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Abstract: Cerebellar mutism syndrome (CMS), also known as posterior fossa syndrome, is an entity
that entails a constellation of signs and symptoms which are recorded in a limited number of pediatric
patients who have been operated on mainly for tumors involving the posterior cranial fossa, and
more precisely, the region of the vermis. Medulloblastoma seems to constitute the most commonly
recognized pathological substrate, associated with this entity. The most prevalent constituents
of this syndrome are noted to be a, often transient, although protracted, language impairment,
emotional lability, along with cerebellar and brainstem dysfunction. Apart from that, a definite
proportion of involved individuals are affected by irreversible neurological defects and long-lasting
neurocognitive impairment. A bulk of literature and evidence based on clinical trials exist, which
reflect the continuous effort of the scientific community to highlight all perspectives of this complex
phenomenon. There are several circumstances that intervene in our effort to delineate the divergent
parameters that constitute the spectrum of this syndrome. In summary, this is implicated by the
fact that inconsistent nomenclature, poorly defined diagnostic criteria, and uncertainty regarding
risk factors and etiology are all constituents of a non-well-investigated syndrome. Currently, a
preliminary consensus exists about the identification of a group of diagnostic prerequisites that are
managed as sine qua non, in our aim to document the diagnosis of CMS. These include language
impairment and emotional lability, as proposed by the international Board of the Posterior Fossa
Society in their consensus statement. It is common concept that midline tumor location, diagnosis of
medulloblastoma, younger age at diagnosis, and preoperatively established language impairment
should be accepted as the most determinant predisposing conditions for the establishment of this
syndrome. A well-recognized pathophysiological explanation of CMS includes disruption of the
cerebellar outflow tracts, the cerebellar nuclei, and their efferent projections through the superior
cerebellar peduncle. Despite the relative advancement that is recorded regarding the diagnostic
section of this disease, no corresponding encouraging results are reported, regarding the available
treatment options. On the contrary, it is mainly targeted toward the symptomatic relief of the
affected individuals. The basic tenet of our review is centered on the presentation of a report that
is dedicated to the definition of CMS etiology, diagnosis, risk factors, clinical presentation, and
clinical management. Apart from that, an effort is made that attempts to elucidate the paramount
priorities of the scientific forum, which are directed toward the expansion our knowledge in the era
of diagnostics, prevention, and therapeutic options for patients suffering from CM, or who are at risk
for development of this syndrome.
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1. Introduction

The term cerebellar mutism syndrome is universally utilized in order to express the
loss, transient or permanent, of speech that is intimately related to any kind of cerebellar
insult. The historically first report of this term (CMS) is encountered in 1958, referring to a
pediatric patient who was unable to speak after resection of a space-occupying lesion that
was involving the posterior fossa. This entity was termed akinetic mutism [1,2]. The first
relevant cases of postoperative mutism affecting the pediatric population, which were an
operation involving the structures of the posterior fossa, were recorded in the 1970s [3,4].
Additionally, in 1984, Wisoff and Epstein shared their clinical knowledge, centered on
pediatric patients who developed delayed onset cranial nerve palsies, emotional lability,
and speech impairment. They collectively named this group of deficits as pseudobulbar
palsy [5]. After that, in 1985 Rekate et al. presented the first small case series that was
attempting to describe this entity. A manuscript was published that focused on six cases of
cerebellar mutism that occurred after an operation involving the posterior cranial fossa [6].
Kirk et al. utilized the term posterior fossa syndrome in order to describe the same
combination of clinical and neurological findings that was attributed to the term cerebellar
mutism syndrome [7]. After this initial demarcation of that pathological entity, over
400 cases have been recorded in the literature [8]. In the majority of cases, cerebellar mutism
is not observed as an isolated neurological finding, but, instead, it is a component of a more
complex constellation of neurological deficits. More precisely, it accompanies a widespread
cluster of neurological, emotional, and behavioral disturbances. Based on the complexity
of this entity, as well as on the fact that it incorporates multiple independent signs and
symptoms, the term cerebellar mutism is frequently encountered in the existent literature
as cerebellar mutism syndrome or posterior fossa syndrome. According to a recently
published paper [1], this syndrome is determined by the simultaneous occurrence of
symptoms, which include mutism/reduced speech, emotional lability, cerebellar syndrome,
brainstem dysfunction, hypotonia, and oropharyngeal dysfunction/dysphagia. There is a
wide consensus regarding this definition of the syndrome [9–13].

