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Abstract 

Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there 
is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the 
blood–brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and 
non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor 
treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy 
and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB pen-
etration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer 
to understanding the development of effective therapy against brain tumors. In this review, we discuss the most 
relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug 
delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses 
to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the 
brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of 
drug delivery platforms for the treatment of brain tumors.
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Introduction
At the present moment, brain tumors hold the first 
place among all the primary central nervous system 
(CNS) tumors (85–90%). In 2020, more than 300,000 
new cases of patients with brain tumors were diagnosed 
worldwide, out of which more than 250,000 deaths 
were registered [1]. Moreover, in 2020, the 5-year and 
10-year survival rate for malignant brain tumors, which 
demonstrates the percentage of people who live at least 
5 and 10 years after the tumor is diagnosed, were esti-
mated to be around 36% and 31%, respectively [2]. For 
comparison, in 2000, these numbers were lower, 12% 
(5 years) and 9% (10 years). Despite the improvements 
in treatment opportunities for patients with malignant 
brain tumors, their survival rate is still low compared to 
other types of cancer (Table 1).

In 2007, the World Health Organization (WHO) cre-
ated the following histological classification of primary 
brain tumors:

• Neuroepithelial tumors, i.e. astrocytic tumors, oli-
godendroglial tumors, oligoastrocytoma tumors, 
ependymal tumors, glioma [10].

• Tumors of the meninges, i.e. meningioma, atypical 
meningioma, anaplastic meningioma [11].

• Tumors of cranial and paraspinal nerves, i.e. schwan-
noma, neurofibroma, perineurium, malignant 
peripheral nerve sheath tumor [12].

• Lymphomas and hematopoietic neoplasms, i.e. 
malignant lymphoma, plasmacytoma, granulocytic 
sarcoma [13].

Primary brain tumors arise from intracranial ele-
ments such as the cerebral hemispheres, the base of the 
skull, the hypothalamus, the basal ganglia, the thalamus, 
the brainstem, and the cerebellum. Globally, primary 
brain tumors are the 19th most common neoplasm, as 
reported by GLOBOCAN [14]. The global average inci-
dence of primary brain tumors is 3.9 per 100,000 person-
years. However, there is a significant difference between 
regions: the highest incidence rate is in Northern Europe 
(for example, Lithuania has an incidence of 8.0 and Nor-
way of 5.4 per 100,000 person-years, respectively). After 
Northern Europe, Australia follows with a rate of 5.6, 
the US with 5.5, and Canada with an incidence of 5.3 
per 100,000, respectively. In South America, the highest 

Graphical Abstract

Table 1 The survival rate of different types of cancer

Type of cancer Brain tumors(%) Breast(%) Melanoma(%) Colon(%) Multiple 
myeloma(%)

5-year survival rate 36 77–92 94 54 54

10-year survival rate 31 85 90 51 35

Ref [2] [3, 4] [5, 6] [7] [8, 9]
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incidence is estimated to be found in Mexico, at 2.7 cases 
per 100,000 person-years [15]. Moreover, about 180,000 
deaths from primary brain tumors are recorded annu-
ally in the world, which is 2.03% of all cancer deaths. 
The meningiomas (37%) and gliomas (25%) are the most 
widespread types of brain and other CNS tumors.

Meningiomas arise from the dural membranes of the 
brain. It is the most common intracranial tumor, account-
ing for 13–26% of all the primary intracranial tumors [16, 
17]. Moreover, 10% of the population is unaware of the 
presence of meningioma due to the absence of symptoms 
[18].

Glioma is the most prevalent type of brain tumor [19]. 
More than 100,000 cases of diffuse gliomas are regis-
tered annually in the world. It has substantial mortal-
ity and morbidity [20]. The most lethal glioma, which 
accounts for 70–75% of all diagnoses of diffuse glioma, 
is Glioblastoma (GBM), with a median overall survival 
of 14–17  months (Table  2) [21–23]. On average, three 
people are diagnosed with GBM per 100,000 people 
[24]. GBM is distinguished by the following features: 
low patient survival, high detection rate among primary 
brain tumors and the lack of a wide range of therapeutic 
options, primarily due to the presence of the blood–brain 
barrier (BBB).

BBB significantly complicates the treatment of pri-
mary brain tumors due to its low transmission capacity. 
In addition, the low BBB permeability seriously limits the 
potential application of the most prospective therapeutic 
drugs [25]. The BBB provides additional protection for 
neuronal tissues and enhances the destructive effect of 
cancer cells on the brain [26]. Therefore, there is a huge 
demand for developing effective approaches to deliver 
therapeutic agents through the BBB to treat GBM and 
other primary brain tumors [27, 28]

In this review, we have focused on the current chal-
lenges and prospects of overcoming the BBB challenge 
and reaching brain tumors, especially in the case of GBM 
and gliomas, using (i) clinically relevant drugs, (ii) differ-
ent invasive and non-invasive methods, and (iii) organic/
inorganic nanocarriers, viral-like particles (VLPs) and 
cell-based delivery systems to enhance the therapeutic 
efficacy against brain tumors. A major part of the review 
is devoted to the structural and functional features of the 

BBB, chemical modification of drug delivery systems, and 
the use of individual chemotherapeutic drugs to over-
come the BBB.

The structure of the BBB and its properties
The concept of a barrier between blood and the CNS 
arose at the end of the nineteenth century, in 1885, 
when Paul Ehrlich, a German doctor, immunologist and 
bacteriologist, discovered that the dye injected into the 
bloodstream of a rat had spread to all tissues and organs, 
excepting the brain [29]. He suggested the presence 
of some kind of barrier between blood and brain that 
serves as a filter for highly selective transfer of bioactive 
substances necessary for the metabolic activity of the 
brain and nervous system [30]. His conclusion was fur-
ther confirmed by the later observations of his colleague 
Goldmann when he applied the same dye into the cere-
brospinal fluid, and it did stain only the brain tissue [31]. 
This is how the concept of the BBB appeared.

The BBB plays a crucial role in the normal functioning 
of the CNS, and also controls the inflow and outflow of 
biological substances necessary for the brain [32]. The 
BBB is a biological dynamic membrane complex between 
the vessel lumen and the brain, which provides selec-
tive transport of molecules [33]. The barrier selectively 
absorbs ions, amino acids, glucose, and a range of nutri-
ents to meet the nutritional and energy needs of the brain 
[34]. At the same time, the BBB prevents the penetration 
of various pathogens, metabolic products, and toxic com-
pounds, preserving brain tissue from damage.

The structure of the BBB
Generally, there are three main barriers in the brain [35]:

• BBB is formed by microvascular endothelial cells that 
line the brain capillaries [36]. These capillaries pen-
etrate the brain and spinal cord. Due to the large sur-
face area, the BBB is the largest interface between the 
blood and the brain. It protects the parenchyma of 
the brain from substances carried by blood, and also 
prevents the penetration of bioactive compounds 
into the brain and the CNS. The area of BBB varies 
from 12 to 18  m2, based on the average surface area 

Table 2 Survival rating among primary brain tumors for patients of different ages

Type of 
cancer

Glioblastoma(%) Low-grade 
(diffuse) 
astrocytoma(%)

Anaplastic 
astrocytoma(%)

Oligodendroglioma(%) Anaplastic 
oligodendroglioma(%)

Ependymoma/
anaplastic 
ependymoma(%)

Meningioma(%)

Age 20–44 22 73 58 90 76 92 84

45–54 9 46 29 82 67 90 79

55–64 6 26 15 69 45 87 74
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of microvessels 150–200  cm2 per gram of tissue for 
an adult [37].

• Blood–cerebrospinal fluid barrier (BCSFB) is a bar-
rier between blood and cerebrospinal fluid (CSF). It is 
formed by epithelial cells of the vascular plexus. The 
cells of the vascular plexus regulate the penetration 
of substances into the ventricles of the brain [38]. The 
reverse flow of the extracellular fluid of the brain is 
provided through the endothelium of the BBB capil-
laries [39].

• The arachnoid barrier consists of an avascular arach-
noid epithelium [40]. It insignificantly contributes to 
the exchange between blood and the brain because 
of its limited surface area compared to other barriers 
[41].

The BBB includes the endothelium of capillaries, which 
consists of its basal membrane and adjacent processes 
of gliocytes and pericytes (Fig.  1) [30, 42, 43]. By their 
structural organization, the capillaries of the brain are 
hemocapillaries with a continuous endothelial lining and 
a basal membrane. The endothelium plays an important 
role in the morphological structure of the BBB. Normal 
endothelial cells form a highly selective barrier for the pas-
sage of blood substances into the brain parenchyma [44].

The basal membrane is located under the endothe-
lium and consists of pericytes, membrane organelles and 
ribosomes [45]. Pericytes maintain the tone of the base-
ment membrane and participate in the motor regulation 
of capillaries [30, 46]. Astrocytes are located on the sur-
face of blood vessels and are responsible for the trans-
port of substances between capillaries and neurons[37]. 
Astroglia ensures the preservation of the BBB phenotype 
and promotes the regeneration of its endothelium [47]. 
Microglia provides immune defense in the brain. Aggre-
gates of microglia cells form the brain’s own (internal) 

immune system. Microglia is one of the main morpho-
logical markers of the state of the brain in various pathol-
ogies and during experiments [45].

Thus, pericytes, embedded in the basal membrane of 
vessels and vascular cells of microglia, and astrocytes play 
a major role in the formation of dense BBB [48, 49]. Brain 
diseases usually result in a sharp increase in the perme-
ability of the BBB [50], which is caused by mechanisms 
such as functional disruption of the integrity of interen-
dothelial contacts, disruption of the barrier functions of 
endotheliocytes and glial cell membranes, and alterations 
of individual cellular elements forming the BBB [51].

Physiological functions of BBB
Maintenance of ion homeostasis
The BBB is responsible for ion homeostasis of the brain 
microenvironment. Via ion channels, the BBB can regu-
late the concentration levels of potassium  (K+), calcium 
 (Ca2+) and magnesium  (Mg2+) ions. For instance, the 
concentration of  K+ in blood plasma is 1.8 times higher 
compared to the cerebrospinal and interstitial fluids [52, 
53]. The homeostatic regulation through ion channels 
 (K+,  Ca2+ and  Mg2+) provides normal function of the 
neural network [54].

Adjusting the level of neurotransmitters
Neurotransmitters are biologically active compounds 
carrying electrochemical signals from one neuron to 
other neurons through the synaptic space [55]. Neu-
rotransmitters are essential for the normal function of 
the central and peripheral nervous systems. The BBB 
separates neurotransmitters and protects the brain from 
unexpected changes in the concentrations of neurotrans-
mitters in blood plasma [31]. For instance, blood plasma 
contains neuroactive amino acids such as aspartate and 
glutamate, which can harm the brain tissues at a high 
concentration level. Due to the presence of the BBB, the 
concentration of aspartate and glutamate in the brain 
always remains at the required level,safe for the normal 
function of the brain [2, 36]

Regulation of the proteins transport from blood to the brain
The BBB participates in the formation of the CSF, which is 
produced from blood plasma by filtration in the vascular 
plexus. The filtration process occurs through the endothe-
lium of the BBB capillaries. It allows the control over the 
level of transport proteins in the CSF, reducing their con-
centration in the CSF compared to that in blood plasma 
[56]. However, the BBB damage can result in the leakage 
of transport proteins to the CSF. As a consequence, trans-
port proteins accumulate in the brain at a high concentra-
tion, which can further result in the dysfunction of CNS. 

Fig. 1 Schematic illustration of the BBB structure: capillary, 
endothelial cells, tight junction, basal lamina, pericytes, astrocytes, 
microglia, and interneuron
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For example, a high concentration of albumin, plasmi-
nogen, and prothrombin in the brain can initiate muscle 
cramp, glial activation or neuroinflammation [57].

Protecting the brain from neurotoxins
Many neurotoxic agents, including heavy metals, meflo-
quine, and food additives induce neurotoxicity and brain 
damage. These neurotoxins lead to brain injury with vari-
ous side effects, such as neurodegeneration, reduced cog-
nitive function, and increased psychiatric manifestations 
(i.e. depression, anxiety, sleep disturbances, and irritabil-
ity). The BBB prevents these neurotoxic agents circulating 
in the blood from entering the brain. At the same time, 
the BBB regulates the transport of bioactive compounds 
into and out of the CNS (the so-called BBB permeability). 
However, a dysfunction of the BBB can lead to the leakage 
of these harmful blood components into the CNS, contrib-
uting to neurologic deficits [29, 37].

The mechanisms of transport through the BBB
There are four main mechanisms that allow the mole-
cules to cross through the BBB. They can be divided into 
passive transport (diffusion) and active transport (car-
rier-mediated transport, endocytosis, and cell-mediated 
transport) [58]. Passive transport occurs along a con-
centration gradient and does not depend on ATP energy, 
while active transport requires ATP hydrolysis and moves 
against a concentration gradient [59–61](Fig. 2).

