
Citation: Gatto, L.; Franceschi, E.;

Tosoni, A.; Di Nunno, V.; Tonon, C.;

Lodi, R.; Agati, R.; Bartolini, S.;

Brandes, A.A. Beyond Imaging and

Genetic Signature in Glioblastoma:

Radiogenomic Holistic Approach in

Neuro-Oncology. Biomedicines 2022,

10, 3205. https://doi.org/10.3390/

biomedicines10123205

Academic Editors: Toni Ibrahim,

Laura Mercatali, Alessandro De Vita

and Chiara Liverani

Received: 1 November 2022

Accepted: 5 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Beyond Imaging and Genetic Signature in Glioblastoma:
Radiogenomic Holistic Approach in Neuro-Oncology
Lidia Gatto 1, Enrico Franceschi 2,* , Alicia Tosoni 2, Vincenzo Di Nunno 1, Caterina Tonon 3,4, Raffaele Lodi 3,5,
Raffaele Agati 6, Stefania Bartolini 2 and Alba Ariela Brandes 2

1 Medical Oncology Department, Azienda USL of Bologna, 40139 Bologna, Italy
2 Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche di Bologna,

40139 Bologna, Italy
3 Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
4 Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna,

40139 Bologna, Italy
5 IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
6 Department of Neuroradiology, Bellaria Hospital, IRCCS Istituto Delle Scienze Neurologiche di Bologna,

40139 Bologna, Italy
* Correspondence: enricofra@yahoo.it

Abstract: Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with
less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor
prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological
and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and
targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored
treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an
emerging translational field of research aiming to study the correlation between radiographic signature
and underlying gene expression. Although a research field still under development, not yet incorporated
into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive
neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of
magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest
in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing
insights into the potential efficacy of such an approach for survival prognostication. Despite a high
sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic
features are the Achilles heel of this newborn tool. Looking into the future, investigators’ efforts should
be directed towards standardization and a disciplined approach to data collection, algorithms, and
statistical analysis.

Keywords: radiomics; radiogenomics; glioblastoma (GBM); diffusion weighted MR imaging (DWI);
apparent diffusion coefficient (ADC); isocitrate dehydrogenase (IDH) mutation; O6-methylguanine-DNA
methyl-transferase (MGMT) promoter methylation; pseudoprogression

1. Introduction

GBM is characterized by dismal prognosis, with a median survival of 12–15 months,
high relapse rate, poor response to treatment, and morbidity [1–3].

GBM is a whole brain disease and not a focal malignant tumor, with diffuse and
widespread infiltrative growth and clinically significant cellular proliferation also outside
the tumor volume and into the surrounding brain tissue [4].

GBM stands for a group of diseases with remarkable genomic, histological, and
imaging heterogeneity across patients and over time, leading to treatment resistance,
tumor recurrence and progression. This complex picture poses several diagnostic and
therapeutic challenges. This combined space–time histological and genetical heterogeneity
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is not only “intertumoral” but also within each patient, “intra-tumoral”, involves cell
size, proliferation, metabolism, gene expression profile, phenotypic and epigenetic state,
radiological phenotype, as well as vascularization and necrosis [5–7].

The current standard of treatment for GBM is the combination of maximal safe surgical
resection, followed by temozolomid concurrent with and adjuvant to radiotherapy [2,8]. The
heterogeneous phenotypic landscape of GBM makes this “uniform” standard of care inade-
quate and highlights the need for precision diagnostics, prognostication, and personalized
treatment [9,10].

GBM was the first cancer to be sequenced by the cancer genome ATLAS (TCGA) research
network [11], which identified the main genetic alterations and driver mutations that confer the
overall complexity to the GBM genomic landscape. The initial publication reported mutually
exclusive molecular alterations in three core pathways: the p53 pathway, the retinoblastoma
(RB) pathway and the phosphatidylinositol 3-kinases (PI3K)/phosphatase and tensin homolog
(PTEN) pathway. They found the p53 pathway was altered in 85% of GBMs, approximately
75% of tumors exhibited dysregulations in the RB pathway, and, finally, the PI3K/PTEN
pathway disruption was described in 85–88% of GBMs [11].

Historically, GBM has been classified as isocitrate dehydrogenase (IDH) wild type
and IDH-mutant (secondary GBM); nevertheless, according to 2021 WHO Classification of
Tumors of the Central Nervous System [1], only grade 4 IDH wild type gliomas are now
defined as GBMs. The presence of one or more of three genetic parameters, epidermal
growth factor receptor (EGFR) amplification, the combination of gain of chromosome 7/loss
of chromosome 10, and telomerase reverse transcriptase (TERT) promoter mutation is the
molecular criterion for making the diagnosis of GBM, IDH wild type. Many of the studies
reported in this review predate the latest WHO classification, therefore, they report the old
nomenclature of “secondary” GBM, IDH mutant.

Approximately 40–50% of GBMs carry EGFR amplifications; among EGFR-amplified
GBMs, in 20–50% of cases, a splice variant which creates a mutant form of EGFR (EGFR
vIII) is present, conferring a more aggressive tumor biology [12,13].

O6-methylguanine-DNA methyl-transferase (MGMT) promoter methylation is present
in approximately 35% of newly diagnosed GBM [14] and has been shown to be a predictive
biomarker of response to DNA alkylating chemotherapeutics, such as temozolomide, since
methylation can compromise the ability to repair DNA damage [15,16]. Notably, mutations
of TERT promoter (a gene that controls telomeres, small portions of DNA found at the
end of each chromosome, which protect the unstable DNA from degradation), have been
reported in approximately 75–80% of GBM cases: its role as a prognostic/predictive factor
is still uncertain and requires further study [15–18].

Clinical experience on GBM management demonstrates that precision medicine has
failed in the treatment of brain tumors: trials of single-agent tyrosine kinase inhibitors have
been uniformly disappointing and most studies with anti-EGFR agents have been negative.
Additionally, predicting response to temozolomide is more complex than just determining
the MGMT methylation status. It involves several aspects, including the percentage of
methylation, its distribution within the diverse regions of tumor mass and the expression
of several other key genes, such as EGFR VIII and p53 [19,20].

To date, the gold standard method for detecting these genomic biomarkers is histopatho-
logical examination, through immunohistochemistry and genomic sequencing. However, this
method is invasive, expensive and time-consuming, and, due to intratumor heterogeneity,
a small sample of tissue can increase the risk of erroneous genetic profiling.

In contrast, multi-parametric MRI is a powerful diagnostic alternative method that
can facilitate the in vivo characterization of diverse aspects of the tumor and its micro-
environment in a non-invasive and reproducible way [21,22].

P. Lambin coined the term “radiomics”, defining it as the process of extracting information
from medical images, generally not appreciable with a mere visual examination, using ad-
vanced feature analysis [23]. Radiomics is, currently, an emerging, automated, high-throughput
technique, which investigates how medical images can be transformed into quantitative data.
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Medical diagnostic imaging, in fact, produces an incredible amount of data, often underutilized
for diagnosis, prognostication and research purposes [24]. The aim of radiomics is to extract a
large number of quantitative parameters from medical images and correlate them with clinical
or biological endpoints [25].

Radiomics, despite the current limitations, deriving from the low level of evidence
of the studies and the heterogeneity of the methods used, might be useful to determine if
baseline radiophenotype (of the primary tumor before treatment) is preserved in the follow-
up scans after treatment, thereby evaluating the molecular profiling of recurrent tumors, the
radiophenotypical variations over time, the longitudinal evolution of the mutational status,
and treatment response [26]. It might be a useful tool in the field of precision oncology [27]
to overcome the problem of tumors’ heterogeneity: unlike surgical biopsy, it assesses the
whole three-dimensional tumor extent as well as the “tumor habitat”, the lesion margins,
the surrounding peri-tumoral regions and the peri-tumoral edema sub-compartments [28].

It is likely that the greatest application of radiomics in neuro-oncology lies in radio-
genomics, an active area of research investigating the relationship between quantitative
features extracted from radiographic images and the respective underlying genomic pattern,
to obtain tumor molecular characterization (e.g., gene expression profiles or mutations) on
the basis of the tumor’s radiophenotype [23,29–31].

