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Abstract
Maximal safe surgical resection plays a key role in the care of patients with gliomas. A range of technologies have 
been developed to aid surgeons in distinguishing tumor from normal tissue, with the goal of increasing tumor re-
section and limiting postoperative neurological deficits. Technologies that are currently being investigated to aid 
in improving tumor control include intraoperative imaging modalities, fluorescent tumor makers, intraoperative 
cell and molecular profiling of tumors, improved microscopic imaging, intraoperative mapping, augmented and 
virtual reality, intraoperative drug and radiation delivery, and ablative technologies. In this review, we summarize 
the aforementioned advancements in neurosurgical oncology and implications for improving patient outcomes.
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Maximal safe surgical resection is a cornerstone of treat-
ment for patients with low- and high-grade gliomas.1,2 As 
described in previous sections of this supplement, a va-
riety of technologies exist to enhance a surgeon’s ability to 
resect as much tumor as possible while limiting injury to 
surrounding normal tissue. In this article, we discuss novel 
intraoperative technologies that are under development, 
which aid in distinguishing tumor from normal brain with 
the goal of greater tumor resections.

Novel Technologies for Intraoperative 
Tumor Control

Intraoperative MRI

Magnetic resonance imaging (MRI) has long been used 
in the preoperative evaluation of patients with brain tu-
mors, providing valuable insight into tumor characteris-
tics and proximity to eloquent structures. Similarly, it has 
been used in the postoperative setting to evaluate tumor 
extent of resection (EOR). Intraoperative MRI (iMRI) for the 

evaluation of tumor EOR in the operating room was origi-
nally developed in the 1990s.3 iMRI can provide updated in-
formation on tumor location as a case progresses thereby 
accounting for potential increasing brain shift.

There are few randomized controlled trials (RCTs) 
evaluating the use of iMRI in glioma surgery. A  sys-
tematic review of the literature in 2021 by Fountain 
et  al. identified two RCTs assessing the efficacy of 
iMRI.4 One RCT included in their review was an in-
terim analysis and included only 14 patients, finding 
no benefit to iMRI use.5 The second RCT by Senft et al. 
included 58 patients with known or suspected glioma 
with contrast enhancement on MRI. They found that 
patients who received iMRI were significantly more 
likely to undergo complete resection of their tumor, 
with no difference in the rate of new postoperative 
neurological deficits.6 A subsequent meta-analysis by 
Golub et  al. used seven studies, with 236 iMRI cases 
and 233 conventional navigation cases, to compare 
iMRI to conventional navigation; iMRI was associated 
with increased incidence of gross total resection (GTR, 
OR 4.99, 95% CI 2.65–9.39, p < 0.001).7 Finally, a recent 
retrospective analysis by Shah et  al. of 640 patients 
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with supratentorial glioblastoma, 332 of whom were 
treated with iMRI, found iMRI to be independently as-
sociated with GTR.8 Overall, these studies indicate that 
iMRI may meaningfully contribute to increased EOR of 
gliomas, although some practical limitations include 
the availability of the technology and optimizing its 
use in the operating room. Interestingly, the combi-
nation of iMRI with 5-aminolevulinic acid (5-ALA) for 
intraoperative tumor visualization may also be benefi-
cial, although available data in the literature is mixed 
and of meager quality, making this an area in need of 
additional investigation.9–12

Intraoperative Ultrasound

In contrast to the relatively high costs associated with 
iMRI, intraoperative ultrasound (ioUS) is a less expensive, 
more accessible technology to aid in intraoperative tumor 
identification and resection. However, limitations of tradi-
tional ioUS include its relatively low spatial resolution and 
poor image quality. A meta-analysis assessing the efficacy 
of ioUS by Mahboob et al. found an estimated GTR rate of 
77% in cases where ioUS was used.13 Similarly, an RCT of 
ioUS demonstrated a higher incidence of GTR in patients 
with presumed GBM where ioUS was used.14 Novel im-
proved ultrasound modalities are further increasing the 
utility of intraoperative ultrasound for surgeons. Advanced 
ultrasound imaging techniques, such as navigated ioUS,15 
contrast-enhanced ultrasound,16,17 and intraoperative 
strain elastosonography18 have shown promise in glioma 
surgery and are interesting avenues of further develop-
ment. Finally, the use of contrast-enhanced ultrasound in 
combination with 5-aminolevulinic acid (5-ALA) has been 
shown to increase EOR in a retrospective study of 230 
GBM patients by Della Pepa et  al., highlighting the syn-
ergy of these two technologies.19 Overall, these various 
ultrasound-based technologies are limited in part by the 
availability of the technologies, but warrant additional in-
vestigation given their potential ability to improve EOR.