Regarding the most common conditions that accompany this syndrome, it is widely
accepted that the most common scenario refers to children that have undergone an opera-
tion for a pathologic condition that affects the posterior cranial fossa. Nevertheless, it is not
restricted to this patient population, and it may accompany other pathologic conditions that
are affecting the cerebellum, either in adults or in children [14,15]. In childhood, the greatest
proportion of solid space-occupying lesions involves the central nervous system and, more
specifically, the cerebellum (approximately 80% of them) [16]. Mutism is considered a
severe and devastating adverse neurological sequelae of neurosurgical approaches centered
on the resection of tumors of the posterior fossa, and its relative prevalence could not be
underestimated. Its clinical course is largely unpredictable, with the spontaneous resolution
being the most frequent outcome. Nevertheless, this is not true for the other deficits that
constitute this entity. Namely, dysarthria, cognitive, and behavioral disturbances as well
as language disorders that are evident during the mute phase are not always adequately
resolved, and thus constitute a disabling condition for the patient.

The exact prevalence of cerebellar mutism syndrome after operations that involve the
region of the posterior fossa in the pediatric population remains to be specified, probably
because the recognition of relevant cases underestimates their true prevalence as the
diagnostic criteria are not strict and universally adopted. Nevertheless, it ranges between
11% and 29% [8], even though more recent prospective studies that incorporated larger
groups of pediatric patients reported an incidence of 27.7% [17] and 24% [11] respectively.
The patients’ mean age at presentation was 6–7 years, based on those reports. Nevertheless,
whenever sex and patient age were investigated as possible independent predisposing
conditions for the establishment of the syndrome, no statistically significant correlation or
differentiation could be established. On the contrary, the histopathology of the offending
lesion was recognized as a potential determining factor of the risk for the establishment
of the syndrome. Namely, medulloblastoma resection indicated a higher correlation rate
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(40%), in comparison with pilocytic astrocytoma (16%) or ependymoma (4%) [12,17–21].
There is significant variability regarding the estimated rate of occurrence of this syndrome
after an operation on the posterior cranial fossa. This could be attributed, at least in part,
to the absence of strict definition criteria for the syndrome [9,22,23]. Another important
parameter of this syndrome is related to the determination of the most important risk
factors that have an impact on the possibility of the establishment of relevant neurological
deficits. Namely, midline tumor location and medulloblastoma histologic variant [24–28],
younger patient age [9], left-handedness, aggressive resection, infiltration of the brainstem,
and tumor diameter > 5 cm have been implicated accordingly.

Another implicating factor was considered to be the existence of pre-surgical language
deficiencies, although this association was based on a smaller patient population [29].
Although the entity of cerebellar mutism syndrome is inherently related to tumor lesions
of the cerebellum, sporadically cases have been reported that implicated other pathologic
conditions as precipitating factors. These included trauma [30], stroke [31], and inflamma-
tion [32].

2. Methods
2.1. Search Strategy

We executed a specific term-related search via the aid of the Thomson Reuters Web
of Science database, in order to recognize the most highly cited articles related to brain
metastasis, until December 2022. Our query term was: “cerebellar mutism syndrome”
OR “post-operative cerebellar mutism syndrome” OR “posterior fossa syndrome”. More-
over, no refinement of the results by using restriction criteria, such as publication dates
was performed.