However, carefully checking the quality of the input data is challenging to guarantee
a reproducible and robust output. The lack of standardization and the different methodolo-
gies adopted across diverse institutions makes studies’ validations challenging, represent-
ing a major obstacle in the translation of radiogenomics to clinical practice. Hence the need
for larger prospective multicentric studies involving heterogenous populations [32].

This review provides a state-of-the-art description of the novel developments in the use
of radiogenomics for the study of molecular markers of GBM and their potential for predicting
recurrence and survival, particularly focusing on the applications of MRI radiomics.

2. Radiogenomics Workflow

Radiogenomic studies are designed following a systematic approach which includes
several steps [33] (Figure 1): (1) image acquisition, (2) image pre-processing, (3) segmentation
and identification of regions of interest, (4) feature extraction and quantification, (5) feature
selection and reduction, (6) building of predictive and prognostic models using machine
learning or deep learning, and (7) validation.
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2.1. Image Acquisition

In this phase, a large pool of medical images of particular biological interest are acquired
through various advanced MRI techniques, including diffusion weighted imaging (DWI),
perfusion weighted imaging (PWI), and proton magnetic resonance spectroscopy (1H-MRS).

The quality of input data is of primary importance for the outcome of radiomic
research and represents a challenge to ensure the reliability and reproducibility of model
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building: in future research, greater efforts should be directed towards a more precise and
standardized data collection.

For example, Ellingson et al. [34], in a multicenter study investigating the quality
of DWI data in GBM, showed that only 47% of patients had high quality data. The
study evaluated the quality of DWI data using a five-point scoring system based on the
following factors: (1) geometric distortion or artifacts on diffusion MR datasets; (2) apparent
diffusion coefficient (ADC) values within white matter within an acceptable range of
~0.4–1.0 µm2/ms; and (3) ADC values within cerebrospinal fluid (CSF) within an acceptable
range of ~2.5–4.0 µm2/ms. A five-point quantitative scaling scheme was used for each of
these factors. The authors found that a total of 68% of patients had “usable” DWI data and
only 47% of patients had high quality DWI data, concluding that the value of DWI data in
multicenter trials was limited due to poor image quality.

The variability across institutions in the image acquisition step was a major issue for the
collection of multi-center retrospective data for clinical trials on radiomics: variations across
scanners [35], resolution, image reconstruction, slice thickness and contrast washout [36]
were often limiting.

There are several important initiatives to standardize image acquisition across different
institutions, as well as the Quantitative Imaging Network and the Quantitative Imaging
Biomarkers Alliance®(QIBA) of Radiological Society of North America [37–39].

2.2. Pre-Processing of Data

Before feature extraction, the input data can be elaborated through a variety of prepro-
cessing steps to improve image quality [33].

This is a phase of “normalization”, to delete possible “noise”, for example, by applying
smoothing filters. It is crucial for harmonizing the input data in order to reduce statistical
bias due to variability in image acquisition and different patient characteristics.

There are several pre-processing methods, including noise suppression, signal in-
tensity normalization, bias field correction, image filtration, motion correction (to delete
motion artifacts), voxel size standardization, signal dynamic range normalization and voxel
intensity calibration [32,33,40]. Image filtration is used before the extraction of features
to highlight particular image properties. Examples of image filters include Laplacian of
Gaussian filters, which detect areas of rapid change (for example, edge) [33], and wavelet
filters, which separate high- and low-spatial-frequency information.

2.3. Segmentation and Identification of Regions of Interest (ROI)

Segmentation involves the “volume of interest”, including the tumor region and
subregions with distinct characteristics, reflecting the heterogeneity of cancer, named
“tumor habitat”.

Quantitative analysis is performed only over the region of interest (ROI) that includes
the tumor region and the tumor habitat, such as the lesion core, the margins of the lesion
and the edema region. Thus, radiomics might be helpful for the microenvironment of the
tumor, analyzing its heterogeneity [27]. The segmentation of ROI can be achieved by manual,
semi-automated or completely automated methods (using deep learning algorithms) [32,41–45].

Manual segmentation of images is the most widely applied method but is time-consuming,
operator-dependent and increases risk of inter-observer bias: if the ROI is too small, it cannot
provide sufficient information, while if it is too extensive, it can cause an interpretation bias, due
to the heterogeneity of the tumor. Therefore, manual or semi-automated segmentation should
guarantee intra- and inter-observer reproducibility of the radiomic features and elimination of
non-reproducible features from subsequent analyses.

In contrast, automatic segmentation is a privileged approach that ensures efficiency
and reproducibility, but its success lies in the accuracy of the algorithm used [27].

Generalizability of algorithms is a major issue, and the application of the same algorithm
on a different dataset often results in complete failure. Therefore, future research must be
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directed towards the application of reliable and reproducible algorithms for automated image
segmentation [36,46].

To date, a universally accepted segmentation algorithm is not available: identifying
criteria for the standardization of segmentation methods is a challenge for radiogenomics.

Among the various automated segmentation algorithms for brain tumor, some of the
most notable are [47]:

− Thresholding method: starting from a grayscale image, thresholding returns a binary
image [48];

− Clustering: a more elaborate procedure that allows the determination, starting from a
set of data, of groups with “similar” characteristics;

− Edge-based method: emphasizes areas of abrupt change within a digital image (for
example, discontinuity in the physical properties of tissues), which, generally, reflect
changes in the physical status of the tissues [49];

− Region growing: a simple region-based segmentation method, based on the selection
of pixels that are similar and, therefore, can be classified as appertaining to the same
tumoral subregion [50];

− Watershed algorithm: a unique segmentation tool where gray levels and voxels are
classified by their intensity or gradient in a topographical map, with ridges and valleys;

− Atlas method: a tumor-free reference MRI is used to contour the MRI image containing
the tumor volume [51].

There are many commercial software solutions usually used for brain segmentation: FMRIB
Software Library (FSL), Statistical Parametric Mapping (SPM), and Brainsuite are the most
common [52]; with regard to deep learning models, U-Net [53,54] is progressively imposing.

FSL [52] is a software created by members of the Analysis Group, FMRIB, Oxford, U.K.
(URL: http://www.fmrib.ox.ac.uk/fsl/, accessed on 8 December 2022). Segmentation in
FSL takes place through two different steps:

• The first step consists of BET (brain extraction tool). It is a procedure where a first segmen-
tation, which includes brain tissue and beyond, is performed. All structures which do not
contain only brain tissue and which can cause biases (eyes, muscle, base of neck, scalp, fat,
cerebrospinal fluid) are eliminated with a completely automatic algorithm;

• The second step consists of FAST (FMRIB’s automated segmentation tool), that is,
the segmentation of the brain volume previously extracted with the BET. FAST is a
package, included in the FSL software, for segmentation of the brain volume into
the three different tissues (gray matter, white matter and CSF, the latter exclusively
contained within the volume extracted with the BET), including algorithms for spatial
intensity corrections (also called bias fields).

• SPM software (current version: SPM12) [52] uses a tool named optimized voxel-
based morphometry which was developed at the Institute of Neurology at University
College of London (UCL Queen’s Square Institute of Neurology, Queen’s Square
House, Queen’s Square, London, WC1N 3BG, UK) and is available from the web.

Brainsuite is a collection of image analysis tools including:

− Tools for brain surface extraction, bias field correction, voxel classification, cerebrum
labeling, and surface generation;

− Tools for processing of diffusion data including tensor fitting and tractography;
− Sophisticated tools for visualizing and exploring MRI data, diffusion data, tractogra-

phy and connectivity.

2.4. Feature Extraction

After image segmentation and processing, the extraction of radiomic features that
quantitatively describe the patterns of oncological phenotypes, can finally be performed.
This step is critical, as it implies the extraction of high-dimensional features that are pro-
cessed by specific software (for example, PyRadiomics v3.0.1, an open-source solution
for the extraction of radiomics data from medical images [46,55], Computational Envi-

http://www.fmrib.ox.ac.uk/fsl/
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ronment for Radiological Research [56], or Imaging Biomarker Explorer [57–59]). The
image biomarker standardization initiative (IBSI) is an independent international work-
ing group that collaborates to standardize the extraction of radiomic images, providing
consensus-based guidelines [60].