Diffusion
Diffusion providing the transport of substances through 
the cell membrane can be divided into passive and facili-
tated diffusion [62]. Passive diffusion is the process of 
crossing the BBB driven by the concentration gradient of 
bioactive compounds between the blood and the extracel-
lular fluid of the brain. A necessary condition for passive 
diffusion is the high lipophilicity of the substances. Thus, 
inorganic molecules such as  O2,  CO2, and  H2O can quickly 
penetrate through the BBB. Numerous compounds that 
pass through the cell membrane via passive diffusion are 
pushed back to the vascular system by outflow pumps [37].

Facilitated diffusion is the transfer of substances through 
biological membranes mediated by specific carrier pro-
teins, each of which is responsible for the transport of cer-
tain molecules or groups of related molecules. In the case 
of facilitated diffusion, substances are also transported in 
accordance with the concentration gradient, but the rate 
of this process is much higher than that of passive diffu-
sion. The rate of facilitated diffusion has the property of 
saturation, which occurs when all the carrier molecules are 
occupied. Most of the essential nutrients, including amino 
acids, neurotransmitters, hormones, small peptides, etc., 
as well as small lipophilic molecules or therapeutic agents, 
enter the brain by facilitated diffusion [63]. This process 
includes a proton pump and a paracellular waterway. With 
the help of a proton pump, protons penetrate through 
the BBB, and the paracellular waterway is the transfer of 
water-soluble substances across the epithelium by passing 
through the intercellular space between cells [37].

Carrier-mediated transport (CMT) is an energy-depend-
ent pathway based on the active transport of various bio-
active compounds (usually small hydrophilic molecules). 
Biomolecules can be transported through the cell mem-
brane via the symport (i.e. transport of two molecules in 
the same direction) and antiport (i.e. transport of two mol-
ecules in the opposite directions) mechanisms [64]. There 
are numerous proteins located in the BBB, which were 
shown to be responsible for its permeability. These pro-
teins include, for example, glucose transporters (GLUT 1), 
large neutral amino acids (LAT1), monocarboxylic acids 
(MCT1), nucleosides (ENT 1–2, CNT1-2), and cationic 
amino acids (CAT1). There are several therapeutic mol-
ecules (i.e. L-DOPA, a-methyldopa, gabapentin, and mel-
phalan) that can pass through the BBB via CMT. However, 
the efficiency of their delivery to the brain is limited [64, 65]

Endocytosis
Endocytosis is a multistep process in which bioactive 
compounds enter a cell through membrane invagi-
nation. Endocytosis regulates the interaction of cells 
with their microenvironment. Endocytosis is an 

Fig. 2 Mechanisms of transport through the BBB: diffusion 
(transcellular lipophilic pathway), carrier-mediated transport (CMT), 
receptor-mediated endocytosis (RME), absorption-mediated 
endocytosis (AME), proton pump, cell-mediated transport, and 
paracellular waterway
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energy-dependent transport mechanism and can be 
divided into three categories, including (i) pinocytosis, 
(ii) phagocytosis and (iii) mediated endocytosis [66, 
67]. There are several stages of endocytosis. The first 
step is the membrane invagination, during which bio-
active compounds are absorbed. Second, the cell mem-
brane forms membrane-bound vesicles (the so-called 
endosomes) with bioactive compounds inside. Then, the 
formed endosomes transport the bioactive compounds 
towards the cell organelles via intracellular compart-
ments. Finally, the bioactive compounds are released 
into cell cytoplasm by the destruction of endosomes. 
The latter phase of endosomes (endolysosomes) is 
involved in the degradation of bioactive compounds.

Pinocytosis is based on the cells absorbing fluids with 
dissolved molecules e.g., ions and proteins) in the size 
range of 0.07–2 μm. Next, phagocytosis is defined as the 
absorption of solid bioactive compounds by cells. A good 
example of phagocytosis is the absorption of various 
antigens (e.g., viruses, bacteria, and dead cells) by white 
blood cells (WBCs) [68]. There are several endocytosis 
mechanisms, including receptor-mediated endocytosis 
(RME) and absorption-mediated endocytosis (AME).

The RME relies on the receptor proteins located on 
the cell surface that can interact with specific ligands 
(drugs, hormones, growth factors, enzymes, and plasma 
proteins) in a complementary way. Transferrin, insulin, 
and leptin are good examples of molecules delivered to 
the brain through the RME mechanism [69]. Besides, 
there is a type of integral membrane (transmembrane) 
protein that can also transport specific ligands across 
the cell membrane. As an example, clathrin is the main 
transmembrane protein responsible for the formation 
of endosomes during the endocytosis process [70]. The 
main aspect in the delivery by clathrin-mediated endo-
cytosis is the interaction of clathrin protein compo-
nents with active sites of bioactive molecules. It further 
leads to the formation of clathrin-coated vesicles (early 
endosomes) for specific endocytosis [71].

The cell membrane of brain endothelium is negatively 
charged at physiological conditions. As a result, positively 
charged molecules can interact with negatively charged 
endothelial cells via electrostatic interaction, facilitating 
the AME mechanism. Contrary to the RME, the AME 
is not specific, but it has a greater binding capacity [72]. 
Overall, AME has the same transport efficiency through 
the BBB as the RME [73]. A variety of positively charged 
molecules can pass through the BBB via the AME, such 
as cationic proteins and positively charged polymers 
(PEI, chitosan). Surface modification of drug delivery sys-
tems with such molecules allows them to penetrate the 
BBB and get into the brain via the AME.

Cell‑mediated transport
Macrophages, neutrophils, and monocytes can par-
ticipate in the cell-mediated transport due to their high 
mobility, i.e. they can migrate across impermeable bar-
riers and release the drug cargo at the sites of infection 
or tissue injury [74]. Their migration properties can also 
be used to deliver bioactive substances into the brain 
tumor. Therefore, these cells can act as “Trojan horses”, 
providing the transport of therapeutic drugs through 
the BBB [75, 76]. Among them, monocytes are the most 
appropriate cells for the transportation of bioactive com-
pounds. Monocytes were proved to be able to transfer 
drugs to an inflamed area of the brain. However, cell-
mediated transport has serious drawbacks, such as early 
release of drugs, unavailable targeted delivery, and poor 
drug loading capacity [74, 77]. Further, we will discuss 
the cell-based vehicles for delivery to brain tumors in 
detail.

Clinically relevant chemotherapeutic drugs 
for the treatment of brain tumors
Lipinski’s rule
Currently, chemotherapy is the main method used for 
brain tumor treatment. However, it has certain limita-
tions and disadvantages. The therapeutic molecules that 
can penetrate through the BBB have similarities in their 
chemical structure. Lipinski et al. analyzed the proper-
ties of such molecules and formulated a set of rules that 
describe the molecules highly likely to be able to pass 
through the BBB [78]. The so-called Lipinski’s rule says 
that the therapeutic molecule is more likely to demon-
strate a higher adsorption or permeation if it has less 
than 5 H-bonds, less than 10 H-acceptors and calcu-
lated Log P less than 5, and its molecular weight is no 
greater than 500 [79]. Development and testing of novel 
therapeutic molecules is an extremely long and expen-
sive process, and Lipinski’s rule helps to accelerate it 
[80].

Commercially available drugs
Depending on the type of brain tumor, various drugs 
are used for its treatment [81]. Nitrosoureas have the 
longest history in the treatment of malignant brain 
tumors. Carmustine and lomustine are two of the most 
extensively used nitrosourea compounds. These thera-
peutic agents are lipid-soluble and, therefore, capable 
of crossing the BBB. Lomustine is generally used in 
combined chemotherapy and is considered as the key 
factor in the PCV regimen (P: procarbazine, C: lomus-
tine, V: vincristine). PCV used for high-grade gliomas 
has an overall survival of 6.7  months and progres-
sion-free survival of 3.6  months [82]. Carmustine is a 
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non-specific alkylating agent that causes crosslinking 
of DNA and RNA, similarly to lomustine [83]. It dem-
onstrates a higher toxicity and less effective treatment 
compared to other existing alternatives, thus resulting 
in less frequent use for high-grade glioma therapy [84].

Temozolomide (TMZ) was recently approved for 
use in the treatment of malignant gliomas as an oral 
chemotherapy agent. It is worth pointing out that TMZ 
confirms Lipinski’s rule and demonstrates the highest 
BBB permeability among the drugs approved for gli-
oma treatment. It is used in combination with surgery 
and/or radiation therapy, and the use of TMZ has sig-
nificantly increased the median survival period. None-
theless, subsequent treatment with TMZ is required, 
which fails in a number of cases due to the emergence 
of the TMZ resistance [85].

Carboplatin is a platinum-based chemotherapeutic 
agent extensively used in oncology. The cytostatic effect 
of carboplatin results from interference with DNA rep-
lication by inducing DNA cross-linkage. It demonstrates 
a lower BBB passage compared to the abovementioned 
temozolomide, and generally, a higher CNS toxicity. 
Therefore, it is usually prescribed to patients with a recur-
rent disease. Carboplatin demonstrates high clearance 
from the brain tissues, therefore, temporary BBB disrup-
tion during the treatment leads to higher efficiency of 
treatment [86, 87].

Irinotecan has shown limited efficacy due to low BBB 
penetration. Irinotecan interacts with topoisomerase 
I, which causes double-strand breaks. Similar to other 
chemotherapy agents, the response to this drug is not 
durable, and in the best scenarios, it is usually limited to 
several months. Therefore, development of new thera-
peutic drugs and formulations is required for novel and 
more effective approaches to brain tumor treatment [88].

Primary CNS lymphoma is another type of brain tumor 
(rare non-Hodgkin lymphoma) that is confined to the 
brain, cerebrospinal fluid and eyes [89]. Only several clin-
ical trials have been performed, and there is still a lack 
of knowledge on the recurrence of this disease. Currently, 
there is no consensus regarding the optimal regimen for 
primary CNS lymphoma. However, high-dose metho-
trexate has proven to be effective in combination with 
other therapies, including surgery, chemo- and radio-
therapy. Methotrexate is capable of penetrating the BBB, 
which made it much more effective compared to other 
chemotherapy agents used to treat non-CNS diffuse 
large B-cell lymphoma. Usually, high-dose methotrexate 
is used in combination with whole-brain radiotherapy, 
which has so far demonstrated a significant improvement 
in both overall response rate and prolonged progression-
free survival from 3 to 18 months [90].

The effectiveness of a chemotherapy agent for brain 
tumor treatment is mainly determined by the pharma-
cokinetics of the drugs. This means that a number of 
therapeutic molecules that are already used for chemo-
therapy could be utilized for brain tumor treatment if 
there was a way to improve their pharmacokinetics and 
transfer them through the BBB. For example, doxoru-
bicin (DOX) is approved for GBM treatment, but it dem-
onstrates low BBB permeability [91]. Another example is 
vincristine, a highly potent microtubule polymerization 
inhibitor extensively used in chemotherapy; however, 
similarly to DOX, it cannot penetrate the BBB and there-
fore requires a specific approach for effective delivery 
into the brain tumor [92]. The structures of commercially 
available drugs used for three types of brain tumor treat-
ment (glioma, medulloblastoma and primary CNS lym-
phoma) are illustrated in Fig. 3.

Invasive and non‑invasive methods for overcoming 
the BBB
As previously discussed, many prospective antitumor 
drugs either cannot penetrate through the BBB or their 
delivery efficiency is very low. Therefore, more promising 
strategies for efficient drug delivery to the brain have been 
suggested [93]. These methods can be classified into two 
types: (i) invasive and (ii) non-invasive approaches. Inva-
sive methods of drug delivery include intracerebroven-
tricular (ICV), intrathecal, intracerebral and intratumoral 
injections [94]. ICV injections are mainly used for opi-
oid therapy of the terminal stage of cancer to reduce 
the pain [95], and we will not consider this method of 
administration. Non-invasive methods include intrave-
nous and intranasal administrations [96]. In this section, 
we mainly focus on intranasal, intrathecal, intracerebral, 
intratumoral and intravenous injections [97]. A schematic 
illustration of these methods with their advantages and 
disadvantages is presented in Fig. 4.

Intrathecal and intracerebral injection
The intrathecal method involves the injection of drug 
directly into the epidural or subarachnoid space. The 
intrathecally injected molecules diffuse through the 
meningeal layers to reach the cerebrospinal fluid. There-
fore, such a drug administration is expected to be more 
effective than intravenous injection. Many potential nano-
carriers were investigated for intrathecal administration: 
for example, alginate/chitosan composite and maltosyl 
beta-cyclodextrin for improved delivery efficiency of 
bupivacaine [97, 98]. There are other examples of differ-
ent nanocarriers administered by intrathecal injection, 
including polymer-based nanocomplexes [99–102] and 
inorganic nanocarriers [103]. However, the disadvantages 
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of intrathecal injection are the risk of brain tissue damage, 
high changes in the intracranial pressure and low penetra-
tion of the drug through the BBB [100, 104, 105].