2.2. Clinical Presentation and Time Course

The cerebellar mutism syndrome is chronically evolving into three consequent, succe-
sive phases. More precisely, cerebellar mutism is not evident after the initial recovery of the
patient from the operation. Instead of that, there is a time interval between the operation
and the establishment of the syndrome, which varies from a few hours up to several days
following the operation [11,33]. Moreover, mutism is always a transient disability with
unpredictable duration, with reports depicting a time range between a few days to several
months [14]. The resolution of mutism is not spontaneous and follows a gradual process.
As is already mentioned, after the mute phase, several parameters of the syndrome continue
to be evident, to various extent and in different combinations (motor speech and language
deficits, cognitive, emotional and behavioral disorders).

During the mutistic phase, high-pitched crying is the only clinical sign that is relevant
with vocalization [11]. During this phase, a constellation of neurological signs may be
evident, indicating the existence of cerebellar and/or brainstem injury. These may include
ataxia, involuntary eyelid closure, pyramidal tract signs, horizontal gaze paralysis, cranial
nerve palsies, and oropharyngeal dyspraxia [7]. The spectrum of this syndrome incorpo-
rates behavioral and emotional disturbances, which may manifest with emotional lability,
apathy, and autistic-like behavior [34,35]. Bizarre personality changes may be evident as
forced laughing or crying.

The dissolution of the components of mutism does not follow a universal pattern but,
instead, can follow one of several different alternative models [36,37]. The most commonly
encountered patterns include dysarthria, which is not accompanied by any signs of higher
language dysfunction [38]. Alternatively, a language disorder without dysarthria may
be recorded. Another clinical scenario is that behavioral disturbances constitute the next
manifestation of this syndrome. However, this concept is not universally accepted, as some
researchers consider that dysarthria is a common characteristic that is evident in virtually
every patient who is recovering from the acute phase of the syndrome [39]. The existence
of long-term neurological deficits, as well as persistent neurocognitive impairment, has
been widely accepted as constituents of that entity [18,40,41]. Differences in evaluation
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criteria and subgroups of selected patients could be the incriminating factor, capable to
interpret the divergent non-consistent findings of reported trials. It would be beneficial to
adopt universally accepted methods, centered on the evaluation of speech and language
outcomes for upcoming studies. Because of that, the Posterior Fossa Society made an
attempt to define this syndrome as a ‘postoperative pediatric cerebellar mutism syndrome,
characterized by delayed onset mutism/reduced speech and emotional lability, commonly
accompanied by hypotonia, oropharyngeal dysfunction, cerebellar motor deficits, cerebellar
cognitive affective syndrome, and brain stem dysfunction [12].

Attempting to define the specific components of dysarthria attributed to cerebellar
mutism syndrome, the most commonly reported features include the existence of reduced
speech rate and the utilization of short but grammatically correct speech. In addition, there
is a report [37] that was centered on two children that had a telegraphic language in the
post-mutistic phase.

Regarding the behavioral changes that characterize the post-mutistic phase, these
share a lot in common with autism. It is a common concept that the affected children have
a decreased ability to be part of a team with their colleagues and avoids physical and eye
contact. Another important remark is that speech is devoid of emotional inflections and is
seldom utilized as a means of communication [37]. Emotional disturbances are frequently
present and consist of lability and irritability [36,37]. Regarding the long-term constituents
of cerebellar mutism syndrome, they consist of ataxia, speech or language dysfunction,
including dysarthria and dysfluent/slower speech, and intellectual impairment [11].

As already mentioned, the Posterior Fossa Society held an international consensus
meeting and defined the discrete aspects of this post-operative syndrome. The condition is
typically viewed as a pediatric syndrome, the core features of which are: (1) mutism occurs
after resection of a cerebellar mass lesion; (2) there is generally a delayed onset of speech
loss after a brief interval of 1–2 days of normal speech post-surgery; (3) mutism is transient
and generally lasts from 1 day to 6 months; (4) mutism is followed by severe dysarthria
which usually recovers favorably in 1–6 months but may persist in some cases; (5) there are
frequent associations with other neurological disturbances, such as long tract signs and
neurobehavioral abnormalities.