Quantitative features are classified into the following groups [32]:

(a) Texture features, describing the variation of gray level values within the tumor;
(b) Shape features, describing form and geometrical properties of the region of interest,

such as surface, volume, compactness, diameter and sphericity;
(c) Histogram-based features, calculated starting from the histogram that describes the

distribution of pixels in the ROI, the mean, median, maximum, minimum values of the
voxel intensities on the image, asymmetry, kurtosis (flatness), uniformity, and entropy;

(d) Second-order features derived from the gray-level co-occurrence matrix, quantifying
the incidence of voxels with same intensity;

(e) Higher order features: features that describe the relationships between two or more
pixels of the ROI, obtained after applying filters (e.g., wavelet transform, Laplacian
transform, Gaussian filter, etc.) or mathematical transform to the pictures [61].

2.5. Methods for Dimensionality Reduction and Feature Selection

Based on the software used, many of the extracted features are redundant. In this
phase, it is important to focus on “dimensionality reduction” and feature selection for
generating valid and generalizable results. To achieve this, redundant and “weak” features
must be removed from the model; this selection reduces the possibility of overfitting.
However, the issue of interpretability of features after dimensionality reduction should be
considered [53].

The most common methods for dimensionality reduction include cluster analysis
and principal component analysis (PCA), which use linear transformations of the input
features), kernel PCA, and autoencoders (which use nonlinear transformations) [33].

PCA aims to create a smaller set of representative variables called principal compo-
nents from a large set of features, organizing a group of maximally uncorrelated variables
from a large set of correlated variables. The output of PCA is represented by score plots,
that provide a graphical instrument to classify elements in the data sets for similarity [61].

The most popular feature selection methods include recursive feature selection, least
absolute shrinkage and selection operator (Lasso) and variance thresholding. Lasso feature
selection is a widely used regression analysis method that performs feature selection,
removing useless, redundant or noninformative features, making the statistical model easier,
simple, with fewer parameters, thus, increasing the prediction value of the model [33].

2.6. Classification of Radiomic Features and Informatic Analysis: Machine Learning and Deep Learning

Once a subset of top features correlated with the expected outcome is identified,
machine learning classifiers and different statistical methods are used to build predictive
and prognostic models [32,62].

Machine learning is the field of study that gives computers the ability to learn without
being programmed. Informatic analysis of radiomic features usually involves two main
categories: classic machine learning (such as support vector machine (SVM) and random
forest [63,64]), and deep learning methods using convolutional neural networks (CNNs)
that, in most recent years, has taken over the field, outperforming classic machine learning
methods (Figure 2) [45,65].
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Figure 2. Conventional machine learning and deep learning models. In a conventional machine
learning process, an expert need to define the meaningful features to be processed into the statistical
model, which will work out the output, based upon the selected features. Contrastingly, in deep learn-
ing models, the manual definition of features is not needed; each network hierarchy automatically
extracts critical features from a subset of data.

Machine learning is a branch of artificial intelligence that studies algorithms capable of
learning from data, synthesizing new knowledge from them. It can improve the knowledge
of the system to be studied by observing the input data (training phase) and then providing
outputs such as prediction or decision making, by comparing these patterns to new unseen
data to carry out a certain output.

Classic machine learning techniques use hand-engineered features, putting them
into statistical tools such as SVM and random forest to organize and segregate the data
(Figure 2) [66].

Random forest is a statistical model for classification, regression and other tasks, that
outperforms a multitude of decision trees from a subset of data. It may require more
data than SVM [61,67]. SVM is a supervised learning technique that analyzes data for
both classification and regression analysis and outperforms a set of hyperplanes in a high
dimensional space to segregate the data into two classes in the feature space. It is useful
in the case of high-dimensional input data, but interpretation of the final model can be
difficult [33].

Machine learning uses different learning prediction models including supervised and
unsupervised approaches [68,69].

In supervised learning, the endpoint, such as tumor response or tumor grading, is
known, and the algorithm uses a large amount of training inputs in order to learn a rule
that connects inputs to their corresponding outputs [70–72].

Unsupervised learning, instead, allows for a more exploratory approach: the final
outcome is unknown and the input data are unlabeled, thus, the algorithm is trained to
identify unknown patterns, hence the name “unsupervised.”

The main limit to accuracy of ML models is represented by overfitting and underfitting.
Overfitting occurs when the population of the dataset is low compared with the

number of features that describe each subject. The extraction of high-dimensional, large-
scale features captures noise, thus, the developed model achieves good performance within
the training set, resulting, instead, as unsuitable for the validation data.

Underfitting, in contrast, due to small sample sizes of the features within the model,
occurs when the algorithms fail to capture certain patterns of the input data that are in-
formative. It can be overcome by techniques such as synthetic minority over sampling
technique (SMOTE) [33]. To improve the output and overcome the overfitting, normaliza-
tion methods are needed. Skull stripping is a preliminary processing technique to separate
the brain tissue from other tissues, which are a major obstacle for automatic brain image
segmentation and analysis techniques [47,73].
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Early studies adopting ML are mostly single institution, using small datasets and
heterogeneous methods for segmentation. This leads to lack of interpretability and stan-
dardization. To overcome the issue of imaging heterogeneity across sites and institutions,
the Medical Image Computing and Computer Assisted Intervention Society introduced an
annual Brain Tumor Segmentation Challenge in 2012 [74]. The Brain Tumor Segmentation
(BraTS) is a multi-institutional dataset of manually segmented pre-operative multipara-
metric MRI scans containing high- grade and low-grade gliomas imaging acquired with
different protocols, that has evolved over the years, with a continuously increasing num-
ber of patient cases [74]. The BraTS protocol consists of structural MRI volumes: (a) a
native T1-weighted scan (T1), (b) a post-contrast T1-weighted scan (T1Gd), (c) a native
T2-weighted scan (T2), and (d) a T2 fluid attenuated inversion recovery (T2-FLAIR) (T1,
T1Gd, T2, T2-FLAIR) with delineations of the relevant tumor sub-regions.

The last BraTS update, dated 2018, focused not only on the segmentation to brain
tumor sub-regions, but also included clinical data such as patient age, overall survival, and
resection status, to facilitate the second objective, which is to predict survival.

Multiple studies have explored the value of deep learning (DL) approaches for predicting
prognosis, tumor grades and molecular profiles in GBM, and for distinguishing progressive
disease from pseudoprogression after treatment [75,76].

DL is the preferred method when a large amount of data is included in the cohort.
The term DL refers to algorithms hierarchically organized on multiple levels, hundreds

of layers of neural networks (hence the term “deep”), that automatically extract critical
features from a subset of data (Figure 2) [70–72,77,78]. Since 2014, the use of CNN models,
actually considered as state-of-the-art for segmentation, continues to increase, achieving
excellent results [66,70,79–83].

A CNN consists of two orders of layers: the convolution layers and the pooling layers.
The units in the convolution layers are organized into feature maps, in which each layer is
connected to the next one through a convolution layer that finds local conjunctions between
features of the previous layer. The role of the pooling layer is to semantically merge similar
features into one. Once the convolution process is complete, there is a layer that introduces
non-linearity to the model, increasing its complexity.

The advantages of deep learning approaches are listed below:

− It is not necessary to segment the tumor;
− It is not necessary to explicitly define the features to be calculated;
− It is not necessary to select the features.

The limits of deep learning, instead, are:

− Larger input data are needed;
− Problems of interpretability.

2.7. ROC Curve and Model Validation

Basically, statistical analysis is required to identify the features that may be related to
the molecular signature of GBM and to eliminate the redundant features. Then, the selected
features are uploaded into a machine learning model for predicting molecular profiles [67].

Reproducibility and clinical value of the model are estimated in the validation step,
first tested with internal cross-validation and then validated on independent external
cohorts [61].

The predictive performance of the model is measured using the area below the receiver
operating characteristic (ROC) curve (AUC). The ROC curve is an analysis of the diagnostic
performance of a clinical test. It is a statistical technique that measures the accuracy of
a diagnostic test along the entire range of possible values. The area below the curve is a
number between 0 and 1. If this measure is closer to 1, the model is more specific.