Intracerebral injection is the most direct method of 
drug delivery. In this method, intermittent bolus injec-
tions are locally administered into the brain, where 
the drugs further diffuse within the brain with mini-
mal side effects [106]. This approach of drug delivery 
is commonly used for the treatment of primary brain 
tumors [107]. There are several preclinical studies 
of a therapeutic agent administered by intracerebral 

injection [108, 109]. Direct injections into the brain 
show good results in the treatment of brain tumors 
[110]. However, this method is very traumatic, and 
researchers are still to develop methods of treating 
brain tumors with the least harm to human health.

Intratumoral injection
Intratumoral injection is another method for the deliv-
ery of therapeutic drugs to the brain tumor. Local drug 
delivery has been proposed to increase the concentration 
of the drug at the tumor site and reduce toxicity to the 

Fig. 3 The commercially available drugs used for the therapy of different types of brain tumor, color coding: Glioma—green, Medulloblastoma—
yellow, PCNSL—red. The cross-section means that the drug was used for both cancer treatments
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whole body [111]. For example, polymer structures con-
sisting of liposomal DOX have received clinical approval 
for intracranial treatment of resectable GBM [112]. 
Direct infusion of fluid into the tumor has also been 
studied clinically. This method would allow the drug to 
remain in the tumor site for a long time, acting locally. 
However, complex implantation procedures, the risk of 
infections, local toxicity of drugs, and rapid removal of 
drugs from the brain parenchyma significantly limit the 
application of this method [113].

Intravenous injection
An intravenous injection is the easiest way to adminis-
ter a drug (the so-called arterial chemotherapy). Intra-
venous administration is associated with the use of drug 
delivery systems and occurs via CMT, RME, and AME 
(it will be discussed later). The advantages of the intra-
venous method include simple injection of the required 
dose of therapeutic drugs in the blood and variation of 
this dosage. Moreover, intravenous administration can 

be stopped if undesirable effects occur. However, this 
method has several disadvantages, mainly associated 
with the destructive mechanism of drug delivery through 
the BBB [114–116]. It can further lead to the side effects 
such as aphasia, hemiparesis, or even intracranial her-
nia [117]. The intravenous injection can also result in a 
non-specific accumulation of therapeutic drugs in other 
organs, i.e. the liver, spleen, and kidneys.

Intranasal delivery
The intranasal route is an alternative method for the deliv-
ery of therapeutic drugs directly to the brain tissue. It first 
appeared in 1989 for the direct delivery of neurotrophic 
factors to the brain [118]. According to the literature, the 
intranasal delivery of the therapeutic drugs is achieved 
through the trigeminal and the olfactory nerves, directly 
transporting the drugs into the CSF while bypassing the 
BBB [119]. Compared with traditional intravenous admin-
istration, the intranasal delivery has several advantages, 
including simplicity, safety, convenience, and painlessness 
[120]. Further, it does not require aseptic techniques. The 

Fig. 4 Schematic representation of intranasal, intrathecal/intracerebral, intratumoral and intravenous injections for the delivery of therapeutic 
molecules to the brain tumor
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main strength of intranasal delivery is the rapid absorp-
tion of drugs in the nasal cavity. At the same time, there 
are some drawbacks associated with low reproducibility 
of this method [121, 122]. In general, individual drugs are 
used for intranasal delivery. Currently, a great interest has 
been aroused in the application of nanocarriers to deliver 
the drugs via the intranasal pathway [123]. However, the 
nasal architecture limits the delivery of nanocarriers along 
the intranasal route. Moreover, a special device is needed 
for the intranasal administration of a required dose of 
nanocarriers formulation. Various devices can be used for 
this purpose, i.e. from a simple nasal spray to a more com-
plex instrument such as an electronic atomizer [124].

The use of targeting vectors for overcoming 
the BBB
Therapeutic molecules or nanocarriers with a relatively 
large size can be delivered into the brain via special recep-
tors expressed by the endothelial cells of the BBB [125]. 
On the surface of these cells, a large number of differ-
ent receptors (transferrin receptor, insulin receptor, and 
nicotinic acetylcholine receptor) and transporters of 
metabolic nutrients are expressed. Therefore, the modi-
fication of drugs or nanocarriers with ligands that are 
complementary to these special receptors can provide 
the receptor-mediated mechanism for overcoming the 
BBB, allowing them to penetrate the brain tumors [126, 
127]. Many targeting ligands, e.g. monoclonal antibodies 
(MAbs) and short peptides against receptors expressed on 
the BBB were used for surface conjugation of nanocarriers 
or chemical modification of antitumor drugs to achieve 
brain targeting [126]. Individual targeting ligands (MAbs, 
peptides, glucose, L-DOPA) can also serve as monothera-
peutic agents themselves, which enables them to over-
come the BBB.

Another way of penetration is via specific transporters 
on the surface of the BBB. Some low molecular weight 
compounds are able to penetrate the BBB with the help 
of specific transporters, for example, the large neutral 
amino acid transporter 1 (LAT1) for L-DOPA [128–130 ] 
or the efflux transporter P-glycoprotein (P-gp) for lipo-
philic drugs [131, 132].

In the following sections, the main targeting vectors are 
considered for monotherapy and chemical modification 
of therapeutic drugs or nanocarriers that can provide 
receptor- and carrier-mediated delivery of drugs into 
brain tumors.

Glucose
As previously mentioned, RME is the main mechanism 
for the penetration of compounds through the BBB [133]. 
The d-glucose transport protein (GLUT) (Fig. 5) produces 
a particularly high concentration in the microvessels of 

the brain [134]. The concentration of GLUT receptors is 
almost 100 times higher than that of transferrin recep-
tors, which are actively used as a specific ligand for tar-
geted delivery of drugs or nanocarriers to the brain tissue. 
The glucose transported across the BBB with the help of 
GLUT provides almost all of the energy required for nor-
mal brain function. A detailed study of GLUT suggests 
that this receptor can be an effective target for the deliv-
ery of glucose-modified drugs to the brain through the 
BBB [135]. Moreover, GLUT has been shown to be over-
expressed in brain tumor cells. Therefore, conjugation 
of the anticancer drugs with glucose imparts additional 
tumor tropism. The therapeutic molecule labeled with 
glucose penetrates through BBB due to the GLUT recep-
tors. Then, the cancer cells overexpressing GLUT provide 
the targeted accumulation of drugs in the tumor [136].

It was shown that glucose-modified liposomes can pen-
etrate through the BBB several times more effectively 
than without glucose conjugation [137]. Later, Li et  al. 
demonstrated that glucose-modified liposomes loaded 
with antitumor drugs can effectively penetrate the brain 
and release the drug, producing a high local concentra-
tion in the region of brain tumors [138]. Many works 
have shown the efficiency of glucose as a targeting ligand 
for the delivery of drugs or nanocarriers into the brain 
tumors [133, 137, 139–142]. Polt et  al. have shown that 
glucose-modified peptides were successfully used for the 
BBB penetration. Moreover, glucose improves the pen-
etration of peptides into the brain with the help of GLUT, 
and glucosylation reduces the lipophilicity of peptides, 
including the mechanism of transport of lipophilic sub-
stances [140]. Fu et  al. have synthesized unique glucose 
with RGD peptide (glucose-RGD) derivative that can 
target glioma [143]. The glucose-RGD was further used 
for the surface modification of liposomes loaded with 
an antitumor agent. This modification has increased 
the degree of penetration of liposomes through the BBB 
[141]. Tamba and others modified inorganic nanocarri-
ers with poly(ethylene glycol) glucose methyl ester amine. 
Their in vivo results have shown that the modified nano-
carriers were able to penetrate through the BBB into the 
brain [144].

Cancer cells consume much more glucose than healthy 
cells. This process is known as the Warburg effect. It is 
caused by tumor cell hypoxia, genetic mutations, and 
mitochondrial abnormalities in proliferating cancer cells 
[145]. The rapid and aggressive proliferation charac-
teristic of tumor cells is itself a very energy-consuming 
process, so it is quite obvious that tumor cells consume 
much more glucose [146]. The Warburg effect has a sig-
nificant impact on tumor cells, including their stimula-
tion growth, providing ATP consumption under hypoxic 
conditions, regenerating endogenous antioxidants, 



Page 11 of 40Mitusova et al. Journal of Nanobiotechnology          (2022) 20:412  

acidifying the microenvironment, and producing car-
bon to increase biomass [147]. These changes can induce 
unregulated glucose fermentation pathways for the 
energy supply and growth of cancerous cells. This pro-
cess was investigated using positron emission tomogra-
phy (PET) [148]. Lieberman and others demonstrated 
that 4-18F-(2S,4R)-fluoroglutamine (18F-FGln) as an 
analogue of 18F-fluorodeoxyglucose (18F-FDG) can 
accumulate in glioma and GBM with great efficiency. 
The results of PET imaging clearly confirmed the accu-
mulation of 18F-FGln in the GBM (rat model) [149].

L-DOPA
L-DOPA (L-3,4-dihydroxyphenylalanine) is a precursor 
to dopamine that passes through the BBB due to large 
neutral amino acids LAT1 (Fig. 5). The ability of L-DOPA 
to effectively cross the BBB without causing toxic effects 
has been extensively investigated [150–152]. Dopamine, 
which is a hydrophilic, water-soluble neurotransmit-
ter, is unable to penetrate the BBB, while its precursor, 

L-DOPA, can overcome the BBB with great efficiency 
[153, 154].

In the case of patients with advanced GBM, dopamine 
replacement strategy has been adopted as a gold standard 
since the late 1960s through the use of a dopamine pre-
cursor known as Levodopa or L-DOPA [155]. L-DOPA 
can be used in monotherapy, or in combination with anti-
tumor drugs, increasing the efficiency of drug penetration 
through the BBB.

Bhunia et  al. have successfully used Amphi-DOPA 
liposomes to improve the delivery efficiency of chemother-
apeutic drugs through the BBB directly to GBM (in vivo 
model) [156]. German scientists have successfully imple-
mented L-DOPA modified with radioactive fluorine-18 
(18F-DOPA) for a more accurate diagnosis of patients 
with GBM. The developed structure of 18F-DOPA allows 
to increase the level of diagnostics by 39%, and therapy 
by 17% [157]. A study by Capuani and colleagues demon-
strated a significant increase in the uptake of boronophe-
nylalanine in brain tumors with the use of L-DOPA. 

Fig. 5 Schematic illustration demonstrating the surface modification of nanocarriers with targeting vectors (glucose, L-DOPA, MAbs, and peptides) 
and the process of the BBB penetration
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Preloaded L-DOPA passed through the BBB and accu-
mulated in glioma cells, and then it induced a significant 
increase in the efficiency of cancer cell elimination. No 
side effects were recorded in healthy tissues of the body 
[158]. Gonzalez-Carter developed inorganic nanocarriers 
modified with L-DOPA (L-DOPA-AuNF). The scientists 
were able to demonstrate that L-DOPA-AuNF crosses the 
BBB much more efficiently than non-modified nanocarri-
ers and without any serious side effects [159].

L-carnitine
L-carnitine is a natural compound found in almost all 
the tissues of the human body, including the brain [160]. 
The main function of L-carnitine is the transport of acti-
vated long-chain fatty acids (long-chain fatty acyl-CoA) 
into the mitochondria for the β-oxidation process [160, 
161]. Human brain tissues contain free L-carnitine and its 
acylated derivatives with carbon chains of various lengths, 
including acetylated and palmitoylated derivatives. All 
these derivatives can transport therapeutic compounds 
through the BBB [161]. Over the past 5 years, the inter-
est in the therapeutic potential of l-carnitine and acetyl-
l-carnitine (ALCAR) for the transport of compounds 
across the BBB and for neuroprotection has significantly 
increased [162–167].

Nałęcz et al. have studied the organic cation transporter 
(OCTN2) and the solute transporter (SLC22A5). Both 
carriers are able to interact with L-carnitine and deliver it 
through the BBB. On the one hand, it allows tumor cells 
to receive an additional source of energy in the form of 
glucose and thereby grow and proliferate. On the other 
hand, it was proved that SLC22A5 can also provide tar-
geted delivery of chemotherapy drugs combined with 
carnitine to brain cancer cells [168]. Taking advantage 
of the specific expression of  Na+-OCTN2 on both brain 
capillary endothelial cells and glioma cells, l-carnitine 
was used for the surface modification of nanocarriers. For 
instance, Kou et al. have developed polymeric nanocarri-
ers conjugated with l-carnitine. During in vitro studies, 
it was shown that the conjugation of l-carnitine signifi-
cantly improved the uptake of nanocarriers by endothe-
lial cells of the BBB and glioma cells. Moreover, in  vivo 
studies demonstrated a high accumulation of l-carnitine 
modified nanocarriers in the brain, as was confirmed by 
fluorescent imaging assays. Finally, the obtained l-carni-
tine-modified nanocarriers were loaded with paclitaxel as 
an antitumor drug. The drug-loaded carriers showed an 
improved anti-glioma efficiency compared to non-modi-
fied nanocarriers [169]. Mingorance and colleagues have 
shown that acetyl-l-carnitine has better BBB penetra-
tion than regular l-carnitine and can additionally protect 
mitochondria from the oxidative process, and provide 

an overall neuroprotection for healthy cells of the nerv-
ous system [170]. Yamada et al. have studied the effects of 
carnitine on GBM cells. According to the obtained data, 
carnitine had an antioxidant effect in healthy cells while 
inducing the process of apoptosis in GBM cells [171, 
172].

