
Abstract. Brain tumours are the leading cause of paediatric
cancer-associated death worldwide. High-grade glioma (HGG)
represents a main cause of paediatric brain tumours and is
associated with poor prognosis despite surgical and
chemoradiotherapeutic advances. The molecular genetics of
paediatric HGG (pHGG) are distinct from those in adults, and
therefore, adult clinical trial data cannot be extrapolated to
children. Compared to adult HGG, pHGG is characterised by
more frequent mutations in PDGFRA, TP53 and recurrent
K27M and G34R/V mutations on histone H3. Ongoing trials
are investigating novel targeted therapies in pHGG. Promising
results have been achieved with BRAF/MEK and PI3K/mTOR
inhibitors. Combination of PI3K/mTOR, EGFR, CDK4/6, and
HDAC inhibitors are potentially viable options. Inhibitors
targeting the UPS proteosome, ADAM10/17, IDO, and XPO1

are more novel and are being investigated in early-phase trials.
Despite preclinical and clinical trials holding promise for the
discovery of effective pHGG treatments, several issues persist.
Inadequate blood-brain barrier penetration, unfavourable
pharmacokinetics, dose-limiting toxicities, long-term adverse
effects in the developing child, and short-lived duration of
response due to relapse and resistance highlight the need for
further improvement. Future pHGG management will largely
depend on selecting combination therapies which work
synergistically based on a sound knowledge of the underlying
molecular target pathways. A systematic investigation of
multimodal therapy with chemoradiotherapy, surgery, target
agents and immunotherapy is paramount. This review provides
a comprehensive overview of pHGG focusing on molecular
genetics and novel targeted therapies. The diagnostics, genetic
discrepancies with adults and their clinical implications, as
well as conventional treatment approaches are discussed.

Intracranial and intraspinal tumours are the most common
solid tumours in paediatrics (1). They are the second leading
cause of cancer-associated death in children and adolescents
under the age of 19 in the USA and Canada (1), with an
average annual age-adjusted incidence of 6.06 per 100,000
in the USA between 2012 and 2016 (2). Brain tumours are
now the leading cause of paediatric-cancer-associated death
worldwide, surpassing deaths from childhood leukaemia (3).
Gliomas represent the highest proportion of childhood brain
tumours (4, 5) accounting for 60% of paediatric brain tumour
cases (5, 6), of which approximately half are classified as
high grade (6, 7).
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Classification. Gliomas are brain tumours of neuroepithelial
origin and are derived from glial cells which are responsible
for neuronal support (5). The classification of gliomas into
grades follows the histopathological criteria set out by the
World Health Organisation (WHO) (8) (Table I). 

Tumour behaviour, survival rates, and treatment strategies
vary according to WHO grades I-IV. Generally, gliomas are
divided into three categories: low-grade gliomas (LGG)
(WHO grade I-II), high-grade gliomas (HGG) (WHO grade
III-IV) and diffuse intrinsic pontine gliomas (DIPG) which
is a unique HGG entity with peak incidence between 6 and
9 years of age (9). DIPG belongs to the category of
malignant midline gliomas, also known as diffuse midline
gliomas (DMGs), which occur in the thalamus, brainstem, or
spine, in contrast to non-midline, hemispheric HGGs which
include anaplastic astrocytoma and glioblastoma multiforme
(GBM). While 5-year survival rates for paediatric LGG are
as high as 95%, HGG prognosis remains poor with reports
indicating only 15-35% 5-year survival rates and median
overall survival (OS) of 10-18 months (8), despite
continuous advances in surgical and adjuvant chemoradiation
therapies (10, 11). There is still no effective treatment for
DIPG which carries only 10% 2-year survival, decreasing to
2% at 5 years (12-14). Hence, there is an evident need to
develop more effective treatments than the current standard
of aggressive surgery with chemoradiation, particularly
owing to the considerable toxicities and subsequent long-
term sequelae in developing children and adolescents.

Objective. Significant research efforts are aimed at
understanding the underlying tumour biology, genetics, and
molecular profile of HGG to help uncover possible
therapeutic targets for novel targeted agents (15). This
review discusses the diagnostics, molecular genetics, driver
oncogenic mutations of childhood malignant glioma along
with recently discovered genetic and epigenetic aberrations,
the clinical implications of these, and possible treatment
approaches including molecular targeted therapies.

Diagnostics

Molecular diagnostic classification. Genetics offer significant
insight into the prognosis, clinical course, and treatment
optimisation of glioma. Hence, although histology-based
diagnosis and grading remains the most reliable, quick and
cost-effective diagnostic method for brain tumour
classification, in 2016, the WHO updated its brain tumour
classification system to include molecular characteristics with
histology for tumour grading (8, 16). An example classification
algorithm is shown in Figure 1. Tumours are classified into
astrocytomas, oligoastrocytomas, oligodendrogliomas or
glioblastomas with further subclassification. Information from
tumour histological appearance, genetic testing, and tumour

grading are integrated in reaching a final diagnostic
classification of the tumour entity. Of note, molecular features
may override information from histological assessment in
reaching a final tumour classification.