Notably, in machine learning and deep learning algorithms, the segmentation perfor-
mance is often measured by the Dice score, which is a measure of how similar the objects
are. The Dice coefficient is a measure of overlap between two masks that ranges from 0 to
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1; 1 indicates a perfect overlap, while 0 indicates no overlap. The Dice coefficient should
not be greater than 1 [47].

3. Radiogenomics of Glioblastoma

Radiogenomics is a powerful method for studying the biology of GBM, which has
demonstrated its ability to characterize GBM, to predict molecular signature (in particular
the status of the MGMT promoter methylation and IDH mutation) and to determine
therapeutic response and survival of newly diagnosed patients.

Almost all studies have demonstrated a good level of accuracy, with very high sensi-
tivity and specificity, but there is a need to standardize the methods and algorithms for the
computation of radiomic features.

Most of the literature within radiogenomics concerns neuro-oncology [84]. In 2008, Diehn
et al. combined radiogenomics with microarray DNA analysis in order to noninvasively map
the gene expression within the tumor [85]. The study highlighted a strong association between
morphological aspects of GBM captured with radiomics and gene expression, confirming the
hypothesis that neuroimaging reflects the underlying gene-expression pattern. Particularly,
genes involved in angiogenesis and tumor hypoxia (e.g., VEGF, SERPINE1, PLAUR) resulted
as strongly correlated with the contrast enhancement phenotype. Similarly, a robust association
between the genes involved in proliferation and cell-cycle progression (e.g., TOP2A, CDC2,
and BUB1B) and a specific mass effect radiological phenotype, was observed. In addition,
a high C:N ratio (the ratio of the contrast-enhancing volume to the necrotic tumor volume)
resulted as correlating with overexpression of the gene EGFR [85].

In a study analyzing microRNA, gene expression and quantitative MR-imaging data
in GBM, a high expression of periostin (POSTN)—associated with a worse prognosis
and poor survival in GBM patients—and low expression of miR-219, were found in the
most aggressive subtype, the mesenchymal subtype [86]. POSTN is a determinant of
cellular invasion and GBM aggressivity, and miR-219 is regulator of cellular invasion by
binding to the 39UTR of the POSTN gene, thus, decreasing POSTN protein levels. The
authors identified distinct radiomic features capable of accurately predicting periostin
overexpression in GBM patients.

Zinn et al. performed a radiomic textural analysis on a dataset of 29 TCGA GBM
patients to investigate a possible relationship between the three most frequent driver
mutations (p53, PTEN, EGFR) promoting GBM proliferation and imaging characteristics.
Interestingly, they described distinct “radiomic profiles” associated with the classical
pattern of genetical alterations of GBM, p53, PTEN, and EGFR [87].

Hu et al. performed an interesting and unique study, where multiparametric MRI and
texture analyses were matched with the genetic status of several subregions of the tumor,
by collecting 48 image-guided biopsies from 13 GBMs. The study demonstrated significant
imaging correlations (univariate analysis) for six driver genes: EGFR, platelet-derived
growth factor receptors (PDGFR), PTEN, cyclin-dependent kinase inhibitor 2A (CDKN2A),
RB, and p53 [88]. Interestingly, the authors observed that within a single GBM tumor,
distinct regional genetic subtypes may coexist.

Radiogenomics research, progressively, has moved away from broad-range genetic
analyses and has, subsequently, focused on the use of imaging features for specific molecu-
lar subtype prediction. IDH 1 and 2 mutations and MGMT methylation status are biomark-
ers widely used in clinical practice due to their high predictive and prognostic value [89],
and have received relevant attention in GBM radiogenomic research.

3.1. Prediction of IDH Mutational Status

The mutant IDH status plays an important role in gliomagenesis and is an indepen-
dent, well-known prognostic and predictive biomarker in patients with gliomas, having
significant implications in terms of increased overall survival and chemo-sensitivity.
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Mutations of the IDH gene family lead to accumulation of the oncometabolite
2-hydroxyglutarate (2-HG), that confers characteristics of less aggressiveness to tumor
cells when compared with IDH wild-type tumors [90].

Currently, immunohistochemical staining and DNA sequencing are the most common
methods for determining the IDH mutational status in gliomas; therefore, several radio-
genomic studies have suggested that radiophenotypic appearance of GBM can non-invasively
provide direct insight into the molecular signature.

The most relevant radiogenomic studies predicting IDH mutation are summarized in
Table 1.

Several radiogenomic studies have suggested connections between IDH mutation and
tumor location, reporting that, overall, IDH mutations seem to occur, more frequently, in
the frontal lobe [29,91,103,104].

Tejadaa Nejra et al. [91] performed a large prospective study on 237 patients with
newly diagnosed GBM, and 131 patients with lower-grade glioma, aimed at establishing
any elective tumor locations in relation to GBM genotype [91]. The segmentation was
performed on MRI images with a semi-automated approach through a voxel-based lesion
symptom mapping (VLSM) analysis. They observed a concordant predilection for the
frontal lobe location, adjacent to the rostral extension of the lateral ventricles in IDH
mutant gliomas cohorts (GBMs and low-grade gliomas). Furthermore, a large region of no
enhancing tumor, cysts with low T1, suppressed T2-FLAIR signal intensity and a higher
ratio of the T2-weighted to T1-weighted contrast enhanced volumes, were described as
features predictive of IDH mutant status [92,93,103].

A large radiomic retrospective multicenter study, aimed at predicting IDH mutation
status through a random forest classification, extracted 1614 imaging features from 225 GBM
patients [94]. Four single-region radiomics models were built from tumor core, whole tumor,
peritumoral edema region and other tumor regions. The model combining all-region radiomic
features with a clinical parameter and age, by using SMOTE algorithm, achieved the best
accuracy (97%) [94].

In the last 5 years, the use of DWI, diffusion tensor imaging (DTI), arterial spin
labeling (ASL) perfusion MRI imaging and MRI spectroscopy, which provide further
tumoral pathophysiology information, is progressively growing and becoming promising
for the prediction of IDH mutation status in gliomas [94,105,106].

DWI uses the diffusion of water molecules to generate contrast in MR images and
allows researchers to study how water molecules diffuse through tissues.

Recent radiomic studies of diffusion-based MRI indicate significant differences for
minimum or mean ADC values in the enhancing regions of the tumor for IDH-mutant
tumors compared with the wild-type counterpart.

Xing et al. performed a retrospective study analyzing DWI, DSC-PWI, and conven-
tional MR imaging in 42 patients with a diagnosis of grade II and III astrocytoma. They
found that minimum ADC was significantly higher in IDH-mutated tumors than in IDH
wild-type counterpart. They established a threshold value of ≥1.01 × 10−3 mm2/s, able
to discriminate the two groups (IDH mutated and IDH wild type) with a sensitivity and
specificity, respectively, of 77% and 82%. A combination, instead, of conventional MR
imaging, DWI, and DSC-PWI techniques provided a relevant predicting value, resulting in
a sensitivity and specificity of 92% and 91% [95].

A retrospective study performed on 176 GBM patients conducted by Hong et al.
demonstrated that a higher proportion of insular involvement, a larger tumor volume, a
higher enhancing portion on the contrast-enhanced T1 sequences, a higher ratio between
T2-weighted to T1-weighted contrast-enhanced volumes and a higher ADC, were strongly
associated with IDH mutation [93].
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Table 1. Relevant radiogenomic studies predicting IDH mutational status.

