricular GBM 139 (69.5%)
- Periventricular GBM 61 (30.5%)
Ventricular entry 102 (51%)
Genotype
- IDH mutant 11 (5.5%)
- Wild-type 39 (19.5%)
- Reported 150 (75%)
- Methylated 119 (59.5%)
- Non MGMT-methylated 69 (34.5%)
- Reported 12 (6%)
VE
- In periventricular GBM 80 (58%)
- In not periventricular GBM 22 (36%)
LMD
- VE 28 (27.4%)
- Not-VE 4 (4%)
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Our definition of LMD is based on a review of the lit-
erature and shared guidelines such as EANO and RANO 
[15, 33–36]. We decided to consider LMD when lesions 

disseminated along the subependymal zone, a leptome-
ningeal contrast enhancement around the gyri and sulci 
appeared, or multiple contours of nodular deposit in the 
subarachnoid space were detected: all of these occurrences 
have been observed to be associated with worse outcomes. 
We did not use the 5-ALA-derived fluorescence to detect the 
ventricular wall infiltration because its usage for ventricles 
is poorly understood and may not always represent tumor 
infiltration [37].

Indeed, a theoretical risk of false negatives concerning 
LMD is present since the CSF cytology or ctDNA in the 
blood sample would be the ultimate test to exclude actual 
disease spread [37]. However, such exams are not routinely 
performed, and MRI is the gold standard for GBM follow-
up in clinical practice. Moreover, ctDNA blood sampling, 
despite its promising results so far, is still being investigated.

Cases of SVZ localization with subependymal spread 
were excluded. This subgroup could arguably be defined as 
subventricular since an apparent intraventricular spread is 
already present in these patients, and the ventricular viola-
tion by the tumor growth could intuitively bear higher rates 
of tumor cells spread through CSF.

The risks related to VE during GBM exeresis have been 
debated in the literature in the last few years [25, 36], but no 
univocal evidence has been reported, and few works dealt 
with this topic [20, 26, 38–40]. Jhon et al. [25] indicated that 
50% of patients with VE during tumor resection had com-
plications, with hydrocephalus being the most common [36, 
41]. We decided not to investigate the onset of hydrocepha-
lus. In fact, given the sequelae of the post-surgical treat-
ments (i.e., brain atrophy, disease progression, side effects), 
it is hard to distinguish hydrocephalus from hydrocephalus 
ex vacuo and link potential neurological variations to the 
onset of hydrocephalus.

Moreover, our work aims to investigate the possible role 
of VE in causing progression in GBM patients. Typically 
hydrocephalus is quite common in these patients, but it does 
not strictly represent disease progression.

The metanalysis of Mistry et al. [16] collects all previ-
ous reports about VE and its potential consequences. The 
Authors found higher odds of developing LMD after VE 
[16] and also higher rates of complications in SVZ GBM 
[42] as the only independent variable associated with post-
surgical LMD [26]. Young et al. [20] have shown that VE 
was not associated with worse outcomes and LMD. Because 
of the insufficient evidence in the literature, neurosurgeons 
based their surgical strategies on their own experience.

Our results confirm the hypothesis [18, 19] of glial tumor 
cell dissemination through CSF. We observed higher rates 
of LMD after VE, with similar results in the subgroup of 
periventricular GBM. We also confirmed that periventricu-
lar GBMs without VE have no higher rates of post-surgical 
LMD. These results seem to challenge recent findings [20, 

Fig. 2   LMD in VE and not VE group (A). LMD in the periventricular 
and not the periventricular group (B). LMD leptomeningeal dissemi-
nation, VE ventricular entry, not VE not ventricular entry

Table 2   Odds ratio with 95% confidence interval and p values after 
univariate analysis for association with LMD

Variable P value Odds ratio 95% CI

Ventricular entry  < 0.001 8.89 2.98–26.47
Periventricular location 0.121 2.1 0.82–5.42
Age 0.522 0.99 0.96–1.02
Male sex 0.315 0.67 0.31–1.44
MGMT methylation 0.613 0.81 0.37–1.78
IDH wild-type 0.417 2 0.37–10.69
ATRX mutation 0.463 0.41 0.04–4.33

Table 3   Odds ratio with 95% confidence interval and p values after 
multivariate logistic regression

Variable P value Odds ratio 95% CI

Ventricular entry  < 0.001 8.36 2.78–25.11
Periventricular location 0.436 1.48 0.54–4.02
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26], probably due to higher rates of VE during surgical exer-
esis in our series (51%) compared to the literature (Young 
26.5% [20] and Mistry 36.6% [26]). Different neurosurgeons 
in different Institutions and the consequent different deci-
sion-making strategies influenced the results. There is no 
standard protocol for performing VE in our Institution, but 
the neurosurgeon was the same in all cases.

