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CASE REPORT
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Abstract
Since high grade gliomas are aggressive brain tumors, intensive search for new treatment options is ongoing. For adult 
patients with newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM), low intensity intermediate frequency alter-
nating electric fields, known as tumor treating fields (TTFields) have been established as a new treatment modality. Tumor 
treating fields significantly increase survival rates in combination with adjuvant temozolomide (TMZ) in adult and GBM 
patients. Here, we report about feasibility and safety of treatment on a pediatric patient with diffuse midline glioma who is 
receiving TTFields therapy in combination with temozolomide.
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Introduction

High-grade gliomas (HGG) are aggressive brain tumors 
affecting both children and adults [1]. Treatment options are  
limited in pediatric HGG patients, and prognosis is fatal. 
Tumor treating fields (TTFields) are low-intensity, interme-
diate frequency (200 kHz) alternating electric fields used as 
a treatment for adult GBM [1].

Preclinical models demonstrated that TTFields inhibit 
proliferation of cancer cells by disruption of the mitotic 
spindle apparatus resulting in mitotic delay or cell death 
[2, 3]; furthermore, they impair DNA-repair-mechanisms 
and increase chemosensitivity through the induction of cell 
permeability as well as an increase of autophagy [4, 5]. Also, 
an influence on migratory capacity and antitumor immu-
nity has been described [6]. Efficacy and safety of TTFields 
in adult ndGBM were examined in the phase 3 study 
EF-14 (n = 695), which demonstrated that the addition of 
TTFields to maintenance temozolomide (TMZ) significantly 
prolonged overall survival (OS) (20.9 vs 16.0, p < 0.001) 

and progression-free survival (PFS) (6.7 vs 4.0 months, 
p < 0.001) [7]. A subgroup analysis of the EF-14 patient 
cohort showed that patient compliance (therapy usage) 
was prognostic for improved survival [8]. Therefore, it is 
important to maintain high daily/monthly compliance to the 
TTFields treatment.

For the pediatric population, there are several reports on 
the use of TTFields. For instance, Branter J. et al. showed 
efficacy of TTFields on pediatric GBM, medulloblastoma 
and ependymoma cell lines in vitro [9]. Toledano H. et al. 
report on 5 pediatric patients (age 11.1–17.7 years at diag-
nosis) und conclude that TTFields is safe and feasible in 
children as young as 11 years [10]. Wölfl W. et al. presented 
3 patients (age 7, 9, and 11 years) suffering from HGG [11]. 
Post-marketing surveillance data on TTFields collected for 
glioma patients < 18 years of age (n = 30) revealed no unex-
pected adverse events. The most frequently reported adverse 
events were skin reactions [12].

Case report

The 3-year-old male patient presented with a tumor located 
pontine on the right occipital region (Fig. 1a). Stereotactic 
biopsy was performed, and with the brain tumor classifier 
employing genome wide DNA- methylation analysis [13], 
the diagnosis of a diffuse midline glioma H3K27M (cali-
brated Score 0.98) without MGMT-promoter methylation 
was obtained. Molecular sequencing detected a HIST1H3B 
mutation (H3.1 K27M) (Fig.  2). H3.1 and H3.2 K27M 
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mutations are typically found in DIPGs and are associ-
ated with a better prognosis than the H3.3 K27M-wildtype 
[14–16].

The patient received radiochemotherapy with TMZ fol-
lowed by TTFields therapy in combination with maintenance 
TMZ. Due to the location of the tumor, the infratentorial 
transducer array layout was used for TTFields application. 
The infratentorial layout was not yet available during the 
EF-14 study, and therefore not examined in a clinical setting, 
but a computer simulation-based study showed the feasibility 
of TTFields in treating tumors in infratentorial regions [17].

Initially, the patient and his family needed time to get used 
to the TTFields therapy and due to the usage of TTFields 
therapy was comparably low during the first month. How-
ever, the TTFields usage rate improved every month from 
about 40% in the first 2 months to about 80% after 5 and 
6 months (Fig. 3). After the initial time for adaptation to the 
therapy, the average usage rate in months 4 to 8 was 75.87%, 
which is above the independent prognostic threshold of 75% 
[11]. One year after the initial biopsy, the MRI showed dis-
tinct radiological response to the therapy (Fig. 1b). Unfortu-
nately, 1 month later, the patient’s general health condition 
declined, causing reduced usage rates towards the end of 

TTFields therapy. These results demonstrate that even a very 
young patient is able to adapt to using the TTFields therapy. 
The patient was on TTFields therapy for almost 9 months 
and no therapy-related adverse events were observed.