Study MRI Technique IDH1 Mutant MRI
Phenotype/Predicitive Features Number of Patients Performance AUC/Accuracy

Value

Tejadaa Nejra et al., 2018 [91] VLSM analysis of MRI images Frontal lobe location, adjacent to the rostral
extension of the lateral ventricles 237 Permutation-adjusted p-value = 0.021

Chang et al., 2018 [92] T2, FLAIR, and T1 pre and
postcontrast

Absent or minimal areas of enhancement,
central areas of cysts with low T1 and
FLAIR suppression, and well-defined

tumor margins

259 94% accuracy

Hong et al., 2018 [93] T2 and T1CE and DWI
Larger volume on T2 and a higher volume

ratio between T2 and T1CE; higher
mean ADC

176 AUC was 0.48 for T2 volume; 0.73 for
T2-T1 volume ratio; 0.65 for ADC mean

Li et al., 2018 [94] T1, T1CE, T2 and FLAIR

The multiregional model built with
all-region features performed better than

the single-region models, while combining
age with all-region features achieved the

best performance

225 AUC 0.96

Xing et al., 2017 [95] DWI, DSC-PWI and conventional
MRI imaging

Minimum ADC and relative ADC
significantly higher; relative maximum CBV

<2.35 predictive of IDH mutation
42

AUC was 0.87 for minimum ADC, 0.84
for relative ADC and 0.82 for relative

maximum CBV

Wu et al., 2018 [96] Conventional MRI imaging Higher enhancement, necrosis and edema,
and a higher mean relative ADC 131 AUC 0.79

Zhang et al., 2016 [97]

Machine learning algorithm to
generate a model predictive of

IDH genotype based on the
integration of clinical features and

conventional MRI features
(Statistics and Machine Learning

Toolbox MATLAB 2015a)

Top features resulted were age and MRI
parametric intensity, texture, and

shape features
120 AUC 0.92
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Table 1. Cont.

Study MRI Technique IDH1 Mutant MRI
Phenotype/Predicitive Features Number of Patients Performance AUC/Accuracy

Value

Choi et al., 2019 [98] T1, T2, T2-FLAIR, T1CE, DSC
perfusion MRI

The recurrent neural network model (RNN)
accurately predicted the IDH status using

DSC perfusion MRI
463 AUC 0.96 for GBM patients

Kickingereder et al., 2015 [99]

T1 images both before and after
administration of gadoterate

meglumine (Dotarem, Guerbet) as
well as axial FLAIR and axial

T2 images

Lower rCBV 181 92.2% accuracy

Yamashita et al., 2015 [100]
T1CE, precontrast T1 spin-echo,

T2-turbo spin-echo, FLAIR
and DWI

Higher absolute tumor blood flow, relative
tumor blood flow, necrosis area, and

percentage of cross-sectional necrosis area
inside the enhancing lesion. No significant

difference in the ADC minimum and
ADC mean

66

AUC for absolute tumor blood flow,
relative tumor blood flow, percentage of
cross-sectional necrosis area inside the

enhancing lesion, and necrosis area were
0.850, 0.873, 0.739, and 0.772, respectively

Sudre et al., 2020 [101]
Machine learning assisted
DSC-MRI using random

forest classifier

Lower tumor surface to volume ratio (SAV)
and measure of non-compactness; higher
skewness and kurtosis; higher correlation

and sum entropy

333 Overall specificity of 77% and sensitivity
of 65%

Bangalore Yogananda et al.,
2019 [102]

MRI-based deep learning
3D-Dense-UNets

High IDH classification accuracy of T2w
image-only network (T2-net) 214 T2-net demonstrated AUC of 0.98 ± 0.01

ADC = apparent diffusion coefficient; DWI = diffusion-weighted MR imaging; CE = contrast enhancement; IDH = isocitrate dehydrogenase; MGMT = O6-methylguanine-
DNA methyl-transferase; DSC-PWI = dynamic susceptibility contrast-enhanced perfusion-weighted imaging; CBF = cerebral blood flow; CBV = cerebral blood volume;
rCBV = relative cerebral blood volume; rCBF = relative cerebral blood flow; RNN = deep learning model that learns sequential patterns or temporal dependencies within
time-series data.
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A large study by Wu et al., including 131 patients with diffuse gliomas, both LGG and
GBM, correlated MRI phenotype and ADC not only with molecular markers (IDH mutation,
1p/19q codeletion status, MGMT methylation) but also with tumor “aggressiveness” and
survival. IDH wild-type gliomas tended to exhibit a lower mean relative ADC (p < 0.001)
than IDH-mutant gliomas. In addition, they found that a lower mean relative ADC was
strongly associated with poor survival in both IDH mutant and IDH wild-type tumors,
regardless of grading and genotype [96].

Water distribution within human tissues usually follows a Gaussian curve. However,
the heterogeneity of the tissues can modify the diffusion of the water molecules, making it
chaotic, and leading to non-Gaussian diffusion.

DTI can reflect the anisotropic diffusion of water in vivo. Diffusion kurtosis imaging
(DKI), an extension of the DTI, can provide more precise information on tissue characteris-
tics by quantifying the degree of deviation from the Gaussian curve. The parameters that
can be derived from DKI are the mean diffusivity (MD), fractional anisotropy (FA), mean
kurtosis (MK), kurtosis fractional anisotropy (KFA), and mean kurtosis tensor (MKT) [107].

Alis et al. analyzed 142 patients with a diagnosis of high-grade glioma, demonstrating
that kurtosis plays significant role in IDH status determination [108].

This result was confirmed by Bisdas et al., who, by an SVM analysis, demonstrated that
kurtosis is a reliable measure in IDH genotype prediction, with an accuracy of 81% [109].

Other machine learning studies have reported interesting results in predicting IDH
status integrating multimodal MRI patterns with clinical data.

Zhang et al. [97] performed a machine-learning based retrospective study on 120 patients
with primary grade III (n = 35) and IV (n = 85) gliomas to predict the IDH status in HGG,
integrating clinical data (such as age, sex, Karnofsky performance status, and pre-operative
steroid use) with MRI features. The most predictive features (both clinical and radiological)
resulted as age, frontal or temporal tumor location, ADC, laterality, andT2/FLAIR volume.
Patient age, particularly, resulted as the most important clinical variable in the model. This
is not surprising, if we consider that patients with IDH-mutated tumors are younger than
the IDH wild-type counterpart. The study achieved an accuracy, in the prediction of IDH
genotype in high-grade gliomas, respectively, of 86% in the training data set and 89% in the
data set. The model combining clinical features with MRI data achieved the best performance
in the prediction of IDH genotype, with accuracies of 77.78% and 85.17% in the training set
and in the validation set, respectively.

Similarly, in the study by Zhou et al. [110], histogram, shape, and texture features
were extracted from T1-contrast-enhanced and T2-FLAIR images of preoperative MRIs of
538 glioma patients, and correlated with age in order to predict IDH mutation status using
a random forest algorithm. This model achieved a high AUC (0.92 and 0.91, respectively,
for the training and the validation set).

Similar to DWI, multiple PWI–MRI studies have been assessed for IDH genotype
prediction in GBM, with relative cerebral blood volume (rCBV) which reflects tumor
vascularity, being the parameter most frequently employed [75]. This suggests that tumor
angiogenesis and vessels distribution are different in IDH-mutant gliomas compared with
the wild-type counterpart, and these differences may be distinguishable based on DSC
perfusion MRI patterns [98].

However, while ADC measurements reproducibility is well recognized, dynamic
susceptibility contrast (DSC) MRI workflow is not standardized and suffers from several
biases derived from variable protocols applied across different institutions [75,111,112].

In a cohort study of 73 glioma patients, Kickingereder and colleagues [99] demonstrated
that IDH-mutated gliomas were characterized by lower rCBV relative to their wild-type
counterpart. Using a histogram for rCBV values, each unit increase was associated with a
decrease in the likelihood of IDH mutation. They reported quite good performance of this
method in predicting IDH status, with specificity and sensibility of 89% and 78%, respectively.
In addition, the study confirmed the significant inhibition of hypoxia-inducible-factor 1-alpha
(HIF1A) in IDH-mutated tumors.
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Yamashita et al. [100] suggested that absolute tumor blood flow (derived from the
cerebral blood flow maps of arterial spin labeling imaging), relative tumor blood flow,
necrosis area, and percentage of cross-sectional (necrosis area inside the enhancing lesion)
were significantly higher in IDH wild-type tumors than in the mutant counterpart. The
performance in predicting IDH genotype, evaluated by ROC analysis, resulted as acceptable
(AUC was, respectively, 0.850 for absolute tumor blood flow, 0.873 for relative tumor blood
flow, and 0.739 for necrosis area).