On the contrary, several exclusion criteria have been adopted. More precisely, children
who never had been mute after surgery to the posterior cranial fossa were not included in
the analysis. In order to ensure group homogeneity, mute children who were not were also
not considered as able to be incorporated in that group. Moreover, children with mutism
that was related with atraumatic or infectious origin, along with cases of mutism that are
established after brainstem surgery are excluded. The main reason for that is related to the
fact that there exists a significant possibility that diffuse injury, that is cable of extending
beyond the boundaries of cerebellum, to accompany these cases.

3. Discussion
3.1. Possible Causes of Cerebellar Mutism

The fact that this syndrome is accompanied by a wide, and divergent, spectrum of
clinical manifestations, which come to clinical attention at different time periods, is an
obstacle to the establishment of a universal anatomic-pathophysiological circuit, capable to
interpret this entity. Several proposals have been adopted, hypothesizing that local tissue
damage of the cerebellum and brainstem should be implicated in the development of the
syndrome. Apart from that, dysfunction of regions of the cerebral cortex, because of damage
to cerebello-cortical pathways, should be taken into consideration. Another important
factor that may be of relevant importance is the discrimination of the offending pathological
substrates under the terms permanent and transient (e.g., edema). The proposed offending
mechanisms should not be considered contradictory. On the contrary, they may share
different and distinct roles in the pathophysiology of cerebellar mutism syndrome, acting
at individual time points.
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The current concept regarding the pathophysiologic explanation of the clinical features
of the syndrome that occur during its distinct phases could be summarized under the
following statements:

Mutism itself is inherently related to supratentorial dysfunction, mediated by crossed
cerebello-cerebral diaschisis. This refers to a condition that is characterized by an asym-
metry of blood flow or metabolism in supratentorial structures contralateral to a remote
cerebellar lesion [42–49]. Injury of the dentato-thalamocortical pathway is suggested
to be the offending pathology, intimately related with the crossed cerebello-cerebral
diaschisis [49,50]. There are reports that support the existence of an association between the
damage to the frontal cortex and mutism [45–48]. Another fact that supports that concept is
the existence of reports which correlate behavioral disturbances in the pediatric population
with cerebellar mutism with frontal cortex dysfunction [34,49–51]. Based on that evidence,
we could state that the initial phase of symptoms relevant to cerebellar mutism is primarily
attributed to cerebral cortical dysfunction, caused by crossed cerebello-cerebral diaschisis.

Regarding dysarthria, its anatomic substrate has been proposed to be damage of the
dentate and interposed nuclei, as well as in the cerebellar cortex, with lesions located on
the paravermal lobule VI [52–54]. This is supported by the intimate anatomical relationship
of cerebellar nuclei to the cerebellar midline, rendering them vulnerable to (permanent or
transient) lesioning during tumor resection.

A distinct role of the cerebellum in language function, which is not limited to motor
speech articulation, has been extensively investigated [55]. Agrammatic speech was the
most frequently encountered component of aphasia of cerebellar origin· the posterolat-
eral hemispheric region, along with the adjacent compartments of the dentate nuclei are
considered to contribute to the linguistic process.

Finally, intra-operative tissue damage to the region of the vermis is reported to share
an intimate relationship with persisting affective disturbances as part of the ‘cerebellar
cognitive affective syndrome’ [56]. Apart from that, a lot of researchers have developed
imaging-based predictive models in order to elucidate the underlying pathophysiology of
CMS [26,57].

3.2. Neuroimaging and CMS

The DTC pathway represents an important outflow tract from the cerebellar nuclei
towards the cerebral cortex, as it connects the dentate nucleus, via the contralateral red
nucleus and thalamus, to the contralateral cerebral cortex There is consensus that interrup-
tion of this pathway constitutes the main pathological substrate for CMS [8,58]. Abnormal
signal intensities in regions that involve the proximal efferent cerebellar pathway, the
middle cerebellar peduncle, and the vermis have repeatedly been reported [35,38,42,59–61].
A recent survey identified that lesions that are located along with the cerebellar outflow
could be considered predictors for the development of CMS [62].