Diagnostic discrepancies by age. Paediatric cancers differ
from those in adults in terms of clinico-biological behaviour,
genetics, and molecular characteristics. Tumour location
classically differentiates paediatric brain tumours from those
in adults, with the former occurring in infratentorial brain
regions (brainstem and cerebellum) and the latter occurring in
the supratentorial compartment (cerebral hemispheres and
midline structures above the tentorium) (17, 18). Paediatric
HGGs (pHGG) display a different mutation profile to adult
HGGs (aHGG) (19-21) as children display more stable
genomes with fewer mutations, however, pHGG and aHGG
are similar histologically and cannot be differentiated by
histology alone (22). Due to their distinct genetic alterations,
pHGGs and aHGGs should be considered as separate tumour
entities (23, 24). Routine diagnostic assessment of diffusely
infiltrating HGG for all ages should at least include formalin-
fixed and paraffin-embedded tumour samples with
haematoxylin and eosin (H&E) staining and reticulin silver
staining in addition to immunohistochemistry against glial
fibrillary acidic protein (GFAP), p53, and Ki-67 (proliferation
marker) (22). However, recommendations for additional
staining differ between pHGG and aHGG. In the paediatric
population, staining for microtubule-associated protein 2
(MAP2), oligodendroglial lineage marker (Olig-2) and alpha-
thalassemia/mental retardation X-linked (ATRX) can be
useful, while isocitrate dehydrogenase 1 (IDH1) is of less use
in young children who rarely display this mutation (22).

Molecular Genetics of pHGG

Advances in genome-wide array-based sequencing
technologies, allowing for whole genome and exome
sequencing, have contributed ground-breaking insights into the
genetic alterations underpinning pHGG, uncovering unique
molecular drivers (25-29) (Table II). The subsequent paragraphs
in this section discuss the role of core signalling pathways,
histone modifications, and other genetic mutations in pHGG.

Core mutated signalling pathways.
Three core signalling pathways commonly implicated in aHGG
have also been implicated in pHGG but with different frequency
of mutated effectors (25). These pathways include the receptor
tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphatidylinositide
3-kinase (PI3K) pathway, p53, and retinoblastoma (RB)
pathway (Figure 2) (30). Within each signalling pathway
multiple different effectors can be mutated at different
frequencies. The mutation profile helps delineate HGG subtypes
but also indicates potential therapeutic targets (15) (Figure 2).
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EGFR and PDGFRA. Components of the RTK/RAS/PI3K
pathway and downstream effectors are commonly activated
in pHGGs through gain of function and loss of function
mutations, gene fusions, and gene amplifications (25). EGFR
(ERBB1) and PDGFRA are both receptor components of the
RTK/RAS/PI3K signalling cascade which is affected in 90%
of aHGG (25). Yet, in pHGG EGFR mutations are less
frequent (31, 32), with gene amplification and EGFRvIII
overexpression detected in only few (4%) pHGGs (33-35).
In contrast, amplification and/or activating mutation of
PDGFRA, which encodes platelet-derived growth factor
receptor-α (PDGFRα), has been shown to drive glioma
formation in mural models resembling human diffuse HGGs
(36, 37). This is the most common event in DIPG and
paediatric non-brainstem high-grade glioma (pNBS-HGG),
occurring in 20-30% of pHGG (20, 21, 24, 26, 27, 29, 36,
38, 39) whilst rarely occurring in aHGG (40).

Other RTKs and NTRK. RTK gene fusions have also been
identified in ALK, ROS1, FGFR, MET, and NRTK genes
particularly in a subset of hemispheric HGG, specifically GBM
and in younger infants, corresponding to heterogeneous survival
rates (41-43). Concurrence of point mutations or amplifications
affecting at least two of the MET, ERBB2 (HER-2), EGFR and
PDGFRA genes suggest that genomic activation may be a
mechanism for co-activated RTKs (44, 45). Neurotrophic
receptor kinase (NTRK) gene fusions involving the kinase
domain of the three NTRK genes and the five N-terminal fusion
partners have been observed in 10% of NBS-HGGs and 4% of
DIPGs (24). These drive glioma formation in vivo by activation
of the PI3K/MAPK signalling (24). NTRK gene fusions have
been identified in 40% of infantile (<3 years old) NBS-HGGs
yet this percentage is much lower in the paediatric population
overall (24, 24, 43, 46). They have also been observed in aGBM

and pLGG though with far less recurrence (47-49). The
prognosis for pNBS-HGG in children <3 years of age is
significantly better than for older children (50). NTRK can be
a valuable therapeutic target for this group (25). 

BRAF. The serine threonine protein kinase BRAF is a
component of the RAS/RAF/MEK/ERK signalling cascade
downstream of the MAPK pathway which regulates cellular
survival, metabolism, and proliferation. BRAF point
mutations which substitute valine to glutamic acid at position
600 (BRAFV600E) resulting in activation of the MAPK
pathway are observed in 10-15% of pHGG (51, 52) and 17%
of pLGG (53) and co-occur with PDGFRA amplification
(40) and homozygous CDKN2A deletions (54, 55). BRAF
mutations occur in cortical brain tumours and have not been
identified in DIPG. BRAF mutations and CDKN2A deletions
dysregulate cellular proliferation (54) which is thought to
drive malignant transformation of pLGG to a subset of
secondary pHGGs (41, 56) which are associated with slightly
improved OS compared to primary HGGs (42, 57). 