Sudre et al. performed a multicenter study to determine the diagnostic value of
machine learning assisted DSC-MRI techniques for classifying glioma grade and IDH
genotype, using a random forest algorithm. They found a lower rCBV in IDH-mutated
tumors and performed a reliable stratification of patients by IDH genotype using DSC-MRI
extracted perfusion texture features and shape features [101].

Overall, the multimodal combination of CBV and ADC seemed to lead to better results
for predicting IDH status and GBM aggressiveness [75].

However, the real promising revolution in radiogenomics seems to be the application
of deep learning to brain tumors.

An interesting deep learning study was conducted on 259 patients from a TCIA set,
with either low- or high-grade gliomas, to predict IDH mutation status, 1p/19q codeletion,
and MGMT promoter methylation status [92]. The researchers used a pretrained algorithm
for tumor segmentation and PCA to extract the clusters of meaningful features for successful
classification. The features predictive of IDH-mutant status resulted as in line with the
existing literature: presence of a larger portion of non-enhancing tumor, central necrotic
cystic areas with low T1 and FLAIR suppression, and well-defined tumor margins. IDH
wild-type tumors, instead, tended to demonstrate a larger portion of enhancing tumor
with peripheral enhancement and an infiltrative pattern of edema. In this study, no cross-
validation with external dataset was performed.

Bangalore Yogananda et al. [102] reported their own fully automated MRI-based deep
learning model to assess IDH mutational status. They examined 214 patients affected by
gliomas from a TCIA set by a fully automated network performing tumor segmentation
and IDH status prediction simultaneously, based on 3D MRI images (3D-Dense-UNets
approach) They achieved an accuracy of 97.14%, specificity of 98%, and sensitivity of
98% in predicting IDH genotype. They also demonstrated that IDH classification using
only T2-weighted images had comparable performance if compared with a multi-contrast
network. One possible explanation was that deep learning networks using conventional
single-mode MRI images reduced the effect of head movement, allowing much shorter
image acquisition times. A limit of this study was that cross-validation with external testing
on a separate dataset was not performed.

In 2019, Choi et al. conducted a retrospective study enrolling 463 patients affected by
glioma (grades II-IV) to classify IDH mutational status using a deep learning application
for DSC perfusion MRI, named recurrent neural network (deep learning model that learns
sequential patterns or temporal dependencies within time-series data). They reported
interesting results in IDH genotype predictions, achieving an accuracy, sensitivity, and
specificity, respectively, of 92%, 92%, and 93% in the validation set (AUC = 0.96 for GBM
cohort) [98].

In 2021, a Korean study reviewed 1166 preoperative MR images of WHO grade II-IV
gliomas, including both IDH wild type or IDH mutant, to non-invasively predict the IDH
genotype from preoperative MR images, using a fully automated approach with CNNs. Their
deep learning model, a CNN-based classifier using 2D and 3D tumor images demonstrated
an accuracy of 93.8%, proving to be a highly reliable tool for the noninvasive prediction of the
IDH status [113].

Given the unique biology value of 2-HG, its detection by magnetic resonance spectroscopy
(MRS) would be a valid tool for the assessment of IDH genotype [114]. Branzoli et al. confirmed
the value of MRS in glioma patients for the detection of 2-HG; in addition, they compared the
performance of the two most used 2-HG MRS techniques (the long echo modulation and the
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J-difference spectral editing using the Mescher–Garwood scheme), concluding that the latter
exhibited a superior level of accuracy [115].

In conclusion, despite the difficulty in comparing the results of the various studies
as they were very inhomogeneous, the most relevant findings regarding radiogenomics
performance in IDH mutational status prediction can be summarized as follows (Figure 3):

− Gliomas harboring IDH mutations occurred, more frequently, in the frontal lobe,
adjacent to the rostral extension of the lateral ventricles;

− A larger tumor volume in T2 sequences and a higher volume ratio between T2 and T1
sequences with contrast agents were observed in IDH mutant tumors, together with
the presence of a high portion of non-enhancing tumor and a central necrotic cystic
area with low T1 and FLAIR suppression. A larger portion of enhancing tumor with
peripheral enhancement and an infiltrative pattern of edema, instead, was strongly
associated with IDH wild-type genotype;

− In diffusion imaging, a higher mean ADC value was observed in IDH mutated tumors;
− Tumor vascularity, neoangiogenesis and vessels distribution, reflected by the parame-

ter rCBV, were much less represented in IDH-mutated tumors than in the wild-type
counterpart. Consequently, IDH-mutated gliomas exhibited significantly lower rCBV
values relative to their wild-type counterpart;

− Higher skewness and kurtosis were associated with IDH mutational status;
− Approaches based on multimodal combination of CBV and ADC seemed to lead to

better results for predicting IDH status and GBM aggressiveness [76];
− Radiomics models combining data from multiple tumor regions, for example, core, whole

tumor and peritumoral edema region, were more accurate in IDH prediction, especially
if the analysis was integrated with clinical data (age, performance status, surgery);

− ML-based approaches integrating clinical data (mainly age, significantly lower in
IDH-mutated tumors) with the most predictive radiological features (frontal tumor
location, ADC andT2/FLAIR volume) achieved the best accuracy in the prediction of
IDH genotype;

− DL approaches using DSC perfusion MRI images accurately predicted the IDH muta-
tional status [76];

− Approaches based on 2-HG MRS techniques also achieved adequate accuracy, sensi-
tivity, and specificity in the prediction of the IDH status.
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Despite good performance in IDH prediction, both CNN and radiomics have major
challenges in clinical practice translation: the first obstacle is tumor segmentation, as manual
segmentation is time-consuming and automatic segmentation has still poor reproducibility.
The second obstacle is the lack of a standard method for the selection and computation of
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features. Third, even if CNN might eliminate the issue of feature computation and selection,
procedures and models are not standardized, as the studies performed to date are very
inhomogeneous.

Furthermore, all the radiomic/CNN studies performed to date have been retrospective,
and prospective trials are lacking: this is also a critical barrier to clinical translation.

3.2. Prediction of MGMT Promoter Methylation Status

MGMT is a gene encoding for a DNA repair protein, crucial for genomic stability.
Temozolomide acts in damaging the DNA, generating mutant DNA containing

O6-methylguanine, that leads to cell death. This modification, usually, is effectively re-
paired by the MGMT protein that reverses the effect of chemotherapy by restoring purine
from O6-methylguanine [116]. When the MGMT promoter is silenced through methylation,
the MGMT protein is expressed at lower levels and DNA repair cannot be performed.

It is accepted that the methylation status of the MGMT promoter is a favorable prognos-
tic factor in patients with GBM, associated with a more robust response to alkylating agents
such as temozolomide, higher response to radiotherapy and longer survival [117–120].

However, MGMT promoter methylation, which is present in approximately 40–50%
of the cases, is not ubiquitous, being area specific, and may change over time during the
disease course, between primary tumor and recurrence [121–123]. This implies that a single
biopsy specimen may be not representative of the entire tumor mass and, therefore, may
direct the clinician towards incorrect therapeutic strategies.

Prediction of MGMT methylation status, based on MRI, seems to be challenging, as it
provides a non-invasive diagnostic methodology for patient stratification and treatment
planning.

Relevant radiogenomic studies predicting MGMT methylation status are summarized
in Table 2.

Previous non-radiomic studies introduced the role of imaging characteristics in MRI,
such as tumor necrosis, enhancement patterns and tumor location, for the prediction of
MGMT methylation status. Kanas et al. [129] reported that MGMT unmethylated tumors
tended to exhibit more homogenous contrast enhancement, while MGMT methylated tu-
mors were characterized by ring contrast enhancement, with central necrosis and decreased
peritumoral edema. Other studies reported that MGMT unmethylated GBM was located in
the right frontal lobe or in proximity to the SVZ.

Korfiatis et al. [124] performed a large radiomic retrospective study enrolling 155 GBM
patients with known MGMT methylation status, and compared several different classes of
texture features, showing that the combination of four texture features (correlation, energy,
entropy, and local intensity) provided a really valid potential tool for the prediction of
the MGMT methylation status in GBM. Their SVM-based algorithm achieved about 80%
sensitivity and specificity in the prediction of MGMT methylation status. These results,
subsequently confirmed by other studies [130,131], exemplified how ML models can be
used to non-invasively obtain information on MGMT methylation status in preoperative
GBM.