ALA and Alternatives

5-ALA is the primary drug used for fluorescence-
guided surgery in GBM. Stummer et  al. demonstrated 
the efficacy of 5-ALA in increasing GTR and 6-month 
progression-free survival (PFS) in a phase III trial of 
high-grade glioma patients, supporting its continued 
use.20 Briefly, limitations of 5-ALA include its limited 
utility in low-grade gliomas as well as its sensitivity and 
specificity for infiltrating tumor cells.21–23 Additional po-
tential alternatives for the intraoperative visualization of 
tumor cells include indocyanine green24 and fluorescein 
(which can also be used in combination with 5-ALA25,26), 
neither of which are molecularly tumor-specific. Tumor-
specific fluorescent tags include labeled antibodies 
against EGFR,27,28 labeled chlorotoxin (which binds to 
a number of solid tumors),29 and labeled proteoglycan 
glypican-1 (GPC-1) antibodies.30 Preclinical experiments 
using triple-modality magnetic resonance imaging–
photoacoustic imaging–Raman imaging nanoparticles 

have also shown promise, with highly specific accumu-
lation in tumor relative to normal brain, highlighting 
the efficacy of this technology.31 Fluorescence lifetime 
imaging (FLIM), which uses time-gated intensified cam-
eras, can be used to view nicotinamide adenine dinu-
cleotide (NADH, which is more highly expressed in 
tumor relative to normal brain) and/or 5‐ALA induced 
protoporphyrin IX (PPIX).32 Studies have demonstrated 
the use of FLIM to highlight areas of weak 5-ALA fluo-
rescence33,34 and to increase the ability to differentiate 
tumor from normal brain when used to detect NADH in 
addition to PPIX.35

Intraoperative Mapping

Intraoperative mapping is frequently used for gliomas 
near functional brain areas and plays a significant role in 
maximizing safe resection.36,37 Indeed, a meta-analysis 
by De Witt Hamer et al. of 90 studies, including 8,091 pa-
tients, demonstrated reduced neurological deficits and 
an increased incidence of GTRs in patients who under-
went intraoperative stimulation mapping when compared 
to those who did not.38 Intraoperative mapping has been 
combined with iMRI in a number of small studies and has 
been shown to be safe, albeit with little robust evidence 
around efficacy or impact on EOR.39–42 Similarly, 5-ALA has 
been used in combination with intraoperative mapping, 
with some evidence suggesting a potential benefit of using 
the two technologies together, but with conclusions lim-
ited by the lack of larger-sized studies.43,44

Intraoperative mapping techniques also continue to de-
velop and improve. A recent report by Gogos et al. described 
favorable outcomes associated with asleep triple motor map-
ping in which bipolar and monopolar stimulation, as well as 
transcranial or transcortical motor evoked potentials (MEPs), 
are utilized to preserve cortical and subcortical motor systems 
during tumor resection.36 Similarly, a manuscript by Bander 
et al. highlighted the utility of high-frequency bipolar train-of-
five (TOF) stimulation that combines the reliability and low 
incidence of intraoperative seizures seen with monopolar 
TOF stimulation with the focus of traditional low-frequency 
bipolar stimulation. Intraoperative mapping will undoubtably 
continue to become safer and more accurate as mapping 
techniques and technologies further develop.

Intraoperative Cell and Molecular Profiling

Various intraoperative cell and molecular profiling tech-
niques have been investigated to aid in identifying and 
characterizing tumor cells. Flow cytometry utilizes lasers 
to measure various characteristics of cells and fluorescent 
antibody tags; it is commonly utilized in hematologic ma-
lignancies and can be performed relatively quickly. Two 
recent studies have evaluated the use of intraoperative 
flow cytometry in tumors. Shioyama et  al. describe a 
10-minute protocol with the ability to calculate the malig-
nant index (MI) of analyzed cells. They demonstrated a sig-
nificant difference in MI between normal tissue and tumor, 
highlighting the ability to use their 10-minute protocol to 
quickly determine surgical margins.45 Alexiou et  al. pub-
lished a similar protocol with the ability to differentiate cell 
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cycle of tumor cells, providing insight into tumor grade as 
well as information regarding surgical margins.46,47 A more 
recent study by Saito et  al. also hinted at the potential 
utility of MI from intraoperative flow cytometry as a prog-
nostic tool for patients with glioblastoma.48