PI3K–AKT–mTOR. Constitutive PI3K–AKT–mTOR pathway
activation is a hallmark of GBM (30, 44). Mutations,
amplifications and deletions affecting the PI3K complex, and
its downstream effectors occur in different frequencies in
aHGG and pHGG. Mutually exclusive mutations in PIK3CA
(encoding for the p110α catalytic PI3K subunit) and PIK3R1
(encoding for the regulatory subunit) are observed in 7-21%
and 6-11% of aHGGs respectively (58). PIK3R1 mutations are
observed in similar frequency in pHGG, including DIPG.
PIK3CA mutations are more frequently observed in DIPG (15-
25%) and less common in supratentorial HGG (5%) which
corresponds to adult presentations (39, 59-64). The tumour
suppressor gene PTEN on chromosome 10q is mutated in 5-
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Table I. World Health Organization (WHO) tumour classification for gliomas including tumour biology, histology, and prognosis. 

WHO grade                                  Description

I (circumscript)                            Non-malignant tumours of low proliferative potential associated with cure and 
                                                     long-term survival following surgical resection.

II (low grade)                               Not evidently malignant tumours of low proliferative potential, however, may infiltrate 
                                                     and tend to transform into high grade or recur. Survival typically >5 years.

III (diffuse, high-grade)               Malignant appearance characterised by nuclear atypia and mitotic activity; tend to grow fast and infiltrate or recur. 
                                                     Patients often require additional radiation or chemotherapy. Survival typically does not exceed 3 years.

IV (high-grade)                            Malignant appearance characterised by cellular atypia, mitotic activity and necrosis; tend to grow rapidly and 
                                                     infiltrate or recur; aggressive phenotype. Heterogenous survival times depending on treatment and patient data, 
                                                     often not exceeding 1 yeara.

aCaution is advised for WHO grade IV as some subtypes, such as medulloblastomas, feature much higher survival rates of 80% at 5 years.
Information collated and summarised from (16). 



15% of pHGGs while loss of 10q heterozygosity is observed
in 30% (23, 28, 29, 31, 59). These figures are lower than
aHGGs which feature 25-40% PTEN mutation and 80% loss
of 10q heterozygosity (65-67). Occasionally, AKT
amplification (2%) and FOXO mutation (1%) may contribute
to downstream signalling activation (30, 44).

RB pathway. RB pathway dysregulation is common in both
pNBS-HGGs and DIPG. CDKN2A codes for the tumour
suppressor genes p16/INK4a and ARF which keep cell cycle
progression in check along with p21 (68). Homozygous deletion
of CDKN2A and CDKN2B is exclusive to pNBS-HGG tumours
and almost entirely absent in DIPG (20, 21, 26). Notably, 30%
of DIPGs feature amplifications in CDK4/6 or CCND1/2/3 (26,
29, 38, 69), which code for cyclin D-dependent kinases and
cyclin D family members, respectively. These amplifications
facilitate pRB phosphorylation which catalyses the release of
E2F1 transcription factor to promote transcription of genes
required for G1 to S phase transition (68). 

p53 pathway. TP53 mutations are more common in pHGG
(35-37%) than aHGG (20-29%) (70), with higher frequencies
reported in DIPGs (42-50%) than in pNBS-HGGs (18-35%)
(24, 32, 39). TP53 mutations are also less frequent (9%) in
children <3 years and these cases also observe a better
prognosis (71). p53 pathway mutation frequencies in DIPGs
(42-50%) and pNBS-HGGs rise up to 83% when including
alterations to other pathway elements such as CDKN2A
(ARF) and MDM2 (25).

Histone modifications.
H3.1/H3.3 K27M and G34R/V: In 2012, two independent
studies on paediatric GBM (23) and DIPG (72) produced
landmark discoveries implicating recurrent somatic histone H3
gene mutations in pHGG tumorigenesis (Figure 3) (25) which
are extremely rare in aHGG (23). These recurrent mutations
occur on histone tails, at or near important modification sites,
specifically affecting genes that encode for the histone variants
H3.3 (encoded by H3F3A) and less frequently H3.1 (encoded
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Figure 1. Simplified classification algorithm for diffuse gliomas incorporating molecular genetics in addition to histology. Tumours are classified
into astrocytomas, oligoastrocytomas, oligodendrogliomas or glioblastomas with further subclassification. Information from tumour histological
appearance, genetic testing, and tumour grading are integrated in reaching a final diagnostic classification of the tumour entity. Note, molecular
features may override information from histological assessment in reaching a final tumour classification. Information adapted from WHO
classification. IDH, Isocitrate dehydrogenase; WT, wild-type; MUT, mutant; ATRX, alpha-thalassemia/mental retardation X-linked gene; TP53,
tumour protein P53; NOS, not otherwise specified. 



by HIST1H3B, HIST1H3C) (72, 73). All H3 mutations in
pHGG are heterozygous and only 1 of 16 genes encoding H3
is mutated in any tumour, which clearly indicates a dominant
mutation that causes gain of function (25). Mutations result in
amino acid substitutions at two key residues in the N-terminal
of histone tails: lysine-to-methionine at position 27 (K27M)
and glycine-to-arginine (or less frequently glycine-to-valine)
at position 34 (G34R/V) (74). K27M and G34R/V are

mutually exclusive, present in 38% of paediatric and young
adult (<30 years) HGGs (70) and are not observed in LGGs
(23, 72, 75). They are also mutually exclusive with recurrent
point mutations in IDH1 (23).