Several radiogenomic studies support the worth of DWI as a possible surrogate
method to assess the MGMT methylation status in GBM [125,132], with higher ADC values
reported in methylated GBMs relative to their unmethylated counterparts.

Moon et al. [125] reported that MGMT methylated GBMs exhibited higher ADC values
than the unmethylated group (p = 0.055). In contrast, the rCBV ratio was not different
between the two groups (p = 0.380).

In a retrospective study analyzing 108 GBM patients, an intratumoral subregion both
with high T1 contrast enhancement and low ADC, named “high risk volume (HRV)”,
was identified on multi-parametric MRI, predicting both unmethylated MGMT status and
shorter survival (p < 0.001 and p = 0.038, respectively, in the discovery and validation
cohort) [133].
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Table 2. Relevant radiogenomic studies predicting MGMT methylation status.

Study MRI Technique
MGMT Methylated Tumors MRI
Phenotype/Predicitive Features

Number of Patients
Performance AUC/Accuracy

Value

Chang et al., 2018 [92] T1, T1CE, T2, T2 FLAIR
Heterogeneous, nodular enhancement; presence of an

eccentric cyst; edema with cortical involvement;
frontal and superficial temporal predominance

259 patients Accuracy 83%

Korfiatis et al., 2016 [124]

T2-fast spin-echo, axial T1 and T1CE.
Two supervised machine-learning classifiers

were used to predict MGMT methylation
status: SVM-based classifier and

random forest

The best-performing classification system resulted
from SVM with features extracted from T2 images

155 AUC 0.85

Moon et al., 2012 [125]
Axial T1, axial T2-fast spin-echo sequence,

axial FLAIR, axial T2-gradient-echo sequence

Higher ADC value and higher ADC ratio in the
methylated group; rCBV ratio did not differ between

the two groups
38

ADC values tended to be higher in the
methylated group. ADC ratio was

significantly higher in the methylated group.
rCBV ratio did not differ between the two

groups (p = 0.380)

Wei et al., 2019 [126] T1CE, T2 FLAIR and DWI

A fusion radiomics signature combining four single
radiomics signatures (T1-WI-tumor, T1-WI-edema,
T2-FLAIR-tumor, and T2-FLAIR-edema) showed

optimal performance in predicting the MGMT
methylation status

105
AUC of 0.925 in the training cohort and 0.902

in the validation cohort

Han et al., 2018 [127]
Diffusion-weighted (DWI) and 3-diminsional
pseudo-continuous arterial spin labeling (3D

pCASL) imaging

MGMT promoter methylation was associated with
tumor location and necrosis (p < 0.05). Increased

ADC value (p < 0.001) and decreased rCBF (p < 0.001)
were associated with MGMT promoter methylation.
ADC achieved better predicting efficacy than rCBF

(ADC: AUC, 0.860; vs. rCBF: AUC, 0.835) The
combination of tumor location, necrosis, ADC and

rCBF resulted in the highest performance in
predicting the MGMT promoter methylation

92
The combination of tumor location, necrosis,

ADC and rCBF resulted in the highest
AUC of 0.914

Chen et al., 2020 [128]
Deep learning model analyzing

contrast-enhanced T1images, FLAIR images
FLAIR images showed the better tumor segmentation
performance and the better MGMT status prediction

106 patients Accuracy = 0.827 ± 0.056

ADC = apparent diffusion coefficient; DWI = diffusion weighted MR imaging; MGMT = O6-methylguanine-DNA methyl-transferase; DSC-PWI = dynamic
susceptibility contrast-enhanced perfusion-weighted imaging, CBF = cerebral blood flow; rCBV = relative cerebral blood volume; rCBF = relative cerebral
blood flow.
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Rundle-Thiele et al. [134] were the first to raise the question of the method used for
the analysis of diffusivity measures. Assuming that ADC ability to predict MGMT status
has shown mixed results, they explored if, within the same patient cohort, the prediction of
the MGMT status may be subject to change based on the method selected to analyze ADC
measures. They reported a retrospective analysis of 32 patients with GBM with MGMT
status already known. The used two diverse methods to measure ADC: the minimum
ADC, and a two-mixture model histogram approach. They observed a strong relationship
between an elevated “minimum ADC” and methylation status. In contrast, using the
two-mixture normal distribution histogram analysis, they found that the mean ADC was
significantly lower in the methylated MGMT patient group than in the unmethylated
patient (p < 0.0246). This study emphasized how the method selected to analyze ADC
measures significantly influences the prediction of MGMT status.

Multi-habitat MRI radiomics is, currently, emerging as a valuable method for the
prediction of MGMT methylation status and prognosis of GBM patients: Wei et al. [126]
introduced a comprehensive model integrating radiomic features, clinical variables and
two ADC values (the tumor and edema areas) for determining MGMT methylation status.

They concluded that radiomic features extracted from T1-contrast and T2-FLAIR
sequences performed higher than those extracted from the ADC sequence, probably because
of the relatively poor imaging resolution of ADC, that limited the stability and robustness
of the derived radiomic features [126].

A further interesting observation was that MGMT methylated GBMs exhibited higher
rCBV [135] in studies involving DSC and arterial spin labeling [127].

In 2018, a meta-analysis about the value of radiomics for MGMT status prediction
demonstrated an overall sensitivity and specificity of 79% and 73%, respectively—a not
particularly encouraging result [136]. These data suggest that radiogenomics is still insuffi-
cient for use in the clinical setting, and far from being employed as a common tool for the
detection of MGMT methylation status.

Only a few more recent machine learning and deep learning studies have achieved better
results. Haiianfar et al. [137] performed a study on 82 patients affected by GBM, aimed at
non-invasively predicting the MGMT gene promoter status by using MRI radiomics features.
Tumors were manually segmented in four regions: (1) whole tumor, (2) active/enhanced region,
(3) necrotic regions, and (4) edema regions. The edema region resulted as the top-performing
region in the prediction of MGMT status using multivariate analysis (AUC 0.78); the inverse
variance feature from gray level co-occurrence matrix in whole tumor, instead, had the best
performance using univariate analysis (p-value = 0.002). Chen et al. [128] proposed a deep
learning model using contrast-enhanced T1W images and FLAIR images for the prediction of
MGMT status, with encouraging results. The study enrolled 87 GBM patients; FLAIR images
resulted as the best predictor of MGMT status (Dice score = 0.897).

In conclusion, several radiogenomic studies have assessed the MGMT methylation
status in GBM. Despite the difficulty in comparing the results of the various studies as
they were very inhomogeneous, the most relevant findings can be briefly summarized as
follows (Figure 3):

− MGMT methylated tumors were localized in the left hemisphere, especially in the left
temporal lobe. In contrast, MGMT unmethylated tumors tended to be localized in the
right hemisphere, in the right frontal lobe or in proximity to the SVZ;

− MGMT unmethylated tumors tended to exhibit more homogenous contrast enhancement,
while MGMT methylated tumors were characterized by ring contrast enhancement, with
central necrosis and decreased peritumoral edema;

− In T2/FLAIR images, MGMT methylated tumors had a lower hyperintense tumor
volume, in contrast with unmethylated tumors;

− In diffusion imaging, increased minimum ADC values and higher ADC ratio were
associated with MGMT promoter methylation;

− In perfusion imaging, higher rCBV was associated with MGMT promoter methylation;
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− Multi-habitat MRI and comprehensive multi-omics models integrating radiomic features
(possibly from both the tumor and the edema areas), clinical variables, and genetic data
achieved the best accuracy for determining MGMT methylation status [128].

3.3. Discrimination of Pseudoprogression from Early Progression

The standard protocol of treatment in newly diagnosed GBM consists of temozolomide
concurrent with and adjuvant to radiotherapy [2]. During the first 6 months of follow-
up, nearly 20% to 30% of patients experience pseudoprogression, a condition in which
the size of the tumor often increases and/or new inflammatory lesions appear at MRI,
simulating disease progression in the absence, however, of neurological clinical signs of
deterioration or worsening. These lesions generally tend to stabilize over time and stop
growing further [116,138,139].