Monoclonal antibodies (MAbs)
Several monoclonal antibodies (MAbs) specific to recep-
tors on the surface of the BBB demonstrated the ability 
to increase the penetration efficiency of therapeutic mol-
ecules across the BBB. MAbs can cross the BBB, using 
receptor- and transport-mediated mechanisms [173–
176]. First, in 1995, Pardridge et al. developed MAb83-7 
and MAb83-14, which are specific to the human insulin 
receptor (HIR) [177]. MAb83-7 and MAb83-14 were 
able to bind to different epitopes of the active site of 
the insulin receptor, which contributed to a high rate of 
penetration through the BBB. The researchers examined 
the ability of MAbs to serve as drug carriers [178]. The 
 biotnyl[125I]-Aβ 1–40 (amyloid beta) has been conjugated 
to MAbs specific to the HIR. The developed conjugate 
showed a high degree of penetration through the BBB, 
while Aβ 1–40 was unable to cross the barrier [179]. The 
enzyme iduronidase (IDUA) is often used as a therapeu-
tic agent, but this enzyme cannot cross the BBB. IDUA 
conjugated to HIR-MAbs is able to provide enzyme 
replacement therapy by increasing the BBB penetration 
[180]. The MAb OX26 is a ligand for the human transfer-
rin receptor (TfR) (Fig. 5). The experiments with labora-
tory mice have shown that OX26 MAb can be used as a 
drug delivery platform for crossing the BBB [181–183].

Bispecific antibodies (bsAbs) can be considered as a 
new generation of biomolecules with 2 different binding 
sites [184]. The bsAbs have a great potential of enhanc-
ing the BBB penetration. They have binding sites for TfR 
and β-site amyloid precursor protein cleaving enzyme 1 
(BACE1). The bsAbs have a dual effect due to the bind-
ing affinity for TfR. If binding occurred with a low affin-
ity for TfR, the level of BACE1 penetration through the 
BBB is increased [184, 185]. Low-density lipoprotein 
receptor-related protein 1 (LRP1) (Fig.  5) is responsible 
for the transport of bioactive compounds across the BBB, 
and therefore can be used as a promising target for MAbs 
[186, 187].

The study by Wikstrand et al. evaluated the use of boro-
nated MAbs in boron-neutron capture therapy (BNCT) 
of glioma tumor (GBM rat model) [188]. Lampson has 
focused on the mechanisms of BBB penetration of sev-
eral MAbs, including bevacizumab, rituximab, and tras-
tuzumab for the treatment of GBM and primary central 
nervous system lymphoma (PCNSL). The obtained data 
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indicated that overall survival tended to increase, which 
had a positive effect on the quality and time of life of 
patients with brain tumors [189]. This study also demon-
strated that MAbs can be used not only as drug delivery 
platforms that increase the penetration of drugs through 
the BBB but also as individual therapeutic agents [189]. 
Later, Han et  al. designed and synthesized MAb nano-
capsules that contain acetylcholine and choline analogues 
for effective brain tumor suppression (orthotopic-glioma 
mice model) [173]. Galstyan et  al. demonstrated trans-
BBB delivery of nanoscale immunoconjugates, consist-
ing of natural biopolymer scaffolds and MAbs inhibitors 
of α-CTLA-4 or α-PD-1 for activating both systemic and 
local brain tumor immune response [190]. Gan et al. sum-
marized and analyzed clinical data on specific antibody-
active substance conjugates that can cross the BBB [191]. 
Brain-derived neurotrophic factor (BDNF) is commonly 
used as a neuroprotective agent to prevent neuronal death 
after brain injury or development of brain tumors [192]. 
The conjugation of the BDNF with OX26 MAbs allows 
its transport into the brain via the BBB transferrin recep-
tor transcytosis [193]. Thus, the complex of the drug and 
MAbs has a targeted action, the ability to penetrate the 
BBB, and a therapeutic effect on the necessary elements of 
the brain: damaged neurons and tumor cells [194].

Peptides
Peptides can penetrate through the BBB with the help of 
special transporters [195], receptors [196], or using the 
lipophilicity of substances [197]. p-glycoprotein (P-gp) 
can restrict the entry to the brain for many therapeutic 
drugs. However, the co-administration of chemothera-
peutic drugs with P-gp modulators can inhibit the influ-
ence of P-gp, increasing the brain clearance. For example, 
the anticancer drug such as DOX was conjugated with 
D-penetrin and SynB1 peptides as P-gp inhibitors to cross 
the DOX through the BBB [198]. A sixfold increase in 
the efficiency of drug penetration through the BBB was 
demonstrated compared to free DOX. Cell-penetrating 
peptides also showed their ability to enhance the penetra-
tion of bioactive compounds through the BBB [199, 200]. 
Insulin-like growth factor 2 (IGF2) is a peptide that can 
transport biomolecules from blood to the brain using 
RME because it has a high affinity to IGF receptors at the 
human BBB. However, the high binding affinity of IGF2 
(> 99%) in the blood significantly limits the application of 
this peptide for brain tumor therapy [201].

Kumar et  al. have written a comprehensive review, 
observing the peptides that can be used for surface modi-
fication of nanocarriers to extend the ability to target gli-
oma tumors [202]. In that review, the authors discussed 
the prospects of peptide-decorated nanocarriers as a drug 

delivery vehicle for the controlled release of chemothera-
peutic agents in a targeted manner. In the experimental 
work by Yao et al. a novel gene vector was created, based 
on dendrograft poly-l-lysines and polyethylene glycol 
(PEG) conjugated to a cell-penetrating peptide. Due to 
this peptide, the degree of penetration of the entire struc-
ture through the BBB significantly increased [203]. In 
2019 Chen et al. designed a library for in vivo screening of 
peptides that can cross the BBB and bind to LRP1 [204].
According to the analysis, a specific peptide that contrib-
uted to the passage of phages into the brain was identified. 
This peptide targeted and accumulated in brain tumors 
using the U87 glioma mice model. Sánchez-Navarro and 
colleagues have written an outstanding review on the 
use of a new generation of peptides for overcoming the 
BBB [205]. This type of peptide can transport active sub-
stances across the BBB, it has low systemic toxicity, and 
can be easily modified with therapeutic drugs. Laksitorini 
et  al. demonstrated that cyclic-ADT peptides (ADTC1, 
ADTC5, and ADTC6) promote increased transport of 
marker molecules, such as 14C-mannitol, to the brain via 
the BBB [206]. ADTC5 doubled 14C-mannitol delivery to 
the rat brain. In addition, the ADTC5 peptide increased 
in  vivo delivery of Gd-DTPA to the brain of mice when 
administered intravenously. Thus, ADTC5 can radi-
cally improve the delivery of diagnostic and therapeutic 
agents to the brain and increase the effectiveness of pri-
mary tumor therapy [207]. A conjugate of paclitaxel and 
angiopep-2, named ANG-1005, was synthesized by Prof. 
Régina’s team [208]. It was previously reported that angio-
pep-2 can be used as a drug carrier for the BBB penetra-
tion. The angiopep-2 is a specific ligand for LRP1, which 
was detected in GBM and different brain metastases. 
ANG-1005 passed two parallel phase 1–2 clinical trials 
and demonstrated high accumulation in the GBM com-
pared to individual paclitaxel [209].

Drug delivery platforms
Drug delivery platforms have many notable features 
compared to individual therapeutic drugs [209]. Their 
main advantages are the reduction of off-target effects 
and promotion of site-specific accumulation in the brain 
tumor, minimizing the systemic toxicity from therapeutic 
drugs [210]. The unique properties of the developed drug 
delivery vehicles can additionally provide in vivo tracking 
visualization of encapsulated drugs. To date, many mate-
rials, biological components, and therapeutic cells have 
been considered for the fabrication of these drug delivery 
platforms. They were classified into viral-like particles 
(VLPs), organic/inorganic nanoparticles (NPs), and cell-
based delivery systems. Viral and cell-based delivery sys-
tems can be considered as separate categories of delivery 
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systems extensively used for brain tumor therapy [211, 
212] In the following chapters, we will discuss and sum-
marize the data on various delivery systems for tumor 
brain therapy. The main structures of drug delivery sys-
tems with the corresponding typical mechanisms of BBB 
penetration are presented in Fig. 6.

Virus-like particles (VLPs)
Virus-like particles (VLPs) form an immunogenic plat-
form for the development of effective therapeutic anti-
cancer vaccines against brain tumors (GBM, gliomas, 
etc.) [213–215]. VLPs can be used independently as a 
cancer vaccine [216] and as a carrier for the delivery of 

Fig. 6 Schematic illustration depicting various drug delivery platforms (organic and inorganic NPs, VLPs, and cell-based vehicles) used for 
overcoming the BBB
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therapeutic compounds [217]. Rabies virus (RV) is often 
applied for trans-neural tracking [218]; on its basis, vac-
cines against cancer, in particular, gliomas, have been 
developed [219]. An RV-based vaccine (RV-V) can cause 
an overall increase in the immune activity that can be 
used against cancer. The RV envelope protein, glycopro-
tein (RVG), forms spikes that protrude from the viral 
envelope. Lymphocytes are activated in the presence 
of RV antigens, resulting in the production of antibod-
ies against GBM cells [220, 221] Despite methodological 
problems, there are studies that showed increased sur-
vival in the patients with GBM that received RV-V ther-
apy [220].

In 2009, the scientific group of Prof. Filipov reported 
clinical results of RV-V therapy against GBM [222]. 
Twenty patients with GBM were treated with RV-V, 
deferoxamine, and D-penicillamine. The vaccines were 
started shortly after optimal radiation therapy; and in 6 
cases, treatment was initiated during the period of neu-
rological deterioration. The patients that received chem-
otherapy were treated with vaccines for several weeks 
without chemotherapy. The median postoperative sur-
vival of the treated patients was 28 months. Nine people 
from twenty patients were alive, and five of them were in 
good condition. In 2013, a research group from Thomas 
Jefferson University reported that RV-V therapy signifi-
cantly enhances the survival rate of mice with intracra-
nial glial tumors GL261. The increase in survival rate was 
associated with delayed tumor growth and an increase in 
markers of T and B cells and IFNy in CNS tissue [220, 
223]. Thus, the RV-V is a promising therapy against can-
cer, in particular GBM, increasing the effectiveness of 
existing immunotherapy methods.

RV-based VLPs can also be used as a delivery sys-
tem for the efficient transport of therapeutic drugs to 
brain tumors [217]. We should note that the envelope 
protein and structural morphology of VLPs play an 
important role in overcoming the BBB and other physi-
ological barriers [224]. The corresponding VLPs design 
was shown to provide a better biological distribution 
and a higher absorption efficiency by cancer cells than 
organic and inorganic nanocarriers [225, 226]. How-
ever, the direct use of VLPs is associated with many 
safety risks, including broad viral tropism, high immu-
nogenicity, and pathogenicity, which significantly limits 
their further use [227].

Similar to RV-based VLPs, VLPs based on other 
viruses can be developed for the delivery of therapeutic 
agents (Fig. 7A). An example of such VLPs was reported 
by Pang et al. [228]. This scientific group has developed 
green fluorescence VLPs (gVLPs) in E. coli to load epi-
rubicin (EPI) to form EPI@gVLPs. These particles were 
additionally modified with cell-penetrating peptides 

and labeled with 68  Ga for PET-CT imaging. Labeled 
68  Ga-EPI@gVLPs showed excellent stability in serum 
(size 30–40  nm); they also can degrade upon proteo-
lytic degradation of the protein envelope, which ensures 
the release and clearance of the drug to minimize long-
term accumulation. In  vivo delivery of labeled 68  Ga-
EPI@gVLPs demonstrated that the median survival rate 
was increased to more than 50 days when mice received 
2 injections (once a week) compared to the control 
group (median survival: 26 days) (Fig. 7B).

Yang et  al. studied the therapeutic effect of drug-
loaded VLPs made of hepatitis B protein for the treat-
ment of GBM [229]. Chemo- and gene-therapeutic 
agents paclitaxel and siRNA were loaded inside the 
VLPs. The obtained complexes had a size of 30–50 nm, 
and bioluminescent images of the glioma in vivo model 
clearly demonstrated an increased therapeutic effect of 
the paclitaxel- and siRNA-loaded VLPs (Fig.  7C). The 
results demonstrated the effective delivery of these 
therapeutic agents (paclitaxel and siRNA) to inva-
sive tumor sites. The combination of chemo- and gene 
therapy revealed synergistic antitumor effects due to 
increased necrosis and apoptosis, and the ability to 
inhibit tumor invasion with minimal cytotoxicity.