Notably, H3 mutations are associated with specific
anatomical regions in the brain. G34R/V mutations are
observed in non-midline cortical tumours (hemispheric and
supratentorial) while K27M mutations are found in midline
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Table II. Select genetic and epigenetic molecular drivers in paediatric high-grade glioma with respective genomic analysis techniques used for
profiling.

Oncogenic driver                                                    pHGG type                                     Genomic analysis techniques                                    References

EGFR                                                                    pHGG, pGBM                       NGS, F-PHF, ICH, FISH, CISH, DHPLC,                      (65, 180, 181)
                                                                                                                         RT-PCR, qPCR, PNA-LNA PCR clamp, dPCR
PDGFRA gene amplification                          DIPG, pNBS-HGG               DNA/RNA microarrays, bioinformatic analyses,                          (38)
                                                                                                                        FISH and mutation screening (genetic analyser)
NTRK                                                                    DIPG, pHGG               WGS, WES, RNA-seq., microarray copy number and                    (182)
                                                                                                                        expression analysis using Affymetrix expression 
                                                                                                                               array, TERT promoter mutation analysis
ALK, ROS1, FGFR, MET, HER-2                           pHGG                     Targeted SNV, fusion profiling, copy number arrays,                  (43, 46)
                                                                                                                              transcriptome-wide discovery strategies, 
                                                                                                                                             WGS, WES, RNA-seq.
ACVR1 (ALK2)                                                   DIPG, pHGG                             Illumina WGS, allelic expression of                         (24, 64, 73, 183)
                                                                                                                                      ACVR1 sequencing, RNA-seq.
BRAF                                                                DIPG, pNBS-HGG                                  aCGH, SNP array, dPCR                                            (184)
CDKN2A/B                                                            pNBS-HGG                                                  WGS, dPCR                                                       (65)
Ras/Akt activation and YB1                                      pGBM                                        Microarray analysis, RT-PCR                                     (19, 185)
(inducing EGFR overexpression)

PIK3CA                                                                 pHGG, DIPG                                       qPCR, mutation analysis                                         (60, 186)
PIK3R1                                                                 pHGG, DIPG                                       qPCR, mutation analysis                                            (186)
PTEN (10q)                                                                 pHGG                                                FISH, HiMAP, PCR                                         (67, 187-190)
AKT amplification                                               pHGG, pGBM                                  Microarray analysis, RT-PCR                                     (19, 185)
FOXO                                                                    pHGG, GBM                            Post-translational analysis, IP analysis                                 (191)
CCDN1/2/3                                                                  DIPG                                                        PCR, WGS                                                    (65, 192)
CDK4/6                                                                        DIPG                                                       dPCR, WGS                                                    (24, 65)
TP53                                                                 DIPG, pNBS-HGG                                                  dPCR                                                             (65)
MDM2                                                              DIPG, pNBS-HGG                                                  dPCR                                                             (65)
H3K27M mutation in histone 3.1/3.3              DIPG, pNBS-HGG                                Illumina WGS, SNP array,                                        (72, 76)
(H3F3A/HIST1H3B, HIST1H3C)                                                                                    telomere specific FISH

G34R/V                                                                pGBM, pHGG                                      ChIP-seq analysis, NGS                                             (193)
MYCN                                                                  pHGG, pGBM                               MeDIP, GSEA, WGS, ChIP-Seq.                                      (77)
ATRAX, DAXX                                                  pHGG, pGBM                                                      WGS                                                          (23, 91)
MLL, KDM5C, KDM3A and JMJD1C                     pHGG                                            PCR amplification, WGS                                              (4)
chromatin-remodelling genes

MGMT hypermethylation                                   pHGG, pGBM                                                MSP, MLPA                                                    (6, 122)
and subsequent silencing

IDH1/2                                                                        pGBM                                                       PCR, WGS                                                        (96)
ADAM3 (8p12)                                                    pHGG, DIPG                                                    RT-PCR                                                       (28, 194)