The existence of postoperative vermian lesions should not be considered as equiv-
alent to the development of CMS. Several experts state that the recognition of diffusion
abnormality in the region of the vermis is not assumed as mandatory for the appearance of
CMS [42,63]. Another useful sequence that is capable of assessing the integrity of white
matter tracts is diffusion tensor imaging, and this has been utilized in order to assess the
integrity of the DTC pathway in cases of established CMS.

Intraoperative MRI could be considered a sufficient adjunct in order to verify the
existence of MRI abnormalities that take place during or immediately after the operation.
More precisely, diffusion-weighted imaging [64] can verify the existence of vasogenic or
cytotoxic edema, intimately related to the surgical approach.

3.3. Pathophysiology and Anatomy

Albeit numerous hypotheses have been proposed, centered on the pathogenesis of
POPCMS (post-operative cerebellar mutism syndrome), a detailed delineation of the un-
derlying pathologic substrate needs to be performed. The development of this syndrome is
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intimately related to several anatomical structures that are located in the anatomical terri-
tory of infratentorial and supratentorial compartments. This fact has led to the suggestion
that a variety of circuits are implicated, as well as domes that are located both in the vicinity
of the surgical field and at a distance from that, are responsible for its appearance [65,66].

An intraoperative surgical lesion located to the relevant anatomical substrates, more
precisely the pECP (proximal efferent cerebellar pathway), has been widely accepted as a
precipitating factor for the establishment of POPCMS. A common immediate post-operative
imaging finding is the establishment of cerebral edema in the vicinity of the resection
cavity, which could be vasogenic or cytotoxic in origin. Post-operative edema reaches its
maximum density at about 24 h after the operation, remains relatively consistent for the next
3 days, and is gradually disappeared at post-operative day 7 [67]. The importance of that
remark is enhanced by several radiological studies, which have established the existence
of a definitive correlation between edema in the pECP domes and the establishment of
POPCMS [35,38,68]. The availability of intra-operative MRI has led to the admission
that the edema should be intimately correlated with surgical interventions and not with
other pathophysiological interactions [69]. All these references suggest the implication
of direct surgical maneuvers in the region of the pECP as an offending mechanism for
POPCMS, along with the direct axonal injury that is inevitable sequelae of the surgical
approach [70,71].

Another implicated mechanism includes the tissue damage that is provoked by the
thermal injury that is related to the operative procedure [58]. Researchers mention that
the increased heat which is associated with aspiration of tumor tissue via the use of CUSA
could potentially be the offending mechanism of the tissue damage to the brain parenchyma
which surrounds the lesion, more precisely the pECP structures [72–75]. The anatomical
distribution of this insult shares a lot in common with the distribution of the abnormal
signal patterns that are delineated on the DWI sequence in individuals suffering from
POPCMS. In accordance with that hypothesis, it has been mentioned that the restricted use
of CUSA, in combination with avoidance of excessive retraction, as well as the judicious
utilization of electrophysiological monitoring, is an effective means, aiming toward the
reduction of the incidence of POPCMS [68].

3.4. Anatomical Substrate of CMS

It is almost universally accepted that damage that involves the DTC pathway consti-
tutes the main anatomical substrate of CMS [76,77]. Several different pathophysiologic
mechanisms have been implicated in the context of DTC disruption, namely cerebral cere-
bellar diaschisis, edema, perfusion deficit, and cerebellar vermis injury. A brief description
of the aforementioned mechanisms follows.