For scalable production of VLPs, several parameters 
such as safety, reproducibility, and cost-effectiveness 
should be considered. The use of a bacterial expression 
system can be a universal option. The insect cell pro-
duction system is another promising approach, which 
does not require a high level of safety or a special cul-
tivation system. Plant viruses can be also used to pre-
pare VLPs: they are non-toxic and biodegradable, can 
be self-assembled, and easily scaled. These properties 
make them an attractive alternative to other nanocar-
riers, such as liposomes and micelles [230]. However, 
it is difficult to develop a plant infection system in a 
conventional laboratory. Cell-free systems are also dif-
ficult to produce in laboratory conditions, but there 
are various kits for the expression of cell-free proteins 
available for sale. It can be concluded that the process 
of VLPs is not easy and requires special laboratory con-
ditions, which complicates their large-scale production 
[231–233].

Outlook
The latest developments in nanotechnology and bio-
engineering allowed employing VLPs as carriers of 
therapeutic agents and vaccines [234, 235]. In spite of 
a limited number of studies, it was shown that VLPs 
are capable of delivering therapeutic agents into the 
brain tumor. Modern bioengineering approaches ena-
bled the design of VLPs with various structural and 
functional features, which significantly expands the 
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scope of their application. Since VLPs themselves are 
immunogens, they can stimulate both the innate and 
adaptive immune systems [213]. However, despite 
being promising, VLPs have certain disadvantages: for 
example, toxicity and immunogenicity. In addition, 
the high cost of VLPs should be considered, which 
makes their large-scale production challenging [228, 
236].

Organic NPs
Nanocarriers based on organic materials generally include 
polymer-based and lipid-based NPs, which can be fab-
ricated from natural or synthetic polymers and lipids, 

respectively. The main advantages of polymer-based NPs 
are the use of biocompatible natural or synthetic polymers 
that are approved by FDA and can be degraded in biologi-
cal microenvironments after their in vivo administration. 
Various polymers and lipids have been considered for 
drug delivery applications. In the following sections, we 
discuss the polymers and lipids that are generally used in 
the concept of brain tumor delivery, mainly focusing on 
GBM and glioma tumors.

Polymer‑based NPs
Albumin‑based NPs The albumin-based NPs have been 
extensively investigated for cancer therapy due to their 
unique properties, including biodegradability, non-anti-

Fig. 7 Drug loading of VLPs and their application for brain tumor delivery: A Schematic illustration of drug loading into VLPs. B TEM images of 
EPI@gVLPs and micro-PET-MR images of mouse brain tumors, demonstrating the effect of tumor inhibition (scale bar = 20 nm, inset: 10 nm). 
Adapted with permission from Ref.[228]. C TEM images of VLPs and bioluminescent imaging, demonstrating the effect of tumor inhibition (scale 
bar = 100 nm, inset: 10 nm). Adapted with permission from Ref. [233]
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genicity, and possibility of surface modification with tar-
geting vectors. Moreover, the albumin-based NPs can also 
cross the BBB and reach tumor cells by SPRAC (secreted 
protein acidic and rich in cysteine) and gp 60 (glycopro-
tein 60) mechanisms-mediated targeting [237]. In the 
work [237], Lin et  al. have found that albumin-binding 
proteins, i.e. SPARC and gp60, are expressed in glioma, 
and these pathways were applied to overcome the BBB. 
The authors have developed albumin-based NPs that 
have BBB-penetrating properties and can encapsulate 
different therapeutic drugs such as paclitaxel and fenreti-
nide, exhibiting an improved treatment of glioma. Later 
in 2020, Gregory et  al. designed protein NPs based on 
polymerized human serum albumin (HSA) modified with 
the iRGD peptide against GBM [238]. These NPs dem-
onstrated an effective tumor delivery to GBM after their 
systemic administration (Fig. 8A). Recently, Kudarha et al. 
have prepared TMZ-loaded albumin NPs with a surface 
modification by hyaluronic acid (HA) to perform CD44 
receptor-mediated targeting, which was used for U87 gli-
oma treatment [239].

Poly(butyl cyanoacrylate) NPs Poly(butyl cyanoacrylate) 
(PBCA) NPs were the first developed nanocarriers used 
for the delivery of biologically active compounds through 
the BBB [240]. Weiss et al. showed that PBCA can be used 
to reduce any side effects on healthy organs and demon-
strate good stability both in vivo and in vitro [241]. The 
synthesized PBCA NPs were additionally coated with 
polysorbate 80 to improve their colloidal stability in bio-
logical fluids. However, it simultaneously resulted in the 
absorption of plasma apolipoprotein B and/or E on the 
surface of the developed NPs. As a result, PBCA NPs were 
recognized as low-density lipoproteins and possessed an 
enhanced uptake by the endothelial cells of the BBB via 
the receptor-mediated endocytosis route [242]. Later in 
2014, Voigt et al. studied neuronal toxicity of PBCA NPs 
in vitro and in vivo [243]. According to the work, no gen-
eral toxicity was found (e.g. weight loss), and no neuronal 
damage was detected.

Mayur and Zaved developed PBCA NPs and used them 
for the delivery of hydrophobic drugs such as quercetin 
(QT), which is known as a bioflavonoid and antioxidant 
with poor bioavailability and very low distribution in the 
brain [244]. To improve the oral bioavailability of QT and 
increase its distribution in the brain, a new oral delivery 
system consisting of PBCA NPs and the same nanocar-
riers coated with polysorbate-80 (P-80) was developed. 
The sizes of the nanoparticles were 161.1 ± 0.44  nm 
for the uncoated NPs and 166.6 ± 0.33  nm for the NPs 
coated with P-80. As a result, the relative bioavailability 

of QT-PBCA and QT-PBCA + P-80 NPs was increased 
by more than 2.38 and 4.93 times, respectively, compared 
with free QT. A study of biodistribution in rats showed 
that a higher concentration of QT was found in the brain 
when NPs were covered with P-80 [244].

Poly(lactic acid) NPs Poly(lactic acid) (PLA) NPs have 
been extensively studied for drug delivery applications 
due to their low cytotoxicity and biodegradability. The 
surface of the PLA NPs can be easily modified with sur-
factants or targeting ligands, which overall increases the 
effectiveness of the BBB penetration.

In the study of Junzhu et al., the surface of paclitaxel-
loaded PLA NPs was modified with cysteine–arginine–
glutamic acid–lysine–alanine (CREKA) peptide that 
has a high affinity for fibrin to enhance tropism to GBM 
[245]. Due to active targeting, these PLA NPs demon-
strated an improved therapeutic effect compared to free 
drug or unmodified nanocarriers.

In another study, the surface of PLA NPs was modi-
fied by targeting ligand – Ft peptide, which was synthe-
sized by coupling FHK and tLyp-1 sequence together 
via a cysteine [246]. The synthesized Ft-modified PLA 
NPs demonstrated an increased affinity to ECM com-
ponent tenascin C and were able to accumulate in the 
glioma tissue in  vivo. Later, in 2019 Seo et  al. designed 
PLA-based NPs loaded with microRNAs (miR-21) that 
induce cell apoptosis and prevent tumor development 
[247]. According to this work, the authors have employed 
block copolymer of PLA and hyperbranched polyglycerol 
(HPG) for the synthesis of PLA-HPG NPs. Additionally, 
the PLA-HPG NPs were further activated by  NaIO4 to 
form PLA-HPG-CHO NPs. It was shown that both types 
of PLA-HPG and PLA-HPG-CHO NPs were distributed 
in large volumes in the tumor-bearing brain (Fig.  8B). 
These NPs loaded with therapeutic drugs demonstrated 
good therapeutic efficacy, prolonging the survival of ani-
mals with intracranial tumors [247].

Poly(lactic‑co‑glycolic acid) NPs Poly(lactic-co-glycolic 
acid) (PLGA) is another extensively studied polymer for 
drug delivery. PLGA NPs are biodegradable and offer 
great control over the pharmacokinetics of the developed 
nanocarriers. Furthermore, PLGA NPs were certified by 
the FDA for pharmaceutical applications.

In the study of Madani et  al. [248], PLGA NPs were 
loaded with two anticancer drugs, paclitaxel and metho-
trexate, to achieve a synergistic effect during cancer ther-
apy. The surface of the synthesized NPs was modified with 
Poloxamer188 to promote the adsorption of apolipoprotein 
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Fig. 8 Application of organic nanocarriers for brain tumor therapy: A Characterization of albumin-based NPs with the following histological 
analysis, demonstrating tumor inhibition effect (scale bar = 1 μm). Adapted with permission from Ref. [238]. B Characterization of PLA-based NPs 
and their biodistribution in the brain (scale bar = 200 nm). Adapted with permission from Ref. [247]. C SEM images of PLGA-based NPs and MR 
images before and after the therapy (scale bar = 1 μm). Adapted with permission from Ref. [248]. D AFM image of liposomes, in vivo fluorescent 
distribution, and histological analysis, demonstrating the tumor inhibition effect. Adapted with permission from Ref. [266]
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E and enhance the penetration across the BBB. These PLGA 
NPs possessed a higher antitumor activity against GBM 
compared with free drugs (paclitaxel and methotrexate).

In another work [249], paclitaxel-loaded PLGA NPs 
were additionally modified with superparamagnetic iron 
oxide NPs. This allowed magnetic targeting of PLGA 
NPs, which improved the pharmacokinetics and thera-
peutic effect compared to passive targeting. The devel-
oped hybrid system showed no systemic toxicity, and no 
signs of hepatotoxicity were detected. The use of mag-
netic targeting led to a significantly prolonged (49 days) 
survival time of tumor-bearing mice compared to con-
trol mice (41  days). Recently, Caban-Toktas et  al. have 
designed PLGA NPs loaded with R-flurbiprofen and 
paclitaxel for combination therapy against glioma, using 
the rat RG2 glioma tumor model [250]. The MR images 
clearly demonstrated the tumor inhibition for PLGA NPs 
after the post-treatment procedure (Fig. 8C).

Lipid‑based NPs
Recently, lipid-based NPs have gained significant inter-
est due to their biodegradability, non-toxicity, excellent 
ability to target tumors, and surface modification pos-
sibilities, as well as the highly efficient encapsulation of 
lipophilic drugs. Lipid NPs include lipid nanocapsules, 
nanosomes, liposomes, micelles, and solid lipid NPs. All 
the listed carriers consist of lipids and include an oil solu-
tion, suspension or emulsion [251].

Liposomes are a classic example of lipid-based NPs. 
Liposomes are spherical vesicles that consist of one or 
more concentric bilayers of phospholipids surround-
ing an aqueous phase. Being non-toxic and biodegrad-
able, liposomes are a powerful drug delivery system. 
Liposomes mainly consist of glycerophospholipids, which 
are amphiphilic lipids composed of a glycerol molecule 
attached to a phosphate group and two chains of either 
saturated or unsaturated fatty acids [252–255].

Due to the amphiphilic properties of phospholipids, 
they tend to self-assemble and form stable bilayer struc-
tures in aqueous environment. This process is facilitated 
through the hydrophilic interactions between polar head 
groups, Van der Waals forces between nonpolar hydro-
carbon chains, and hydrogen bonds with surrounding 
water molecules. Hydrophobic chains are repelled by 
polar water molecules, and liposomes spontaneously self-
organize into an enclosed bilayer [256].

Liposomes can encapsulate both hydrophilic and 
hydrophobic drugs. For this reason, liposomes are exten-
sively studied as drug delivery systems. Despite their 
hydrophobic nature, liposomes cannot simply diffuse 
through the BBB due to their size. They can cross the 
BBB via AME, RME, and CMT. To efficiently utilize the 
above-mentioned mechanisms for drug delivery across 

the BBB, further surface modification of liposomes is 
required. For this, the surface of liposomes is comple-
mented with cations, PEG, antibodies or other ligands.
To make liposomal drug delivery site-specific, the sur-
face of such particles is usually modified with targeting 
ligands. The most commonly used approach for such a 
modification utilizes various antibodies that target the 
antigens expressed at the surface of glioma cells [257, 
258]. For example, anti-TfR single-chain antibodies have 
been used to decorate liposomes and specifically target 
GBM through the BBB [259, 260]. Another approach to 
increase the specificity of liposomes is to modify their 
surface with proteins (such as transferrin [261, 262]) or 
peptides (such as cell-penetrating peptides [263, 264]).