Discussion

Treatment options for pediatric patients diagnosed with 
HGG are limited and there is a high need to extend the thera-
peutic repertoire. TTFields are currently only approved for 

Fig. 1  a Glioma with central necrotic area in the brainstem after stereotactic biopsy by an infratentorial approach. b The same lesion 1 year after 
biopsy followed by chemoradiation with TMZ maintenance and TTFields therapy.

Fig. 2  Histological features of a diffuse malignant pleomorphic gli-
oma, H&E. Immunohistochemistry stained sections; tumor cells with 
GFAP expression and upregulation of VEGFR2. Nuclear H3K27M- 
and ATRX-Expression and high KI67 labeling (a). Copy number 
profile of diffuse midline glioma H3K27M mutant with a deletion of 
PTEN gene and especially a loss of chromosome 10 (b). t-SNE analy-
sis showing DNA-methylation clustering of our case in the DMG 
K27 cohort (n = 78) (c). The data basis for the t-SNE evaluation are 
the 2801 methylome analyzes from Capper et. al. 2018. The 34,000 
most variable positions are extracted from these and, together with 
the data record to be classified, these are reduced in their complex-
ity using t-distributed neighbor embedding (t-SNE). The function was  
taken from the R — package R-t-SNE by Jesse Krijthe
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adult glioblastoma. However, there are various reports and 
ongoing trials on TTFields therapy applied to pediatric gli-
oma patients [11, 18–20] (NCT03033992, NCT03128047). 
These reports are supported by post-marketing surveil-
lance data that revealed no unexpected adverse events upon 
TTFields application in pediatric patients [21].

Based on available evidence, we decided in accordance 
with the family to apply TTFields therapy to a 3-year-old 
patient diagnosed with diffuse midline glioma. Before ini-
tiation of TTFields therapy, we had to determine whether 
it is possible to fit all four transducer arrays to the patient’s 
head as provided by the array layout. Due to the infratento-
rial layout provided for the patient, proper placement of the 
transducer arrays was feasible. In ongoing TTFields trials, 
the minimal head circumference for placement of trans-
ducer arrays was calculated to be 44 cm (NCT03033992, 
NCT03128047).

Another critical factor for TTFields treatment is the usage 
rate achieved by the patients. A subgroup analysis of the 
EF-14 phase 3 trial demonstrated that OS was extended 
when the usage rate was > 50%, and there was a trend for 
extended OS with higher usage rates. In addition, a monthly 
usage rate of ≥ 75% vs < 75% (TTFields plus TMZ arm) was 
an independent predictor of OS.

Because of these results, it is important to openly discuss 
the factor usage with patients/caregivers and provide guid-
ance. It was shown before that it might take some time to 
adapt to the treatment [22]. In the case of a young child, 
depending on age, it might be more challenging to explain 
the necessity of a particular treatment scheme. However, as 
shown in Fig. 3, we found that the patient was quickly able 
to adapt to the treatment as shown by the steep increase 
in usage above the independent prognostic threshold of 
75% [8]. This case clearly demonstrates that adherence to 
TTFields therapy can be continuously improved over time, 

even if the usage rate might be low in the beginning. When 
the usage rate is not satisfying initially, TTFields therapy 
does not have to be terminated, instead patient and caregiver 
should be encouraged and supported to improve therapy 
adherence over time as demonstrated in the presented case.

Conclusion

In summary, TTFields therapy was feasible and safe in a 
pediatric patient 3 years of age at initiation of therapy. Safety 
and efficacy in pediatric patients are and will be further 
investigated in clinical trials.
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Fig. 3  Average monthly 
TTFields usage rate in percent-
age over time. Therapy adher-
ence to TTFields started at a 
low level and increased strongly 
within the first 4 months, show-
ing that after an initial adaption 
period, high TTFields usage 
rates are also achievable in very 
young patients. Due to general 
decline in patient’s health state, 
the usage rate was reduced from 
month eight
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