3.5. Cerebral Cerebellar Diaschisis

This phenomenon is described as the functional deficit that refers to a definitive region
of the brain and is causally related to damage that has occurred to another, remote, brain
region. The net effect of such an insult is the generation of an excitatory input to the inhib-
ited area [42]. The disruption of these pathways leads to the loss of excitatory input from
the cerebellum to the relevant recipient cerebral cortical areas. These include the motor,
premotor, and prefrontal regions, which are known to interfere with the functions that are
affected by cerebellar mutism and result in their loss [8,42,78]. Although diaschisis was
initially encountered as a transient phenomenon, recent evidence has shown that it could be
related to long-term damage, which was affecting the associated remote parenchymal brain
areas [79]. This remark offers the substrate in order to justify the language and cognitive
defects that were registered in a great percentage of patients suffering from CMS, even
1 year after the establishment of its diagnosis [11,38]. There seems to be a time delay
between the establishment of remote hypoperfusion from the onset of symptoms, which
displays a significant variation among different studies [80,81]. Nevertheless, this observa-
tion may serve as an interpretation for the delayed onset of CMS symptoms.
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3.6. Edema

The development of postoperative edema is an additional suggested mechanism,
mainly due to the fact that its appearance and evolution follow a parallel time course with
the relatively delayed onset of CMS [60]. Supportive evidence on that is derived from
diffusion tensor imaging studies, which have definitively stated the correlation between
edema and the development of post-operative mutism, located in the superior cerebellar
peduncles, the pons, and mesencephalon [35,60]. Nevertheless, a drawback of this proposed
mechanism is related to its inability to provide an explanation about the fact that mutism
does not subside after the resolution of the postoperative edema, whereas a group of
symptoms may persist lifelong [35].

3.7. Perfusion Deficit

This theory provides an answer to our question regarding the delayed onset of CMS.
According to that, it may be causally related to the development of perfusion deficit. The
establishment of postoperative vasospasm could provide a meaningful explanation for
the delay in the onset of CMS. Apart from that, the transient ischemia that eventually
follows vasospasm is in accordance with the clinical establishment and potentially delayed
remission of CMS that occurs with the re-establishment of blood flow [71,82].

3.8. Cerebellar Vermis Injury

Destruction of tissue structures that refers to the cerebellar vermis and is related to the
surgical approach to the offending lesion has been recognized to be of critical importance
in the development of CMS [77]. We have identified connections of the vermis with the
cerebellar nuclei that are believed to constitute a major contributor to the establishment
of fluent speech [77,83]. The trans-vermian approach, which involves splitting of the
vermis in order to surgically approach tumors in the midline of the posterior fossa, has
been proposed as a potential contributing factor, albeit its contribution is not completely
elucidated [77,84,85].

3.9. Prevention and Treatment

Although initially, most experts considered that dysarthria that was attributed to post-
operative CMS could recover in a short-term fashion without any residual deficits [38,86],
this concept was not confirmed by subsequent studies. More precisely, it was realized
that a wide spectrum of permanent defects was observed, the most evident of which was
persistent dysarthria, language impairment, and dysphagia [11,87,88]. De Smet et al. [89]
and Huber et al. [90] conducted studies centered on the long-term course of dysarthria
encountered under the term CMS. More precisely, Smet stated that all pediatric patients
suffering from pCMS manifested dysarthria in the early time-course of CMS, whereas in
91.7% of them, persistent motor speech deficits were recorded up to 12 years after surgery.
Their recorded data were in accordance with other findings, which reported persistent
motor speech defects in the long-term, and approved the standpoint that CMS should
be considered as a prognostic factor for long-term dysarthria in children operated for
cerebellar tumors [29,87].

Another important aspect of this issue is the identification of the most important
risk factors that are crucial for the establishment of CMS. More precisely, according to
Di Rocco et al. [29], the existence of pre-operative language impairment was considered
an important risk factor for the development of CMS. They demonstrated that, when
they examined patients with posterior fossa tumors, even preoperatively, impairment of
selective speech and language functions may be evident. More precisely, there are only
limited data published in the literature focused on this issue [91–93]. Apart from the results
published by Di Rocco et al., several other articles simply mentioned the existence of
preoperative language impairment as a potential risk factor for the establishment of CMS
postoperatively [10,11,15,37,48,65,76,78]. On the contrary, only Beckwitt–Turkel evaluated
extensively the significance of preoperative language impairment, and conducted similar
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conclusions [94]. According to a recent report [42], 28.5% of children were suffering
from preoperative language impairment and developed cerebellar mutism postoperatively.
Moreover, when these patients were followed up for a protracted time period, it appeared
that the complete resolution of CMS occurred after a protracted time period.