In 2009, Beier et al. demonstrated the efficiency of com-
bination therapy based on PEGylated liposomal DOX, 
TMZ, and radiation therapy. As a result, PEGylated DOX 
loaded in the liposomal membrane was shown to penetrate 
the BBB more effectively compared to free drugs, and the 
median survival of animals increased up to 17.6  months 
[265]. Then, Lakkadwala et  al. continued working in the 
field of combination therapy against brain tumors. In par-
ticular, a detailed investigation was performed of the use of 
drug co-loaded (DOX and erlotinib) liposomes modified 
with transferrin (Tf) for receptor-mediated endocytosis 
and a cell-penetrating peptide, penetratin (Pen), against 
GBM, using tumor mice model [266]. The in vivo imaging 
of mice clearly showed the accumulation of fluorescent-
labeled liposomes in the brain (Fig. 8D). The excellent tar-
geting of liposomes and their penetrating ability into GBM 
led to a significant decrease in tumor growth (Fig. 8D).

Previous studies have demonstrated that low-intensity 
focused ultrasound (LIFU) combined with systemic injec-
tion of lipid-shelled microbubbles can induce a noninva-
sive, local, and transient disruption of the BBB [267, 268]. 
Based on this, Lin et  al. employed DOX-loaded cationic 
liposomes combined with LIFU for the BBB penetration 
and targeting C6 glioma in a rat model [269]. The use 
of LIFU induced BBB opening so that liposomes could 
deliver DOX into glioma. This combined procedure led 
to prolonged glioma inhibition with minimal side effects. 
Later in 2019, Papachristodoulou et al. reported that LIFU 
can mediate effective delivery of liposomes to the tumor 
region, which was demonstrated on mice bearing TMZ-
resistant gliomas [270]. Very recently, Morse et al. applied 
a rapid short-pulse (RaSP) ultrasound for the delivery of 
drug-loaded liposomes to the murine brain in vivo [271].

Outlook
Organic NPs can be also applied as carriers of therapeu-
tics to treat brain tumors, in particular, GBM. The main 
advantage of organic NPs is their high biocompatibil-
ity and biodegradability, which can regulate the release 
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of therapeutic agents [272, 273]. Simple synthetic routes 
with the possibility of varying the size, shape, and func-
tionality of organic NPs significantly increase their poten-
tial in the treatment of different types of brain tumors. 
However, organic NPs have some disadvantages, includ-
ing low stability in biological fluids and sensitivity to stor-
age conditions [272]. Furthermore, when organic NPs are 
introduced into the systemic circulation, blood plasma 
proteins are adsorbed on them. It can lead to enhanced 
clearance of NPs from the blood through the absorption-
excretory system of the spleen and liver, which prevents 
their accumulation in the required tumor area, reducing 
the targeting ability [274]. The problems of organic NPs’ 
stability in liquid media and their protein adsorption can 
be solved by using surfactants (tween, poly(ethylene–gly-
col), D-a-tocopheryl polyethylene glycol) [275].

Inorganic NPs
Inorganic NPs, such as silica  (SiO2), gold (Au), iron oxide 
(IONPs), silver (Ag), and others, are extensively stud-
ied as drug delivery carriers due to their well-controlled 
physicochemical properties, which can be tuned during 
synthesis. Furthermore, inorganic NPs can be considered 
not only as carriers of drugs but also as an independent 
unit for imaging methods (MRI, CT) [276].

SiO2 NPs
Drug delivery systems based on  SiO2 NPs can be consid-
ered as another alternative to deliver bioactive compounds 
to brain tumors. Due to their porosity,  SiO2 NPs have a 
large surface area, which can be used for increased drug 
loading. Furthermore, the size, shape and pore sizes of  SiO2 
NPs can be tuned by changing the synthesis conditions 
[277]. Colloidal  SiO2 is utilized in medical tablet manufac-
turing and is recognized as safe by the FDA. At present, 
various  SiO2 NPs formulations are being tested in phase I 
and II clinical trials [278]. In general,  SiO2 NPs are often 
combined with other components to obtain multicompo-
nent drug formulations. They can be easily modified with 
IONPs and Au NPs. For example, Turan and co-workers 
developed multicomponent  SiO2 NPs consisting of an iron 
oxide core and mesoporous silica shell that can effectively 
deliver drugs across the BBB into glioma cells [279]. The 
surface of the multicomponent  SiO2 NPs was coated with 
fibronectin to provide active targeting to glioma cells. The 
drug release from the NPs was achieved by external radi-
ofrequency (RF) fields; this therapy resulted in a twofold 
increase in animal survival (Fig.  9A). Next, Juthani et  al. 
prepared ultrasmall core–shell  SiO2 NPs for GBM treat-
ment [280]. By employing fluorescent dyes and diagnostic 
radionuclides, the nanocarriers were proven to penetrate 
brain tumors with high efficiency (Fig. 9B).

Besides inorganic components, the  SiO2 NPs can be 
modified with a lipid layer. For instance, Zhu and col-
leagues reported on the use of angiopep-2-modified 
lipid-coated  SiO2 NPs for glioma targeting therapy over-
coming the BBB [281]. This lipid-coating has led to an 
improved targeting efficiency of paclitaxel (20.6%) com-
pared to the non-modified NPs (10.74%) that provided a 
prolonged survival time of C6 glioma-bearing rats (from 
20 to 30  days). Another research group modified  SiO2 
NPs with PLGA. This modification allowed the encap-
sulation of paclitaxel as an anticancer drug and greatly 
enhanced the anticancer efficacy [282].

Au NPs
Au NPs are metallic colloidal NPs that have found numer-
ous applications in drug delivery. They demonstrate great 
biocompatibility, and both their size and shape can be 
easily modified to alter their biodistribution [283, 284]. 
Among noble metals, Au NPs have found important appli-
cations in photothermal therapy (PTT) because they sup-
port localized surface plasmon resonances (LSPR). The 
LSPR effect can facilitate the absorption of light by Au NPs 
and convert the absorbed light into heat. However, during 
PTT, the energy of the absorbed light is only partially con-
verted into heat for the elimination of cancer cells in vivo 
[285]. Apart from applying Au NPs as nanoheaters, they 
can be used as contrast agents in X-ray imaging due to 
their high X-ray attenuation [286]. The highly reactive sur-
face of Au NPs can be modified with a variety of targeting 
ligands or biologically active compounds. The size of Au 
NPs can be greatly altered from 1 to > 200 nm to suit the 
needs of drug delivery. Depending on the size and surface 
modification of Au NPs they can be transported across 
the BBB through passive diffusion, RME, AME, and CMT 
[287, 288].

Au NPs have demonstrated their efficiency in the deliv-
ery of antitumor drugs. A 2018 study by Collucia et  al. 
(Fig. 10A) described the use of Au NPs conjugated with 
cisplatin in combination with MR-guided focused ultra-
sound for successful in  vivo inhibition of GBM growth 
[289].

Additionally, Au NPs can be utilized to enhance the 
efficiency of radiotherapy. In 2021, Dong and colleagues 
designed a radiotherapy sensitizer based on sub-nanom-
eter Au NPs, BBB-penetrating peptide iRGD, and cell 
cycle regulator α-difluoromethylornithine [290]. Due to 
the high atomic number of Au, it can absorb X-ray effi-
ciently and boost radiotherapy. The use of the developed 
Au NPs allowed low-dose radiotherapy to achieve the 
same efficiency of treatment as high-dose radiotherapy, 
with a significantly reduced fatality rate, which is a prom-
ising approach for the treatment of GBM.
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Se NPs
Currently, Se NPs have drawn significant attention as 
therapeutic agents [291]. There are reports describing the 
antitumor activity of Se NPs due to their effect on reac-
tive oxygen species (ROS) generated inside cells [292–
296]. Internalization of Se NPs by tumor cells increases 
the production of mitochondrial ROS that results in ATP 
depletion and consequent cell death. Furthermore, Se 
NPs activate tumor necrotic factor and interferon regu-
latory factor that induces necroptosis through receptor-
interacting protein 1 [297].

Chen et  al. developed Polyporus Amboinensis Lam 
(PAL)-functionalized Se NPs to pass through the BBB 
and thus enhance the therapy of glioma (Fig. 10C) [298]. 
PAL-Se NPs up-regulated the ROS level and induced 
apoptosis in U87 glioma cells, which was demonstrated 

by in vitro and in vivo analysis. Similarly, Song et al. syn-
thesized “smart” nanosystems based on Se NPs modified 
with HER-2 antibody for effective delivery into the brain 
tumor [299]. Wenjian has developed inorganic hybrids 
made of Ag and Se NPs (Ag@Se NPs) for the GBM ther-
apy [300]. Ag@Se NPs were conjugated with RGD pep-
tides (Ag@Se-RGD NPs) for GBM targeting. The results 
showed that Ag@Se-RGD NPs possessed high in  vitro 
stability and induced a significant intracellular uptake by 
human glioma cells U251 with the following cell apopto-
sis due to ROS effect [300].

Despite the promising results of Se NPs for therapy of 
brain tumor, currently, most of the existing studies were 
conducted in  vitro. The data demonstrating their effec-
tiveness for in  vivo delivery through the BBB is rather 
limited, and further research is required.

Fig. 9 Application of  SiO2-based NPs for targeting brain tumor: A TEM images of IONPs@SiO2 NPs with corresponding macroscopic ex vivo 
evaluation of their therapeutic efficiency against GBM tumors (scale bar = 100 nm). Adapted with permission from Ref. [279], B PET-CT imaging 
of radiolabeled core–shell  SiO2 NPs showing clear accumulation of radionuclide signal in the brain tumors with corresponding histological and 
fluorescent analysis of NPs accumulation in the brain. Adapted with permission from Ref. [280]
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Ag NPs
Ag NPs are another type of nanocarriers for drug deliv-
ery application, which have unique optical properties. 
Similar to Au NPs, Ag NPs possess LSPR, which can be 
applied to induce apoptosis in cancer cells via heating 

[301–303]. The absorption efficiency of light by Ag NPs 
mainly depends on the geometry of NPs [285, 304].

Ag NPs can inhibit tumor growth and induce apopto-
sis of cancer cells [305–307]. The mechanism of tumor 
inhibition has not yet been fully investigated. Ag NPs 

Fig. 10 Application of inorganic nanocarriers based on Au, Ag, and Se NPs for targeting of brain tumor: (A) Bioluminescent images of the tumor 
showing the specific accumulation of Au NPs in the glioma and the anti-tumor effect after therapy. Adapted with permission from ref. [289], B 
Schematic illustration of the design of Ag NPs and ex vivo imaging of the accumulation of Ag NPs in the brain tumor. Adapted with permission from 
Ref. [310], C Schematic illustration of the synthesis of glioma cell targeting complexes based on Se NPs, TEM image of Se NPs and histograms of 
drug permeability and cytotoxicity (scale bar = 10 nm). Adapted with permission from Ref. [298]
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can induce DNA damage, preventing DNA synthesis and 
further leading to cell cycle blocking in G2/M phase and 
apoptosis of tumor cells [308]. Furthermore,  Ag+ ions 
can disrupt calcium homeostasis, which results in an 
increased toxicity of Ag NPs [309].

Jianming et al. investigated Ag NPs loaded with alben-
dazole (Abz). For targeted therapy of glioma, Abz-loaded 
Ag NPs were coated with BSA. According to Fig. 10B, the 
obtained Ag-based hybrids have the ability to overcome 
the BBB and accumulate in the glioma [310]. In this study, 
modification of Ag NPs with Abz significantly increased 
the median survival time of glioma-bearing mice (from 
15 to 23 days) with no toxicity on healthy tissues.

In contrast, various works demonstrate that Ag NPs 
can damage healthy tissues and induce systemic toxicity. 
For example, Ag NPs can increase the permeability of the 
BBB and suppress the antioxidant protection of astro-
cytes by increasing the protein interaction with thiore-
doxin, which leads to central neurotoxicity [311, 312].

IONPs
IONPs are of considerable interest as drug carriers due to 
their colloidal stability and low toxicity. IONPs have size-
dependent magnetic properties, which are used for their 
navigation under an external magnetic field [313]. An inter-
esting feature of iron IONPs is their ability to heat under 
an alternating magnetic field. This property of IONPs is 
actively used in the so-called magnetic hyperthermia. 
Notably, the heating rate of IONPs depends on size, shape, 
monodispersity and quality of NPs [314]. IONPs can be 
coated with biocompatible and biodegradable polymers to 
form a core–shell structure [315, 316]. To pass the BBB, the 
particle size can be adjusted from 5 to 100 nm, depending 
on the synthetic conditions, and the surface of IONPs can 
also be modified with targeting molecules. Several studies 
have demonstrated that IONPs can cross the BBB by apply-
ing an external magnetic field [317, 318]. For instance, Qiu 
et  al. developed IONPs modified with phospholipid-PEG 
and showed the use of magnetic forces for controlled drug 
delivery by disrupting endothelial cell–cell junctions [319]. 
This finding provides some valuable technical data relevant 
for overcoming the BBB using an external magnetic field. 
In another study, Huang et al. demonstrated IONPs coated 
with PEG, PEI, and Tween-80 efficiently crossing the BBB 
in the rats by applying an external 0.3  T magnetic field 
[320].