Mass spectrometry (MS) is an additional technology 
with potential utility in the intraoperative setting. MS al-
lows for the detailed analysis of the various lipids and 
proteins in a tissue sample. Desorption electrospray ioni-
zation (DESI) MS primarily provides information regarding 
the lipid composition of a tissue; it has been used for the 
intraoperative molecular diagnosis of brain tumors and to 
determine tumor margins, correlating well with traditional 
histopathological analysis.49–51 DESI MS has also been 
utilized to identify tumoral onco-metabolites. Santagata 
et  al. demonstrated the ability for DESI MS to identify 
2-hydroxyglutarate (2-HG), a downstream byproduct of 
mutated isocitrate dehydrogenase 1 and 2 (IDH 1 and 2), 
providing rapid intraoperative information on the IDH mu-
tational status of a tumor, as well as further contributing 
to the determination of tumor margins.52 Intraoperative 
determination of IDH status may play an important role 
in decision making around EOR, as previous studies have 
implicated certain IDH1 mutant tumors as more amenable 
to maximal surgical resection.53 Indeed, given the poten-
tial utility of this information, PCR based platforms have 
also been developed for the intraoperative determination 
of IDH and telomerase reverse transcriptase promoter 
(TERTp) mutations.54–56

Interestingly, there is evidence that tumor specimens 
obtained by a cavitron ultrasonic surgical aspirator (CUSA) 
can be used successfully for flow cytometry and other cel-
lular analyses.57,58 As technology continues to improve, it 
is possible that rapid flow cytometry or DESI MS will be 
performed directly from CUSA specimens, educating a 
surgeon not only on tumor margins, but, in the case of 
flow cytometry, potentially leveraging the range of anti-
bodies available to yield additional information on the 
cellular composition of the tumor microenvironment. As 
we continue to move towards increased precision med-
icine approaches for GBM, insights from intraoperative 
flow cytometry or DESI MS could also inform surgical de-
cision making and the intraoperative delivery of targeted 
therapies.

Exoscopes

Several different technologies have attempted to utilize ro-
botics to improve and enhance glioma surgery. While many 
of these are in their infancy, one of the most well-described 
is the use of exoscope platforms. Exoscopes are digital 
microscopes that are fixed above the surgical field and 
allow a surgeon to view the surgical site on a screen, rather 
than looking through a lens, as in a traditional microscope.59 
Primary advantages of exoscopes relative to traditional op-
erating microscopes are: higher magnification of the sur-
gical field, increased tissue clarity, a larger field of view, 
improved ergonomics, and the potential ability to view the 
field in 3D or using augmented reality.59–61 Both exoscopes 
and microscopes can allow for results from preoperative 
Diffusion Tensor Imaging (DTI) and fiber tractography to be 

overlaid onto real-time images of the brain intraoperatively, 
potentially improving the safety of resections.61 Despite 
these theoretical benefits, few studies have assessed the 
efficacy of exoscopes in glioma surgery. A recent study by 
Baron et al. including 26 GBM patients who underwent sur-
gical resection with the use of a 2D exoscope, demonstrated 
a median EOR of 94.8%.61 Additional larger studies directly 
comparing exoscopes to traditional operating microscopes 
are needed to further assess the impact of exoscopes on 
EOR, postoperative deficits, survival, and surgeon comfort 
in glioma surgery. Research efforts are also being directed 
at the combination of exoscopes with 5-ALA, which may 
potentially enhance the efficacy of both technologies.62–64 
Practical limitations of exoscopes include the learning 
curve associated with their use and concerns surrounding 
depth perception with 2D exoscopes.65

Raman-Based Intraoperative Tools

Raman-based intraoperative imaging methods have been 
increasingly studied within brain tumor surgery and seek 
to bring detailed information regarding tumor infiltration 
and pathology to the operating room.66–68 The two most 
well-described Raman-based methods in glioma surgery 
to this point include Stimulated Raman scattering (SRS) 
microscopy and Raman spectroscopy.

SRS microscopy was originally described in 2008 and 
allows for the rapid label and processing free analysis of 
biological tissues.69 Ji et  al. subsequently demonstrated 
the potential promise of this technology in preclinical brain 
tumor models, highlighting the ability of SRS microscopy 
to accurately identify tumor margins.70 These results were 
followed by a study in human samples, which similarly 
showed that SRS microscopy was highly sensitive and 
specific for tumor infiltration.71 To take SRS microscopy di-
rectly to the operating room, Orringer et al. then developed 
a portable SRS microscopy system as well as stimulated 
Raman histology (SRH) which generated highly accu-
rate virtual hematoxylin and eosin-stained slides.72 Most 
recently, SRH has been used in combination with deep 
convolutional neural networks to provide a brain tumor 
diagnosis in under 150 seconds; this was shown to be 
noninferior to pathologist interpretation of histologic im-
ages in a multicenter clinical trial including 278 patients.73 
SRH is undoubtably an exciting tool with the ability to 
provide surgeons with rapid and accurate information on 
tumor margins and classifications.