Another issue that is of great clinical significance relates to the rehabilitation of speech
and language deficits that were established during and after the mute phase. Currently,
no treatment modality centered on the speech and language deficit of CMS is available.
Nevertheless, several efforts have been performed in order to ameliorate the neurologi-
cal deficits that are associated with mutism in its acute stage, based on pharmaceutical
therapeutic regimens. Namely, corticosteroids, fluoxetine, thyrotropin-releasing hormone,
bromocriptine, midazolam, and zolpidem have been utilized, albeit their efficacy is not
verified at all [95].

Despite an effective and widely accepted therapeutic protocol for these children
lacking, timely intervention for children harboring tumors of the posterior fossa has been
considered an effective means to minimize speech and language deficits [96]. Based on
current data, it seems that rehabilitation of speech and language in children suffering
from CMS necessitates a multi-phase implementation of evidence-based guidelines and
recommendations that specify and underline the most significant risk factors, the registered
specific deficits, and clinical data that are centered on the evolution of the syndrome over
time [97–99]. Another issue that has extensively been studied in the literature is centered
on the long-term neurocognitive outcomes of children suffering from CMS. According to
most studies, it seems that these children demonstrate a wide spectrum of neurocognitive
and neuroemotional deficits during their follow-up after their operative treatment [11,68].

3.10. Minimizing the Risk of CMS

A systematic effort directed toward the elimination of the possibility of the develop-
ment of CMS should be oriented on the comprehensive determination of the implicated
predisposing factors, either preoperative or intraoperative [84]. Attempting to develop a
preoperative evaluation scale to stratify the potential risk, Walker et al. [26] introduced a
model which included six relevant factors. These included primary tumor location, as it
was specified by MRI, bilateral middle cerebellar peduncle involvement (invasion and/or
compression), dentate nucleus invasion, and age at surgery > 12.4 years. The ability to
accurately predict that risk based on data that could be collected preoperatively has a
great impact on the determination of our surgical plan, namely the selection of the safest
approach and the extent of anticipated resection.

Another important issue that still constitutes a matter of considerable debate relates
to the selection of the safest surgical approach, which is a comparison between a telovelar
versus a trans-vermian surgical corridor. A lot of studies exist that have proposed that
a split-vermis approach may be related to a substantial risk of CMS [100–103]. On the
contrary, other authors have noted that the avoidance of splitting of the vermis did not have
any significant impact on the development of CMS [104]. Although the telovelar approach
has been considered an alternative surgical option that is beneficial in terms of avoiding
CMS, its real advantage remains questionable. According to a recent review, the combined
selection of a telovelar approach, the restricted use of CUSA, as well as the avoidance of
intraoperative retraction constitutes the most effective method for the prevention of the
development of CMS. Our tenet should be to refine our surgical strategy and investigate
the majority of available measures in order to implement a therapeutic protocol capable of
essentially minimizing the overall prevalence of CMS.

3.11. Treatment and Rehabilitation of Behavioral and Cognitive Problems in the Context of CMS

Children who fulfill the criteria of CMS are at increased risk for significant long-term
cognitive and psychosocial morbidity. This fact makes it necessary to form a group of pa-
tients for whom interventions and rehabilitation should constitute the main priority, except
for interventions that focus exclusively on motor and speech functions. The primary areas
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of rehabilitation therapy that these children receive target the motoric and speech/language
deficits that are established in the acute period after the initiation of pCMS and this is
achieved via physical, occupational, and speech/language therapies. A lot of patients are
not implemented in the acute phases of pCMS with cognitive interventions. This is mainly
related to the fact that cognitive issues are recognized later on, during a later stage of CMS.