NSG, Next-generation sequencing; F-PHFA, fluorescence resonance energy transfer (FRET)-based preferential homoduplex formation assay; ICH,
immunohistochemistry; FISH, fluorescence in situ hybridization; CISH, chromogenic in situ hybridization; DHPLC, denaturing high pressure liquid
chromatography; RT-PCR, reverse transcription polymerase chain reaction; qPCR, quantitative polymerase chain reaction; PNA-LNA PCR clamp,
peptide nucleic acid-locked nucleic acid polymerase chain reaction; dPCR, duplex polymerase chain reaction; WGS, whole-genome sequencing;
WES, whole-exome sequencing; RNA-seq., transcriptome sequencing analysis; SNV, single nucleotide variants; aCGH, array comparative genomic
hybridisation; HiMAP, human interactome map (bioinformatics site); IP, immunoprecipitation; ChIP-seq., chromatin immunoprecipitation with
parallel DNA sequencing; MeDIP, methylated DNA immunoprecipitation; GSEA, gene set enrichment analysis; MSP, methylation-specific
polymerase chain reaction; MLPA, (methylation-specific) multiplex ligation-dependent probe amplification.
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Figure 2. Core signalling pathways implicated in paediatric high-grade glioma depicting the types of mutations affecting different signalling components
and associated targeted therapy inhibitors. (A) Constitutively activated receptor tyrosine kinase (RTK), RAS-activated MAPK/ERK and PI3K/AKT/mTOR
signalling pathways; (B) p53-regulated retinoblastoma (RB) signalling pathway. Figure 2A adapted with permission from Mueller et al., 2020 (42). 
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Figure 3. Epigenetic modifications in paediatric high-grade glioma with associated targeted therapy inhibitors: (A) H3K27M mutations depress the function
of the histone methyltransferase (HMT) complex polycomb repressive complex 2 (PRC2) resulting in preferential KDM6-mediated histone demethylation
and transcriptional activation which can be countered with HDAC inhibitors. Loss of function mutations on KDM6 result in preferential PRC2-mediated
histone methylation and transcriptional repression which can be countered with EZH2 inhibitors or BET inhibitors. IDH1/2 mutations result in DNA
hypermethylation via TET2 inhibition from the oncometabolite 2-hydroxyglutarate which can be countered by IDH1 and IDH2 inhibitors; (B) G34R/V
H3.3 and K27M H3.1/3.3 mutations maintain transcriptional activity and upregulate oncogenic drivers by interfering with the H3K36me3 active mark and
reducing H3K27 global trimethylation, respectively. Figure 3A adapted with permission from Mueller et al., 2020 (42) and Long et al., 2017 (195).



paediatric non-brainstem HGGs (pNBS-HGGs), midline
GBM, and DIPG (thalamus, cerebellar vermis, brainstem,
and spine) (23, 72, 76). Moreover, the specific mutation
frequency and amino acid substitutions at histone H3 differ
between DIPG and pNBS-HGG (25). In DIPGs, H3
mutations are observed in 78% of cases, where 60% of
mutations are in H3F3A and 11-31% are in HIST1H3B.
Conversely, in pNBS-HGG only 35% exhibit H3 mutations,
where H3F3A and HIST1H3B K27M substitutions account
for 19% and 3% of cases respectively, while 14% are
somatic mutations in H3F3A leading to G34R substitution
which is not observed in DIPG (72). 

During malignant transformation, dysregulation of the
histone modification machinery affects the recruitment of
transcription factors and therefore patterns of gene
expression. Histone H3 mutations were shown to be of
particular significance as they rewire the epigenome to
maintain cell pluripotency and deliver oncogenic drivers
such as PDGFRA and MYCN in K27M and G34R/V
respectively (77, 78). The H3K27M mutation results in a
reduction of the global H3K27 trimethylation (H3K27me3)
by depressing the function of the histone methyltransferase
(HMT) complex polycomb repressive complex 2 (PRC2)
(42) (Figure 3). H3K27me3 is associated with transcriptional
silencing and chromatin condensation, inhibiting the
expression of genes that oppose normal development and
differentiation (79). Hence, H3K27 hypomethylation leads to
transcriptional activity at these loci (80). A recent systematic
review and meta-analysis totalling 474 pHGG patients across
6 studies concluded that the presence of H3K27M mutation
was independently and significantly associated with a worse
prognosis (HR 3.630, p<0.001) and shorter overall survival
(2.3 years; p=0.008) compared to their counterparts without
the mutation (81). Targeting H3K27 through lysine-specific
demethylase 1 (LSD1) inhibition via catalytic inhibitors has
been shown to exhibit selective cytotoxicity and promote an
immune gene signature that increases NK cell killing in vitro
and in vivo, representing a therapeutic opportunity for pHGG
(82). Conversely, G34R/V does not lead to global
hypomethylation of H3K27M but instead interferes with the
regulation of H3K36me3 which is an activating mark for
gene expression (77, 83). Alternatively, downregulation of
the H3K36me3 active mark may occur through mutation of
the H3K36 trimethyl-transferase SET domain containing 2
(SETD2) which occurs in a mutually exclusive pattern with
H3F3A G34R/V mutations (84). SETD2 loss-of-function
mutations are present in 15% of pHGG and 8% of aHGG
and is exclusively found in cerebral tumours (84).
H3K36me3 depletion following SETD2 downregulation
leads to an increased spontaneous mutation frequency and
chromosomal depletion (85). 