In contrast to SRS microscopy, which requires samples to 
be viewed ex vivo, Raman spectroscopy has been adapted 
for use in the setting of handheld systems albeit with signifi-
cantly increased artifact and reduced resolution. Jermyn et al. 
described the utilization of a commercially available handheld 
contact fiber optic probe for intraoperative Raman spectros-
copy; they initially tested the system in 17 glioma patients, 
identifying cancer cells with an accuracy of 92%.74 Jermyn 
et al. then subsequently combined multiple label-free optical 
tools, including optical coherence tomography, Raman spec-
troscopy, intrinsic fluorescence spectroscopy, and diffuse re-
flectance spectroscopy to create an intraoperative system 
with the ability to detect brain, lung, colon, and skin cancers 
with high accuracy, sensitivity, and specificity.75
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Local Drug Delivery

Local drug delivery to a glioma has the potential of 
avoiding the blood-brain barrier and allowing for higher 
therapeutic dosing while reducing the risk of systemic 
toxicities. Indeed, systemic temozolomide treatment has 
been tied to increased immunosuppression in GBM pa-
tients.76 In addition, preclinical studies have demonstrated 
an antagonistic relationship between systemic chemo-
therapy and the efficacy of immunotherapies.77,78 As a re-
sult, the local delivery of therapeutics directly to a tumor 
is an attractive treatment modality. Carmustine wafers, 
a form of local chemotherapy, is perhaps the most well-
known and validated locally delivered treatment for glio-
blastoma.79 However, in practice, local delivery of a novel 
drug or biologic can be difficult and inaccurate, potentially 
contributing to the variability in results of various clinical 
trials investigating locally delivered treatments.

Convection enhanced delivery (CED) involves the ster-
eotactic placement of catheters directly into a region of 
interest within the brain and allows for the targeted local 
delivery of a treatment into a tumor. CED has been used 
to deliver a number of anti-tumor therapies, including 
chemotherapies, immunotherapies, and virotherapies.80–82 
CED techniques continue to improve through improve-
ments in catheter design, methods for chronic treatment 
delivery, and imaging and modeling of treatment de-
livery.81 As CED technology continues to develop it may 
play an important part in the delivery of treatments to aid 
with unresectable or microscopic areas of tumor.

Intraoperative Radiotherapy

Intraoperative radiotherapy (IORT) involves the delivery of ra-
diation therapy, frequently a single high dose, to a resection 
cavity immediately following resection.83 It can theoretically 
damage or destroy residual microscopic tumor cells on the 
resection cavity edge that are unable to be identified or re-
sected. Additional potential advantages include the ability to 
direct the radiation to the resection cavity intraoperatively, 
potentially increasing accuracy, and the ability to deliver radi-
ation immediately after resection, reducing the time between 
surgery and the start of radiation for patients. Historically, 
IORT results have not demonstrated a convincing survival 
benefit in GBM patient.84 However, more recently an interna-
tional pooled analysis of 51 GBM patients treated with IORT 
in addition to standard of care by Sarria et al. suggested a 
25% increased overall survival in treated patients at 3 years. 
Similarly, a subsequently published dose-escalation phase I/II 
trial of IORT by Giordano et al. involving 15 patients with GBM 
demonstrated the safety of IORT and integration into the neu-
rosurgical operating room, with a treatment time of approx-
imately 30 minutes, prompting a phase III study.85 Results of 
future studies assessing the efficacy of IORT are necessary to 
determine the utility of this technology in patients.

Ablative Technologies

The most common ablative technology other than ra-
diation therapy studied for gliomas is laser interstitial 
thermal therapy (LITT). LITT involves the interstitial trans-
mission of laser light through fiberoptic wires into a target 

tissue. MRI-guidance and thermography are then utilized 
to track the resulting thermal damage that is induced. 
LITT has been primarily used for deep-seated, focal, 
smaller tumors or in patients who are otherwise poor sur-
gical candidates. There is a paucity of prospective studies 
evaluating LITT. Current evidence suggests that LITT is 
relatively safe with a recent study of 58 LITT treatments in 
recurrent and newly diagnosed GBM suggesting a 30-day 
morbidity of 16%.86 Complications associated with LITT 
include hemorrhage, significant tumor edema, and neu-
rological deficit.87 The clinical efficacy of LITT for gliomas 
is still unclear, but may be associated with ablative cov-
erage of the lesion.86–89 Additional prospective studies are 
needed to fully elucidate the clinical role of LITT, including 
its potential ability to open the peritumoral blood-brain 
barrier and synergize with chemo- or immunotherapies.90