3.12. Cognitive Rehabilitation

Research on cognitive remediation programs is mainly focused on two distinct cate-
gories: (1) Face-to-face therapeutic sessions targeting specific functions such as executive
function, attention, memory, and academic achievement, and (2) computer-based inter-
vention programs that are implemented within the home setting. The net result of these
interventions is an improvement in visual working memory and parent-reported learning
difficulties. Notably, the most noticeable improvement was recorded in children with
higher intellectual functions, recorded before the application of any treatment [86,105]. A
table with major findings of previous case series/studies on CMS follows (Table 1).

Table 1. Pivot table, incorporating all relevant major findings of previous case series/studies, relevant
with CMS.

Major Findings Relevant Case Series/Studies

Interruption of the dentato-thalamo-cortical (DTC) pathway is the
main cause for CMS.

Avula S. Radiology of post-operative pediatric cerebellar
mutism syndrome [58]
https://doi.org/10.1007/s00381-019-04224-x

Direct cerebellar injury is the likely reason for persisting deficits after
the mute period.

Küper et. al. Cerebellar mutism [15]
https://doi.org/10.1016/j.bandl.2013.01.001

Restoration of motor functions and communication relies heavily
upon physiotherapy and occupational, speech, and language therapy

Paquier et. al. Post-operative cerebellar mutism syndrome:
rehabilitation issues [86]
https://doi.org/10.1007/s00381-019-04229-6

The appearance of complex dysarthria in the postoperative period is
a negative prognostic factor for the long-term persistence of speech
disturbances

Bianchi et al. Cerebellar mutism: the predictive role of
preoperative language evaluation [92]
https://doi.org/10.1007/s00381-019-04252-7

Use of a telovelar over a transvermian approach, avoidance of the
CUSA, and minimization of heavy retraction during surgery reduce
the incidence and severity of CMS

Cobourn et al. Cerebellar mutism syndrome: current
approaches to minimize risk for CMS [84]
https://doi.org/10.1007/s00381-019-04240-x

4. Conclusions

Cerebellar mutism constitutes a considerable and possibly underestimated compli-
cation in a relatively large number of children that underwent a posterior fossa surgery
for tumor resection, especially when it is located in the midline. It self-subsides on its
own but is frequently associated with long-term speech deficits and other neurocognitive
deficits. Preoperative tumor infiltration into the brainstem, as well as evidence of post-
operative insult of the bilateral dentato-thalamocortical tract, are currently considered the
major determinant factors for the establishment of this syndrome. When the implicated
pathophysiological substrate for this syndrome is considered, dysfunction of the frontal
cortex, mediated by crossed cerebello-cerebral diaschisis, is the presumed primary factor.
There is a lack of definitive evidence centered on the treatment of this syndrome, and this,
at least, may be attributed to the fact that there is a lack of any controlled studies directed
toward the treatment or prevention of cerebellar mutism.

Another important issue of this entity is that it is often accompanied by long-term
neurological symptoms, as well as neurocognitive deficits that persist throughout life.
These defects adversely affect the overall quality of life and pose significant restrictions to
the patients’ ability to carry out activities of daily living, imposing great obstacles to patients
and their families. It is of utmost importance to obtain a deeper knowledge of all aspects of
this syndrome and the most effective way to achieve this goal is through a concentrated

https://doi.org/10.1007/s00381-019-04224-x
https://doi.org/10.1016/j.bandl.2013.01.001
https://doi.org/10.1007/s00381-019-04229-6
https://doi.org/10.1007/s00381-019-04252-7
https://doi.org/10.1007/s00381-019-04240-x


Children 2023, 10, 83 10 of 14

effort to formalize the criteria needed for the designation of the syndrome, specify the most
relevant clinical predictors and outcomes, and recognize the pathophysiologic substrate
and an effective management protocol for CMS.
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