Novel data science and network reconstruction techniques
have enabled the identification and delineation of transcriptional

networks that reprogram high-grade glioma behaviour patterns.
These transcriptional regulatory networks act as enhances and
regulators of oncogenes and oncohistone variants observed in
paediatric glioma (i.e., K27M and G34 V/R) (86). Moreover,
three-dimensional genomic structural variations have the
potential to hijack transcriptional enhancers and gene co-
amplification contributing to the epigenetic landscape and
contributing to tumorigenesis in pHGG (87). The cellular
context also interacts with genetics, as oligodendrocyte
precursor cells have been shown to exhibit greater tumorigenic
potential to more differentiated malignant cell counterparts,
partly due to sustained by PDGFRA signalling. This signifies
potential candidate therapeutic targets (88).

ATRX/DAXX. Mutations affecting the chromatin remodelling
histone chaperone complex ATRX/DAXX, responsible for
H3.3 incorporation into telomeres, pericentric
heterochromatin and actively transcribed regions (89, 90),
have also been associated with paediatric gliomagenesis (91).
ATRX/DAXX mutations were identified in 31% of pGBM
samples, and in 100% of tumours harbouring G34R/V H3.3
mutations suggesting a synergy between the two mutations
(23), which are thought to be key in a subgroup of very
young patients with HGG (22). There is also an association
of H3.3 and or ATRX mutation with TP53 mutations (23).
ATRX and DAXX loss is strongly associated with alternative
lengthening of telomeres (ALT), particularly in concurrent
ATRX, H3F3A and TP53 mutations (92). ALT is a
telomerase-independent telomere maintenance mechanism
which enhances telomere lengthening leading to uncontrolled
cellular proliferation. ALT is a common phenotype in pGBM
and it typically presents with hypomethylation (23, 75).

Other epigenetic regulators. Recurrent mutations in other
histone writers and erasers and in chromatin-remodelling
genes including MLL, KDM5C, KDM3A and JMJD1C have
also been reported (24). These often co-occur with H3
mutations as observed in 91% of DIPG and 48% of
hemispheric HGG (24).

Other genetic signatures.
Recurrent methylation of the O6-methylguanine-DNA
methyltransferase (MGMT) promoter has been observed in
pHGG with studies indicating a 30% recurrence in pHGG
overall (53) and 40-50% recurrence in paediatric GBM (54,
55). MGMT promoter methylation is more frequent in adult
GBM (45%) compared to pHGG (16-50%) (93). Mutations
in IDH, which encodes for isocitrate dehydrogenase, are
common in aHGG and almost entirely absent in pHGG (5%)
(75, 94). Most IDH mutations occur in adolescents >14 years
with one study showing 35% recurrence (52). Despite their
overall rarity in pHGG, IDH mutations are present in a subset
of paediatric patients suggesting a biological similarity of this
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subgroup with aHGG (42, 94, 95). In adult tumours, IDH
mutations are associated with better prognosis (96). Normally,
IDH1/2 enzymes convert isocitrate to α-ketoglutarate in the
citric acid cycle. IDH mutations result in neomorphic
enzymes that convert α-ketoglutarate to the oncometabolite
2-hydroxyglutarate which competitively inhibits the function
of TET enzymes responsible for DNA demethylation and
transcriptional activation (97). TET inhibition is associated
with carcinogenesis across malignancies (97, 98). ACVR1
(ALK2) which encodes a receptor serine threonine kinase that
mediates signal transduction for bone morphogenic protein
(BMP), is mutated in 20-32% of DIPGs and frequently co-
occurs with H3.1 K27M substitutions (44-46). Similarly to
H3K27M, ACVR1 mutations are only observed in brainstem
pHGGs and in DIPG patients of younger age, thus delineating
DIPG subgroups (25). Lastly, homozygous loss at 8p12
leading to loss of ADAM3A confirmed by quantitative real-
time PCR (qPCR) was observed in 16% of pHGGs including
one DIPG patient making it the most commonly deleted gene
in one study (28). 

Conventional Treatment Strategies 
and Long-Term Side Effects

Surgery. Initial treatment for pHGG is surgery aiming at
maximal safe surgical resection as the amount of resection

correlates to prognosis (99). Gross-total resection (GTR) is of
paramount importance as it offers the only chance for
significant survival benefit in patients. Subtotal resection
increases mortality by 50-100%, while the difference in survival
can reach up to 35 months (100). Yet, even when complete
radiographic GTR is achieved, some cancerous cells may still
remain due to the infiltrative nature of the disease as it is
practically impossible to achieve clear margin GTR without
significant morbidity or morality (10, 15). Therefore, adjuvant
therapy is offered to reduce chances of local recurrence. 

Radiotherapy. Focal radiation therapy within tumour margins
has become the mainstay adjuvant therapy for children >3
years old (50, 59), while younger children are treated with a
radiation-sparring approach using sole chemotherapy to
prevent radiotherapy-induced sequelae (101). Neurocognitive
problems, endocrinopathy, vasculopathy with stroke,
psychosocial issues and secondary malignancies are common
long term adverse effects of radiation (Table III) (102-106).
The standard dose of radiation for pHGG is 50-60Gy focal
radiation which is delivered in 180-200cGy daily dose
fractions over 6 weeks (107). Hyper-and hypo-fractionation
has not shown consistent benefit for pHGG (107). Still, hypo-
fractionation is being investigated for recurrent DIPG (108). 