Focused ultrasound has also been investigated for the ab-
lation of GBM in small studies with limited efficacy. A study 
of three patients with GBM who underwent focused ultra-
sound thermoablation demonstrated an inability to achieve 
thermal coagulation of the tumors.91 A subsequent case re-
port examining the use of magnetic resonance-guided fo-
cused ultrasound (MRgFUS) to ablate a GBM demonstrated 
successful ablation, but only in a small percentage of the 
tumor.92 As a result, due to technical restraints, the direct 
ablation of most tumors by focused ultrasound may not be 
feasible. However, focused ultrasound may be used in the 
settings of sonodynamic ablation in which focused ultra-
sound is used to activate a sonosensitizer, leading to tumor 
cell death.93 This has been demonstrated in preclinical rat 
glioma models using 5-ALA as a sonosensitizer.94 Further in-
vestigation is needed to understand the efficacy and safety 
of sonodynamic ablation in humans.

Intraoperative Confocal Microscopy

Confocal microscopy allows for the intraoperative his-
tological imaging of cells and has been utilized in other 
surgical specialties to aid in oncologic diagnoses.95 Sanai 
et al. demonstrated the initial feasibility of intraoperative 
confocal microscopy for a variety of brain tumor types.96 
Subsequent studies have demonstrated the potential 
promise of confocal microscopy for in vivo histopatholog-
ical imaging of brain tumors and in combination with 5-ALA 
for the identification of low-grade gliomas.97,98 Pavlov et al. 
also demonstrated the identification and diagnosis of low- 
and high-grade gliomas in a small cohort of patients using 
probe-based confocal laser endomicroscopy in combina-
tion with fluorescein.99 Additional large studies are needed 
to determine the efficacy of this technology in improving 
EOR and providing an intraoperative tumor diagnosis.

Virtual and Augmented Reality in the 
Operating Room

Both augmented reality (AR), the overlaying of digital elem-
ents over real-life structures, and virtual reality (VR), the 
complete immersion into a virtual environment, have been 
investigated in brain tumor surgery. Interestingly, these 
technologies have been used by both patients and surgeons. 
Until more recently, surgeons primarily used AR and VR for 
educational purposes.100 These technologies, however, have 
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since continued to be used more frequently in preopera-
tive planning and intraoperatively.101 While still in the early 
stages of evaluation, the use of intraoperative AR and VR has 
been suggested to aid in glioma resection.101 In a study of 
134 glioma patients, Sun et al. compared the outcomes be-
tween patients whose surgeries had been carried out using 
AR and VR based on functional neuronavigation and iMRI 
to a control group using anatomic neuronavigation; they 
found that the use of intraoperative AR and VR improved 
EOR and functional postoperative outcomes, highlighting 
the promise of these technologies.102

AR and VR technologies have also been utilized by patients 
during awake mapping to expand the repertoire of brain 
functions that can be mapped accurately.103 This is high-
lighted by Mazerand et al. who reported the accuracy of VR 
in detecting visual field defects and the case of a patient with 
a parietotemporal GBM in which VR was utilized in combina-
tion with subcortical mapping to identify and preserve the 
optic radiations.104 Similar studies have used VR to map so-
cial cognition105 as well as language function.106 Overall, VR 
and AR technologies offer exciting avenues of future inves-
tigation in brain tumor surgery with the ability to improve 
EOR as well as enhance postoperative functional outcomes. 
Practical limitations of of AR and VR technologies include lack 
of familiarity their use and potentially high operating costs.

Conclusion

Multiple novel technologies are in development to aid with 
the intraoperative identification and removal of tumor 
cells, while reducing patient morbidity (Table 1). The high 

value of EOR in glioma patients, means these technologies 
will continue to play a significant role in operating rooms. 
In the near future, surgeons will be using novel imaging 
technologies to better visualize tumors, while also re-
ceiving rapid and detailed information on the molecular 
composition of resected tissue. The additional real-time 
information available to surgeons during surgery will sub-
sequently allow them to maximize the safety of their resec-
tions and choose personalized therapies to deliver to the 
resection cavity following resection. Broadly, further large 
randomized clinical trials are needed to evaluate the signif-
icance and role of a number of the technologies discussed 
in this review. In addition, consideration should be given to 
the costs and resources associated with various technolo-
gies. Nevertheless, this is an exciting time for neurosur-
gical oncology and should result in improved outcomes for 
patients with brain tumors.
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