The literature has reported that SVZ localization of GBM 
is a poor prognosis predictor [43–46] and is associated with 
a high rate of LMD. According to our data, GBMs not trans-
gressing the ventricular wall (without apparent subependy-
mal involvement) is not associated with a higher rate of post-
surgical LMD (p > 0.1). This divergence is because there is 
an overlap in casting cases of VE and periventricular GBM. 
After all, the VE is achieved more frequently when GBM is 
periventricular to reach maximal EOR.

GBM genotype has also been considered in our analysis 
but based on our data, IDH or MGMT promoter status was 
not correlated to a higher risk of LMD.

Some features of our MRI analysis have to be discussed. 
Many of the patients in our study performed preoperative 
1.5 T MRI and postoperative 3 T MRI. We have included 
these patients in our work because the tumor's morpho-
logical characteristics (volume, contrast enhancement) are 
similar between 1.5 and 3 T MRI [47]. Another point is the 
definition we adopted of LMD as a discontinuous abnormal 
FLAIR signal combined with a contrast-enhancing portion. 
Increased contrast enhancement detected by MRI just after 
or during treatment can be produced by several causes, such 
as postoperative changes, microischemic lesions, and treat-
ment-associated inflammation [48]. Therefore, we consid-
ered combining FLAIR and T1-weighted contrast-enhanced 
MRI to have higher accuracy in identifying LMD.

T1-weighted contrast-enhanced MRI should be used 
within two days after surgery to assess the EOR and no later 
than 72 h after the operation. The immediate postoperative 
MRI in GBM is not routinely done in our Institution, and the 
early postoperative MRI is at least one-month post-surgery, 
thereby preventing an exact estimation of the EOR. We 
excluded patients with disease recurrence at early postop-
erative MR (i.e., a contrast-enhancing area or FLAIR signal 
alterations in the surgical cavity). Thus, since only patients 
with complete tumor removal at early postoperative MRI 
were considered, no relevant differences in EOR in VE and 
non-VE groups occurred, and both groups were homogene-
ous in this respect.

The correlation between VE and the EOR is a relevant 
aspect. In the literature, the role of gross total resection 
(GTR) over subtotal resection in progression-free and 
overall survival is accepted [9, 10], while the superiority 
of supra-total resection (SpTR) over GTR is less clear [11, 
49–51] [57], but has given some promising results. In our 
series, GTR was the main goal in each case, and the VE 

has sometimes been performed in not-periventricular GBM, 
even if the tumor limits were not adjacent to the ventricular 
walls, to obtain a supratotal resection (SpTR). In the case of 
apparent subependymal involvement, the patient's prognosis 
is very scarce [52, 53]. The survival time would probably not 
be enough to evidence any LMD associated with the VE. In 
these cases, the maximal EOR could be a positive prognostic 
factor, and in the cases of SpTR, a possible VE should not 
be a limit for a wider EOR. However, there are borderline 
cases in which the VE should be avoided. For instance, in 
cases of periventricular localization of GBM, without an 
apparent subependymal involvement, neurosurgeons should 
be aware of the consequences of VE instead of the possible 
reach of the supra total resection. In our opinion, EOR must 
be the primary goal of GBM exeresis but avoiding VE when 
possible should be another relevant issue.

The principal limitations of our work are its retrospec-
tive, non-randomized nature and the insufficient number of 
patients' spine MRIs pre-or post-surgical exeresis of GBM: 
the latter point might have brought an underestimation of 
actual cases of LMD. However, spine imaging is not rou-
tinely done as a follow-up investigation in GBM patients 
unless spinal symptoms develop. Therefore, the topic of spi-
nal LMD in GBM has received only limited attention in the 
neurosurgical and neuro-oncological debate.

The influence of all the variables investigated in this work 
on the patients' OS was not investigated. Many other factors, 
such as adjuvant therapy, molecular patterns, and the size 
of GBM, can influence survival rates. Despite this, the role 
of LMD as an adverse prognostic factor on OS is accepted 
[5, 15, 22].

Conclusion

According to our data, VE during surgical exeresis of GBM 
increases the rate of post-surgical LMD. Thus, neurosur-
geons should avoid VE when feasible to prevent this dis-
ease progression, potentially influencing OS negatively. 
This statement does not override the need for maximal EOR, 
which must remain the goal of GBM surgery because as one 
of the foremost positive prognostic factors. Further studies 
should be oriented to the specific risk of LMD associated 
with GTR and SpTR groups of patients.
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