Considering active targeting mechanisms, there are 
plenty of works describing the modification of IONPs 
with targeted molecules to facilitate their transport to 
the brain tumor [321]. For instance, Chen et  al. synthe-
sized IONPs conjugated with BBB-penetrating peptide 
anigiopep-2 (ANG) [322, 323]. Recently, Tan et al. devel-
oped novel IONPs covalently modified with interleukin-6 

receptor-targeting peptides (I6P7) to provide delivery 
through the BBB and recognition of gliomas (Fig.  11A) 
[323]. Further, in  vivo studies demonstrated an efficient 
accumulation of I6P7-modified IONPs in the tumor 
region, proved by MR imaging.

Several methods of IONPs delivery through the BBB 
were implemented without active targeting, using non-
specific mechanisms. One of these approaches is to 
locally open the BBB for a certain time, using an adjust-
able RF field to achieve hyperthermia with commercially 
available IONPs injected through the medial cerebral 
artery (Fig. 11B) [324]. Lammers et al. described another 
method for the delivery of IONPs across the BBB [325]. 
In particular, the authors used poly(butyl cyanoacrylate)-
based micro-bubbles loaded with IONPs that can mediate 
the BBB penetration. When exposed to ultrasound, the 
micro-bubbles were destroyed, which led to the release 
of IONPs; this caused acoustic forces, increasing the 
vascular permeability of the BBB. As a result, the IONPs 
released from microbubbles could penetrate the permea-
bilized BBB and accumulate in extravascular brain tissue.

Wu et al. developed an aqueous ferrofluid without sur-
factants, containing superparamagnetic IONPs (SPIONs) 
coated with  SiO2 and carbon shells with an average size of 
13 nm [326]. The double coating of SPIONs significantly 
increased their colloidal stability in biological fluids. The 
developed SPIONs reduced the viability of GBM and 
osteosarcoma cells. They showed an enhanced targeting 
of cancer cells due to the increased absorption abilities of 
these NPs and their pronounced adhesion to the mem-
brane of cancer cells. The death of tumor cells occurred 
due to the heating of IONPs exposed to a magnetic field. 
Even in an ultra-low alternating magnetic field, the NPs 
released enough heat to cause tumor death [326].

CDs
Carbon dots (CDs) are a broad class of carbon-based 
nanomaterials that include carbon nanodots, graphene 
quantum dots (GQDs), and carbon nitride dots (CNDs) 
[327]. Several techniques of CDs synthesis have been 
developed, mainly focusing on top-down and bottom-up 
approaches [328]. The unique optical properties of CDs 
open a wide potential for diagnostic purposes. Indeed, 
CDs can demonstrate excitation-dependent emission 
from the blue-green range of light to the orange-red and 
near-infrared ranges [329, 330]. They also possess a high 
fluorescence quantum yield. Several techniques were 
developed to modify the surface of CDs with functional 
groups, such as − COOH, − OH, − C = O, and − C = N 
[331]. The functional groups on the surface of CDs allow 
their further modification with targeting vectors or bio-
compatible polymers for the design of targeted drug deliv-
ery platforms. A significant interest in the application of 
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CDs for crossing the BBB has started after 2015, and now 
these researches are rapidly growing [327]. To examine 
the ability of CDs and their hybrids to overcome the BBB, 

in vitro and in vivo models have been developed. At pre-
sent, the mechanisms explaining how CDs cross the BBB 
remain poorly understood. Despite this fact, three main 

Fig. 11 Application of inorganic nanocarriers based on IONPs and CDs for targeting brain tumor: A Schematic illustration of the design of 
the hybrids based on IONPs and corresponding TEM, MR, and PET-CT images demonstrating the delivery efficacy of IONPs to the brain (scale 
bar = 50 nm, inset: scale bar = 16 nm). Adapted with permission from Ref. [323], B Schematic illustration of overcoming the BBB using an adjustable 
RF field to perform hyperthermia with commercially available IONPs (injected into the external carotid artery). MR and fluorescent images showing 
the delivery of IONPs to the mouse brain. Adapted with permission from Ref. [324], C Scheme of synthesis and TEM image of hybrids based on CDs. 
Ex vivo analysis of the main organs (the brain, heart, liver, spleen, lungs, and kidneys) of mice after a 30-min intravenous injection, demonstrating 
the accumulation of nanohybrids in the brain (scale bar = 50 nm). Adapted with permission from Ref.[333]
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mechanisms of CDs penetration across the BBB can be 
distinguished. The first one includes passive diffusion. The 
size of CDs can be less than 4 nm, which allows passing 
the gap between the endothelial cells of the BBB (4–6 nm). 
For instance, Lu et  al. have prepared CDs with a size of 
around 2.6 nm and with a high quantum yield (51%) [332]. 
To study the BBB-penetration ability of these CDs, a bio-
mimetic BBB model created from rat brain microvascular 
endothelial cells (rBMEC) and astrocytes was employed. 
It was found that the CDs were able to cross the BBB in a 
concentration-dependent manner [332]. Yuefang Niu et al. 
demonstrated the accumulation of CDs in the brain of 
mice using fluorescent imaging analysis of ex vivo organs 
(Fig. 11C) [333].

Another way to overcome the BBB is the use of elec-
tric charges. Thus, CDs with the size of 2.6 nm were addi-
tionally coated with cationic polyethyleneimine (PEI), 
enhancing the penetration ability through the BBB [332–
334]. The third approach is based on the RME mecha-
nism, which is the most classic strategy for overcoming 
the BBB. For instance, Hettiarachchi et al. developed tri-
ple conjugated CDs (the size was 1.5–1.7  nm) modified 
with transferrin (the targeted ligand) and two anti-tumor 
drugs (epirubicin and temozolomide) [335]. The trans-
ferrin-conjugated CDs showed a higher affinity to U87 
glioma cells compared to non-modified CDs. In another 
study by Qiao et al., the authors developed the CDs mod-
ified with d-glucose and l-aspartic for targeting brain 
tumor cells (C6 cells) [336]. Recently, Li et  al. prepared 
exosome-coated 10B-CDs for BNCT of brain tumors, 
which was demonstrated on a glioma mice model [337]. 
The excellent accumulation of these CDs in the brain gli-
oma in vivo allowed an effective BNCT, achieving a pro-
longed survival rate of mice compared to control samples 
(a survival ratio of 100% for 30 days in case of BNCT and 
a survival ratio of 0% after 15 days of experiments in case 
of control group, i.e. mice without therapy) [337].

Outlook
Inorganic NPs have unique physico-chemical properties, 
such as nanometric size and increased loading capacity 
(e.g.,  SiO2 NPs). Inorganic NPs, for example, gold, iron-
oxide, and carbon-based ones, have magnetic, electrical, 
optical and thermal properties that allow them to be used 
as contrast agents [338, 339]. Therefore, inorganic NPs 
can be applied in multimodal imaging, as well as thera-
nostics [340–344]. These NPs can also actively absorb 
NIR energy and generate heat at the same time, which 
further improves their therapeutic effect and increases 
the optical resolution for analytical instruments [345]. 
Compared to the commercially available contrast agents 
(e.g. magnevist, omniscan), inorganic NPs possess a 
longer systemic circulation within the body [346, 347]. 

Due to LSPR, Au NPs are well-suited for optical coher-
ence tomography [348] and computer tomography imag-
ing [349]. IONPs can be used for MRI imaging [350].

Cell-based delivery systems
Recently, cell-based delivery systems have received 
increased interest due to their potential for tumor appli-
cations. The main feature of such systems is their abil-
ity to mimic specific properties of organisms and deceive 
the system, providing site-specific delivery of therapeutic 
drugs [351]. In this context, the use of cells as carriers is a 
promising strategy for overcoming the BBB for the delivery 
of therapeutics to the brain tumor [352]. Various cells with 
brain tumor tropism have been investigated as carriers, 
including mesenchymal stem cells (MSCs), macrophages, 
neutrophils, erythrocytes, leukocytes, and monocytes 
[353]. However, drug loading into these cells is a challeng-
ing task. At present, four pathways for drug loading into 
cells can be considered: (i) non-covalent binding, (ii) cova-
lent binding to cell membrane, (iii) internalization via cell 
endocytosis, and (iv) specific antibody-antigen interac-
tions [211].

Besides the use of individual cells, another strategy 
employs cell components, i.e. cell membrane, for surface 
coating of nanocarriers. The interactions between a spe-
cific cell and brain endothelial cells can be used for devel-
oping cell membrane-coated nanocarriers that can cross 
the BBB and reach brain tumors. Extracellular vehicles 
(EVs) are an additional type of cell-based delivery sys-
tem [351]. The capacity of EVs to overcome natural bar-
riers, such as the BBB, was effectively used for delivery 
into brain tumors [351]. However, the encapsulation of 
hydrophilic/hydrophobic drugs into EVs can be difficult, 
and it can be realized by other, simpler strategies [351]. 
In the following sub-chapters, various cell-based delivery 
systems for targeting brain tumors will be presented and 
discussed.

MSCs‑based vehicles
It is well-known that MSCs can migrate to the tumor 
site due to their tropism associated with the stromal 
cell-derived factor-1 (SDF-1)/CXC chemokine receptor 
type-4 (CXCR4) axis [354]. The possible mechanism of 
the cell homing effect is the following: the high level of 
SDF-1 secreted by tumor cells serve as a chemoattract-
ant gradient for MSCs, expressing CXCR4 receptor [355]. 
In many studies, to improve the homing effect of MSCs, 
they are genetically modified with overexpression of 
CXCR4 receptors [356]. For this purpose, the lentivirus is 
usually used. For example, MSCs transfected by lentiviral 
vectors (LV) carrying the gene of the fourth chemokine 
receptor (CXCR4) contributed to the migration to dam-
aged areas due to the overexpression of CXCR4 [357, 
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358]. Genetically modified MSCs expressing an apopto-
sis-inducing ligand associated with tumor necrosis factor 
(TNF) (TRAIL) demonstrated targeted delivery and local 
production of TRAIL at the glioma tumor site [358, 359].

One of the most cited works about MSCs for the deliv-
ery of NPs to brain tumors was reported by Roger and co-
workers (Fig. 12A) [359]. The authors demonstrated the 
proof-of-concept that MSCs can be used for the delivery 
of NPs loaded with therapeutic drugs into brain tumors. 
Another study by Huang et al. reported on MSCs modi-
fied with Si NPs as a multifunctional platform for tar-
geted delivery to the brain tumor (U87MG mice model) 
[359]. They used the non-covalent binding of  SiO2 NPs to 
the cell membrane. A similar approach of MSCs modifi-
cation was used in the more recent works (Fig. 12B) [360, 
361] By combining nanocarriers with different properties 
for MSCs modification, several therapeutic methods of 
brain tumor delivery can be realized. For instance, Luo 
et  al. incorporated PLGA/black phosphorus quantum 
dots (BPQDs) in the MSCs for effective targeted photo-
thermal therapy of U251 glioma tumors (Fig. 12C) [362].

Erythrocyte‑based vehicles
Erythrocytes, or red blood cells (RBCs), are the major 
components of blood and the main carriers of oxygen to 
the tissues via blood flow through the circulatory system. 
They possess several properties making them suitable 
for drug delivery [353]. However, the use of individual 
cells for drug delivery to mediate cancer treatment is not 
sufficient, because erythrocytes cannot migrate across 
the endothelial barrier and therefore deliver the drug to 
the tumor zone [363]. For tumor brain targeting, NPs 
are coated with cell membranes from erythrocytes to 
provide their long blood circulation with low immuno-
genicity [363]. For active targeting to brain tumors, the 
surface of cell-based nanocarriers should be additionally 
coated with targeted molecules, i.e. peptides. For exam-
ple, Fu et al. designed RBC membrane-coated solid lipid 
NPs modified with T7 and NGR peptides [364]. The vin-
cristine was used as a model antitumor drug for loading 
into the NPs. After encapsulation of vincristine, the cell 
membrane-coated carriers exhibited the most favorable 
anti-glioma effects in  vitro and in  vivo, increasing the 
survival rate of laboratory animals. In another work, Chai 
et  al. reported on an effective delivery system consist-
ing of robust RBC membrane-coated NPs modified with 
CDX peptide (RBCNPs-CDX) [365]. The authors dem-
onstrated that the DOX-loaded RBCNPs-CDX possessed 
a more significant therapeutic efficacy and reduced tox-
icity compared to the non-targeted DOX for a glioma 
mouse model. Further, Cui reported on the preparation 
of erythrocyte membrane-coated PLGA NPs dual-modi-
fied with WSW and NGR peptides [366]. In vivo studies 

on glioma mouse models have shown that after intrave-
nous injection, these NPs could enter the brain, target the 
tumor tissue, and significantly increase the survival rate. 
In another recent report by Chai et al., a targeted deliv-
ery system made of drug nanocrystals and modified with 
RBC membrane targeting tumor-peptides is described 
[367].