Re-irradiation in the setting of recurrent disease has typically
been avoided due to dose-dependent radiotoxicities (41, 109)
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Table III. Late term adverse effects of treatment regimens for paediatric high-grade glioma. Information collated from Roddy and Mueller, 2016
(190).

                                                 Late term effects

Neurocognitive                        -   Mild to severe deficits in academic functioning and language ability 90.
                                                 -   Associated 15-25 IQ point decline; may be more severe in younger children (196). 
                                                 -   Radiotherapy induces neuronal cell apoptosis leading to microvascular injury preventing brain development (197).
Sensory                                    -   Peripheral neuropathy.
                                                 -   Ototoxicity, especially with alkylating agents. More severe in <5 years old (198).
Endocrine                                -   Growth hormone defect reported in up to 97% of survivors (199).
                                                 -   Radiotherapy causes thyroid hormone dysfunction in up to 60% of survivors (200). 
                                                 -   Future fertility problems and delayed puberty (201) due to follicular destruction associated with 
                                                    many chemotherapy and radiotherapy regimens (202).
Vascular                                   -   Moyamoya vasculopathya more prevalent in survivors (203).
                                                 -   Cavernous malformations and cerebral microhaemorrhages also more common (204).
                                                 -   30-fold increased risk of stroke (205).
Psychosocial deficits               -   Psychological distress and high rates of depression of up to 16% more than compared to controlled siblings (206).
                                                 -   Lower future life satisfaction and quality of life (207, 208).
                                                 -   Reduced employment due to intellectual and physical impairment (209). 
                                                 -   Reduced income compared to control siblings free of disease (210).
                                                 -   Poorer social skills compared to control siblings (207, 208).
                                                 -   Reduced rate of marriage (210) and fewer friends reported in survivors (211).
Secondary cancers                   -   Prone to primary thyroid carcinomas (papillary carcinoma) (212).
                                                 -   Prone to breast cancers (213).
                                                 -   Prone to secondary brain cancers (213).

aDisorder in which the carotid artery is progressively narrowed restricting blood flow to the brain.



though this is changing as recent studies demonstrate superior
median survival times from re-irradiation which was well-
tolerated in pHGG (110); re-irradiation is currently being
trialled for progressive or recurrent DIPG (111). Studies are
investigating combination of immunotherapies such as PD-1
immune checkpoint inhibitors with re-irradiation (112).
Combination immunotherapy with radiation is set to replace
standard chemoradiotherapy protocols in other solid tumours
(113). Radiotherapy can modulate the immune system and
mount an immune response causing immunogenic cell death
by enhancing tumour antigen retrieval (114). Radiotherapy
can initiate innate and adaptive immunity by conferring
pro-immunogenic effects in the tumour microenvironment
(115, 116).

Chemotherapy. Temozolomide (TMZ) is the standard
chemotherapeutic treatment offered for aHGGs as it increases
2-year survival rates from 10.4% to 26.5% when combined
with radiation (117). Even though multimodality therapy with
radiation and TMZ offers minimal survival benefit in children
(93, 118), TMZ is still typically used in current clinical
practice for newly diagnosed pHGG not enrolled in clinical
trial due to tolerability and ease of administration (15). TMZ
works as a DNA alkylating agent, eventually leading to single-
stranded and double-stranded DNA breaks to induce cell cycle
arrest at G2/M and apoptosis. It achieves this by methylating
DNA at the N-7 or O-6 positions of guanine residues (119).
TMZ is well-tolerated with minor toxicities including grade I
thrombocytopenia, neutropenia, or nausea even with long-term
therapy extending to 85 cycles (120). Although alkylating
agents are known to increase secondary cancer risk,
particularly acute myeloid leukaemia, there is no evidence to
support such risks with TMZ (121). However, long-term
effects of TMZ have not been studied in children yet.

Precision Medicine and Novel Treatments

There is a clear need to optimise the therapeutic management
of pHGG to improve survival, reduce recurrence rates, but
also minimize long-term adverse effects associated with
conventional aggressive treatments. Several clinical trials are
underway to investigate new molecular targeted therapies
(Table IV), but also chemoradiation sensitization strategies,
and immunotherapies.

MGMT promoter methylation as a biomarker for TMZ
treatment response. TMZ resistance is mediated via the DNA
repair gene MGMT. MGMT removes methyl adducts from
the O6-guanine position of damaged DNA, thus, reversing
the DNA damage induced by the action of TMZ. Hence, high
levels of MGMT indicate resistance to TMZ. In contrast, in
a subset of patients with MGMT promoter methylation,
resulting in transcriptional silencing of the gene, the

efficiency of DNA repair was reduced and response to TMZ
treatment was significantly higher (13.7 months with
methylated MGMT promoter vs. 2.7 months without) (122).
Therefore, MGMT promoter methylation is a predictive
biomarker for good TMZ response and can aid in treatment
stratification (123). 