Discrimination of pseudoprogression from early progression is a real challenge in
neuro-oncology practice. If pseudoprogression is suspected, temozolomide should be
continued with close radiological follow-up. Thus, the final diagnosis in these patients can
only be made retrospectively—if they improve without a change of second line therapy.

The Response Assessment in Neuro-Oncology (RANO) criteria are used as an alternative
to surgical biopsy for distinguishing pseudoprogression from true progression, but with
limited and variable diagnostic value.

In this context, radiomics can improve the diagnostic performance, particularly when
combined with information on MGMT promoter status.

A recent retrospective study of 76 patients (53 early progressions and 23 pseudoprogres-
sions) performed using 11 radiomics features, tried to discriminate between early progression
and pseudoprogression, especially when combined with MGMT promoter status. The study
achieved good sensitivity but poor specificity (81.6% sensitivity, 50.0% specificity, in training
phase), with a moderate performance improvement after combining the data with information
regarding the methylation status [140].

Elshafeey et al. confirmed that pseudoprogressive and progressive disease exhibit
distinct radiomic features that could be extracted by MR perfusion parameters analysis
combined with SVM [141]. They used both kurtosis and rCBV-based maps, selecting the
top 220 features (60 kurtosis features and 160 rCBV features) that achieved the highest
predictive accuracy in differentiating between progression and pseudoprogression, and
subsequently built a radiomic model using SVM that achieved AUC 94%, sensitivity 92%,
and specificity 100% in discriminatory power. The key features selected for both kurtosis
and rCBV models were entropy, sum of squares, and autocorrelation.

Kim et al. [142] developed a radiomics model to differentiate pseudoprogression from
early tumor progression using multiparametric MRI, in particular, extracting radiomic features
from contrast-enhanced T1-FLAIR imaging, as well as ADC and CBV maps. A large study
on 105 GBM patients demonstrated that combining 3D shape and surface radiomic features
extracted from the lesion habitat (T1WI enhancing lesion and T2WI/FLAIR hyperintense
perilesional region) could capture differences between real progression and pseudoprogression
with high accuracy (90%) [143].

In general, the multiparametric radiomics showed higher performance in the external
validation and internal validation than any single approach (ADC or CBV parameter) [142].

Qian et al. were the first to introduce the radiogenomics approach to detect candidate
genes for pseudoprogression in GBM, identifying interferon regulatory factor (IRF9) and
X-ray repair cross-complementing gene (XRCC1) as potential biomarkers of pseudopro-
gression [144].

3.4. Survival Prognostication

Over 40% of GBM patients do not respond to standard radio-chemotherapy treatment
and develop disease progression within a few months, on average 6–9 months. Hypoxia in
GBM is a key pathway known to promote tumor neovascularization, cell proliferation and
treatment resistance [32].
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Beig et al. [145] were the first to propose a very unique radiomic study, constructing
a hypoxia enrichment score (HES) to predict the extent of hypoxia and survival of GBM
patients. Analyzing the data from data from 85 GBM patients, they constructed a radiomic
risk score (RRS) using radiomic features from different tumor habitats to stratify GBM
patients according to their survival. Additionally, they provided a biological basis for the
RRS, identifying 192 genes exhibiting a different expression profile between the “high-risk”
and “low-risk” groups using gene ontology and single-sample gene set enrichment analysis.
Statistically significant correlations (p < 0.05) were found between the shape features of
the peri-tumoral edema region (i.e., sphericity, elongation and convexity) and biological
processes of cell proliferation and neovascularization. The extracted features strongly
associated with HES could also distinguish between short-term survivors (OS < 7 months)
and long-term survivors (OS > 16 months) (p = 0.003) (Table 3) [145].

Table 3. GBM survival prognostication.

Study MRI Technique Survival Prognostication Number of Patients
Performance

AUC/Accuracy
Value

Beig et al. [145] T1, T2, T2 FLAIR
Use of 25 radiomic features

from the tumor habitat
predicted PFS

203
p < 0.0001 on the
training set and

p = 0.03 on the test set

Jain et al. [146]

Dynamic susceptibility
contrast-enhanced

T2-weighted perfusion
MR imaging

Worsening OS and PFS were
associated with increasing

relative cerebral
blood volume

obtained from the
non-enhancing region

of GBM

45 OS (p = 0.0103); PFS
(p = 0.0223)

Choi et al. [147] T2, T2 FLAIR, T1CE

Radiomics added to the
clinical model achieved the

best performance in PFS and
OS prognostication

120 AUC = 0.66 for PFS
AUC = 0.73 for OS

Kazerooni et al. [148]
Pre-operative MRI

acquisition on a
3 Tesla scanner

Multi-omics data (clinical,
radiomic and genetic data)

achieved better performance
in predicting OS

516

AUC = 0.78 in the
discovery cohort

AUC = 0.75 in the
replication cohort

In 2014, a study [146] examined the correlation between GBM OS and morphologic
imaging features and hemodynamic parameters obtained from the non-enhancing region
of the tumor, along with clinical and genomic markers. Poor OS (p = 0.0103) and PFS
(p = 0.0223) were associated with increasing values of rCBV of the non-enhancing region of
the tumor. The EGFR wild-type genotype associated with high rCBV in the non-enhancing
region of the tumor exhibited the worst prognosis (AUC 0.62) (Table 3). Regarding clinical
and imaging presurgical prognostic factors, rCBV of the non-enhancing region of the tumor
resulted as the top predictor; also important were the Karnofsky performance status, age at
diagnosis, and non-enhancing region crossing the midline.

Choi et al. [147] evaluated the potential of radiomics when combined with conven-
tional clinical and genetic prognostic models for improving OS and PFS prognostication
in GBM patients. A total of 120 patients were included in this retrospective single-center
study. The prognostic performances resulted as improved when radiomics was added
to the clinical model (AUC for OS improved from 0.62 to 0.73; AUC for PFS improved
from 0.58 to 0.66), genetic model (AUC for OS improved from 0.59 to 0.67; AUC for PFS
improved from 0.59 to 0.65), and combined model (AUC for OS improved from 0.65 to 0.73;
AUC for PFS improved from 0.62 to 0.67) (Table 3).
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Kazerooni et al. [148] assessed the additional value of integration of multi-omics data
(clinical, radiomic and genetic data) for the accurate prediction of survival and clinical
outcome of patients with newly diagnosed GBM. They built multiple models starting from
the base model, including basic clinical data such as age, gender, and extent of resection,
and showed incremental performance to predict OS in GBM patients by adding multiple
layers of prognostic information, including radiomics, MGMT methylation, and genomic
data obtained by NGS sequencing of the tumor samples (Table 3).

4. Conclusions

Radiogenomics represents an emerging field that aims at improving the results provided
by radiology and genomics: medical images are more than pictures, they are data useful for
predicting the genomic profile of tumors [30].

GBM, because of its heterogeneity, genetic instability and complicated assessment of
treatment response, is the ideal candidate for radiogenomics and represents an issue where
this methodical approach can contribute the best of its potential.

However, with the improvement of radiogenomics, all its limitations are rising to the
surface: standardizing the guidelines for systematic image acquisition and segmentation
algorithms is challenging.

With the incremental inclusion of artificial intelligence [149], large-scale data sharing,
and CNNs combined with clinical data, neuroradiologists’ performances are likely to
improve, allowing more precise, impactful diagnoses.

Nevertheless, the major challenges limiting radiomic approaches are the poor reproducibil-
ity of studies, and the variability and lack of consistency attributed to the absence of standardized
procedures. Furthermore, radiomics studies are mostly retrospective, thus, having a low level of
evidence. Therefore, despite the great potential of the radiogenomic approach, it currently does
not find application in clinical practice, remaining confined only to the field of research.

In the future, multi-institutional prospective clinical trials should be devoted to improving
reproducibility and applicability of radiogenomic protocols, in order to focus on the concept
of personalized/adaptive medicine, instead of outdated precision medicine.
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