Immune cell‑based vehicles
Nowadays, the use of immune cells, i.e. neutrophils, lym-
phocytes, and mononuclear phagocytes such as dendritic 
cells, monocytes, and macrophages, is one of the most 
promising approaches for cancer treatment. It was dem-
onstrated that immune cells can cross the BBB [368]. 
Therefore, these cells and their components have been 
explored for the delivery of therapeutic drugs into brain 
tumors. Moreover, immune cells are used in the immu-
notherapy of malignant brain tumors [368, 369] Brain 
tumors are characterized by an inflammatory process 
and extensive recruitment of immune cells, mainly mac-
rophages and T-cells, which can immediately respond to 
inflammation and migrate across the BBB into pathogenic 
tissues [211]. For example, Pohl-Guimaraes et al. showed 
that RNA-modified T cells can deliver immunomodula-
tory agents directly to brain tumors. The obtained results 
clearly demonstrated a significantly extended overall sur-
vival in an orthotopic treatment model, proving effec-
tive delivery of biological agents across the BBB using 
T-cells. However, for most patients, endogenous immune 
responses are not strong enough to create sufficient anti‐
tumor responses, and thus, the engineering of new T-cell 
immunity using chimeric antigen receptors (CARs) is a 
rapidly developing approach for the treatment of cancer 
[370]. Early investigations using CAR T therapy against 
brain tumors have shown great promise, even though 
there are some challenges, including addressing tumor 
antigen heterogeneity, overcoming an immune‐suppres-
sive tumor microenvironment, ensuring sufficient T-cell 
trafficking to the tumor, enhancing CAR T-persistence, 
and avoiding toxicity [370]. In this regard, Brown et  al. 
developed a CAR T-cell immunotherapy targeting IL-13 
receptor α2 (IL13Rα2) for the treatment of GBM [371]. 
Recently, Donovan et  al. evaluated locoregional CSF 
delivery of CAR T-cell therapy as a treatment approach 
in xenograft mouse models of metastatic medulloblas-
toma [372].

The tumor-homing mechanism of macrophages and 
monocytes also makes these cell types promising can-
didates for brain tumor therapy. An additional advan-
tage of macrophages is their phagocytic capabilities that 
allow the internalization of different types of NPs loaded 
with therapeutic compounds. Pang et  al. demonstrated 
the feasibility of macrophages loaded with Dox-NPs to 
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Fig. 12 MSCs-based vehicles for overcoming the BBB and delivery to the glioma: A Schematic illustration and characterization of MSC-based 
multifunctional cell platform (MSC-platform). Adapted with permission from Ref. [359], B MSCs-delivery system modified with NIR-responsive drug 
carriers (B1: scale bar = 100 nm, B2: scale bar = 20 μm). Adapted with permission from Ref. [361], C Schematic design of PLGA/BPQD-loaded MSCs 
for enhanced photothermal therapy of U251 glioma. Adapted with permission from Ref. [362]
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deliver drugs into glioma [373, 374]Recently, Ibarra et al. 
assessed a delivery system based on monocytes conju-
gated with polymer NPs for enhanced photodynamic 
therapy of GBM [375], which showed a promising target-
ing efficiency to GBM.

Neutrophils as a transport of diagnostic and thera-
peutic agents have been already demonstrated to cross 
the BBB and penetrate inflamed brain tumors [376]. In 
particular, Xue et  al. used neutrophils to carry pacli-
taxel-loaded liposomes into the brain tumor (G422 
glioma) (Fig.  13A) [377]. Unlike ordinary NPs that 
accumulate in tumor zones via active or passive target-
ing, the neutrophil-delivery system can recognize the 

postoperative inflammatory signals, such as IL-8 and 
CXCL1/KC [378], and deliver the therapeutic drugs 
to the infiltrating glioma. The authors demonstrated 
that such cell-based vehicles had a superior inhibition 
effect on tumor recurrence, using surgically treated 
glioma mouse models. Very recently, Liu et  al. modi-
fied neutrophils with a lipid-decorated molecular pho-
toacoustic contrast agent TFML. Such a cell-based 
delivery system demonstrated good brain tumor-tar-
geting ability and strong photoacoustic signals in GBM 
[379].

Although the use of neutrophils for drug delivery is a 
promising strategy in the therapy of brain tumors, there 

Fig. 13 Neutrophil-based delivery systems for overcoming the BBB and penetration into the brain tumor: A Schematic illustration of the 
preparation of neutrophils modified with paclitaxel-loaded liposomes to target glioma tumors in mice. Below, in vivo fluorescence imaging of the 
normal and glioma-bearing mice after intravenous administration of neutrophils-based vehicles is shown. Adapted with permission from Ref. [377]. 
B TEM images of the neutrophil-exosomes system for the delivery of the antitumor drug DOX into the glioma (scale bar = 100 nm). Below, in vivo 
results (6-Luc glioma-bearing mice model) demonstrate that this cell-based vehicle can transport the drug through the BBB and migrate into the 
brain tumor with high efficiency. Adapted with permission from Ref. [382]
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are some obstacles seriously hindering this approach. First 
of all, there is no simple protocol to generate large num-
bers of neutrophils for further ex vivo injection [380]. Sec-
ond, neutrophils are difficult to cultivate, and they have a 
very short circulatory half-life [381]. Employing the cell 
membrane of neutrophils for coating NPs can overcome 
these difficulties, even though it complicates the syn-
thetic protocols of nanocarriers. For instance, Wang et al. 
developed a neutrophil-exosomes system for the delivery 
of antitumor drug-DOX into the glioma (Fig. 13B) [382]. 
The in  vivo results performed on 6-Luc glioma-bearing 
mice models clearly showed that this cell-based vehicle 
can transport the drug through the BBB and migrate into 
the brain tumor. Zhang et al. reported a neutrophil-based 
microrobot that can carry cargo to the glioma in  vivo 
[383]. The use of such a responsive system for targeted 
drug delivery substantially inhibits the proliferation of 
tumor cells compared to traditional drug injections.

Outlook
Currently, active work is underway to develop delivery 
systems for therapy of brain tumors using cell-based 
delivery systems [374, 384, 385]. They possess remark-
able advantages such as active tumor tropism, biomi-
metic properties and strong immunological influence on 
tumor tissues. It is important to note that CAR-T cells 
have physiological ability to clonal expansion, which 
leads to a significant increase in the number of circulat-
ing antitumor cells. As a result, these cells can provide 
prolonged antitumor immunity, reducing the chance of 
relapse. Moreover, some of cell-based delivery systems 
are able to effectively overcome the BBB and penetrate 
into the membranes of the brain to reach tumor cells 
[367, 382, 386, 387]. However, the number of preclinical 
studies applying cell-based delivery systems as carriers 
to reach brain tumors is still limited due to the lack of 
understanding of mechanisms of brain tumor delivery.

Conclusion, discussion, and prospects
Considering many methods that have been developed for 
overcoming the BBB to reach brain tumors, it can be con-
cluded that the progress in the effective treatment of brain 
tumors is still unclear. In most cases, a lot of experimen-
tal approaches do not reach clinics, in particular, the ones 
related to the use of nanocarriers and cells or their deriva-
tives. At the moment, the currently available clinical meth-
ods of brain tumor treatment are surgical intervention, 
chemotherapy, radiotherapy, immunotherapy, and gene 
therapy. Nevertheless, they cannot provide complete elim-
ination of cancer tissues without compromising patient 
stability during the therapy. Moreover, there are certain 
side effects associated with each of these therapy methods. 

For example, surgical resection can damage healthy tis-
sues of the brain that surround cancer cells. The use of 
chemotherapy can lead to nerve damage, nausea, hair 
loss, vomiting, infertility, diarrhea, insomnia and skin rash 
[388]. Radiotherapy causes effects mediated by exposure 
to ionizing radiation on healthy tissues (e.g. fibrosis, dam-
age of the epithelial surface, radiation burn and sickness). 
Immunotherapy creates the risk of severe immunological 
reactions (e.g. systemic cytokine release syndrome) [389]. 
In case of gene therapy methods, inappropriate gene inser-
tions may occur, leading to malfunctions in the activity of 
brain structures. The development of targeting strategies is 
highly required to reduce the side effects from therapy and 
prolong the median survival of the patients.

Nanotechnology and nanosciences have served as a 
major driver for the design and fabrication of various 
“smart” drug delivery systems with required targeting 
abilities [390]. The diversity of nanocarriers leads to the 
better understanding of the BBB penetration mechanisms 
and selected accumulation of the therapeutic drugs in the 
tumor zones. The key questions that seriously postpone 
the further clinical translation of the developed nanocar-
riers include their toxicity, reproducibility, large-scale 
production, and targeting ability.

(i) Toxicity: All the components that can be used for the 
fabrication of drug delivery systems should be non-toxic 
and approved by the relevant authorities. With the pro-
gress of nanotechnology, numerous new materials have 
been created as potential components for drug nanocar-
riers. However, clinical approval of new materials can be 
time-consuming. As a consequence, researchers focus on 
already known and approved materials, which limits the 
translation of novel ones into clinical practice.

(ii) Reproducibility: There are plenty of protocols 
describing the synthesis of drug delivery systems for dif-
ferent therapies, including brain tumors. However, these 
protocols are not always reproducible at the exact level 
as was reported, which makes further adaptation of pub-
lished protocols necessary in each specific case. Automa-
tion of nanocarrier synthesis can help to overcome this 
problem. However, the use of complex delivery systems 
made of different components (organic, inorganic, and 
biological parts) significantly complicates the automatic 
synthesis process or makes it impossible.

(iii) Large-scale production: The lack of large-scale pro-
duction of many modern drug delivery systems seriously 
limits their further translation into clinical practice. It is 
related to the reproducibility issues that were discussed 
above. Moreover, there are strict requirements for qual-
ity control, depending on the type of drug carriers, espe-
cially in the case of cell-based vehicles.

(iv) Targeting ability: Since many nanocarriers can 
deliver therapeutic drugs into the brain tumor via CMT, 
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RME, and AME, the targeted delivery efficacy plays 
a crucial role. To enable the penetration of individual 
drugs and nanocarriers through the BBB, various target-
ing vectors can be considered for their chemical modifi-
cation. However, if systemic administration is chosen, a 
high percentage of drug nanocarriers is accumulated in 
the liver and spleen. As a result, only a small fraction of 
drugs reaches brain tumors, significantly reducing the 
efficacy of therapy. After intravenous injection, nanocar-
riers might be covered by serum albumin, immunoglobu-
lins, and other components of the blood, leading to their 
uptake by macrophages. Further, NPs can be accumu-
lated in the spleen, lymph nodes, and liver by the reticu-
loendothelial system [391]. To exclude the macrophage 
internalization, PEGylation coating of NPs is usually 
performed, increasing the half-life of NPs circulation in 
the organism. However, in our opinion, this additional 
modification of NPs surface significantly complicates 
their further transfer into the clinical practice due to the 
multistep process. We suppose that the synthesis of NPs 
should be simple and efficient for intravenous admin-
istration with a high targeting ability. The use of cells or 
their derivatives can improve the efficiency of drug deliv-
ery, even though currently it remains at the initial stage 
[351]. There are several factors that prevent this strategy 
from reaching the clinics. First of all, a robust framework 
for ex  vivo manipulation with patients’ cells should be 
created, which significantly complicates the therapeutic 
conditions and increases the final cost of this therapy. 
Second, the variability and time frame for the collection 
of biological samples required to obtain the appropriate 
drug delivery platform should be improved. Third, under-
standing of the mechanisms of cell tropism to the tumor 
is a key factor. Without this knowledge, it will be hard to 
predict the interaction between the injected cell-based 
vehicles and other biological objects in the live organism.

Besides, it is critical to develop combined methods of 
therapy. Single therapies are often insufficient for the 
treatment of brain tumors [7]. To improve the therapeu-
tic efficiency, combined therapies are used, acting syn-
ergistically on different brain tumors and reducing the 
chance of tumor resistance. Two types of combined ther-
apy can be distinguished. The first one is based on a sim-
ple administration of two or more compounds that have 
different mechanisms of action on tumors. As discussed 
above, brain delivery of most compounds is challenging 
and seems to be insufficient, according to the few clinical 
trials [7]. Of course, the use of appropriate targeted nano-
carriers can solve this problem. But the current targeting 
efficiency is still too low to reach the required concentra-
tion of the delivered compounds in the brain. The sec-
ond type of combined therapy suggests the use of several 
different treatment procedures. For instance, adjuvant 

therapy combines systemic chemotherapy, radiation 
therapy, hormone therapy, targeted therapy, biological 
therapy, and surgical intervention. In addition, choos-
ing a relevant biological model is always a bottleneck in 
the design of new pharmaceuticals. This problem is the 
most common one for a wide range of cancers, especially 
in case of brain tumors. Thus, to predict the clinical out-
come of therapeutic approach, an adequate animal model 
representing the complex of immunological cell-to-cell 
interactions in human brain tumors should be developed.
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