NTRK, EGFR, FGRF and MET inhibitors. NTRK inhibitors
currently being trialled for pHGG include larotrectinib) (124-
127) and entrectinib (NCT02650401) which also targets
ALK, ROS1. RTK inhibitors targeting VEGF, ALK, WEE1,
BCR-ABL and RET are also being investigated as
monotherapy and as combination therapies in phase I/II trials
for pHGG (Table IV).

EGFR overexpression in glioma is associated with greater
tumour invasion and tumour cells resistance to treatment (128-
130). In aHGG, studies of EGFR inhibition using novel third
generation drugs such as osimertinib (AZD9291) have
demonstrated effectiveness in overcoming resistance and
mediating tumour regression (131). For pHGG, ongoing phase
II trials are investigating the use of drugs such as nimotuzumab
(NCT03620032, NCT04532229, NCT00561873, NCT006000
54), erlotinib (NCT00418327) and cetuximab (NCT01884740)
individually and in combination with mTOR inhibitors
(NCT02233049). The limitation observed with EGFR
inhibition is high recurrence rates due to acquired tumour
resistance tumour (132). However, combination therapy,
especially with PI3K inhibitors, has been shown to improve
treatment response in pHGG patients (133, 134). The efficacy
of FGFR inhibitors is being investigated in phase II trials for
advanced solid tumours and recurrent/progressive pHGG using
erdafitinib (NCT03210714) and cabozantinib (NCT02885324),
respectively.

MET signalling and high levels of c-MET are associated
with poor prognosis in GBM patients (135), thereby rendering
it a potential therapeutic target. A phase I trial is investigating
volitinib monotherapy in patients with recurrent/refractory
primary CNS tumours including pHGG (NCT03598244).
Volitinib has previously demonstrated preclinical efficacy in
rodents with MET-amplified GBM (136).

BRAF and MEK inhibitors (MAPK pathway). BRAF and
MAPK inhibitors are promising potential treatments for pHGG
tumours displaying BRAFV600E mutations having shown
remarkable efficacy in melanoma patients with the same
mutation. One case report demonstrated complete response in
a 12-years old child treated with vemurafenib for BRAFV600E
positive GBM (137). Other reports show benefit in BRAFV600E
positive pHGG from the MEK inhibitor trametinib and
BRAFV600E-specific inhibitors dabrafenib and vemurafenib
(52, 138). Studies are investigating BRAFV600E and MEK
inhibition with dabrafenib and trametinib in a subset of HGG
(NCT03975829, NCT04201457) and in combination with
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radiotherapy (NCT03919071). In pLGGs, BRAF inhibition is
promising with 40% objective response rate and prolonged
stable disease with a relatively well-tolerated side effect profile
(139-142). Yet, similarly to adults, resistance rates to BRAF
inhibitors are higher in the pHGGs compared to pLGGs given
that concurrent mutations such as in CDKN2A/B and ATRX are
more often (53). Paradoxical tumour hyper-progression
observed in LGG treated with the unselective BRAF inhibitor
sorafenib highlights the importance of careful consideration of
the molecular targets of such agents in clinical trial setting
(143, 144). Combination of MEK and BRAF inhibitors reduces
squamous cell carcinoma risk observed with BRAF
monotherapy in adult melanoma patients and improves survival
and response rates (144, 145).

PI3K/mTOR inhibitors. In August 2020, the brain-penetrant
PI3K/mTOR inhibitor paxalisib (GDC-0084) was granted
rare paediatric disease FDA-designation approval for DIPG
based on significantly improved survival benefit observed in
a phase II trial of patients with newly-diagnosed GBM with
unmethylated O6-MGMT promoter status who had
completed initial radiation with concomitant TMZ (146). A
first-in-paediatric phase I study is underway to investigate
the safety and preliminary antitumor action of paxalisib in
DIPG and DMG (NCT03696355). Additionally, the dual
PI3K and mTOR inhibitor LY3023414 is undergoing phase
II trial in advanced solid tumours including pHGG
(NCT03213678). Combination of PI3K/mTOR inhibitors
with dasatinib, an oral inhibitor against BCR-ABL and Src-
family tyrosine kinases, is undergoing phase II investigation
in PDGFRA-mutated tumours (NCT03352427). Recent in
vitro studies suggest that dual EGFR and PI3K inhibition
with or without HDAC inhibition is a viable therapeutic
option for adult and paediatric HGG warranting further
investigation in vivo (133, 147). PI3K/mTOR inhibitors also
represent an attractive therapeutic target for IDH-mutant
gliomas as they repress the oncometabolite 2-
hydroxyglutarate, the levels of which may serve as a
response-prediction biomarker (148).

CDK4/6 inhibitors. Clinically, CDK4/6 inhibitors function by
inhibiting the CDK4/6-dependent phosphorylation of the RB1
protein (NCT02255461) (54, 149). The dependent interaction
of CDK4/6 inhibitors with RB1, means the patient’s RB1
status must be screened prior to therapy (144). Murine DIPG
models have demonstrated a significant survival benefit from
cyclin/CDK complex inhibition using a highly selective non-
ATP competitive inhibitor of CDK4/6, namely PD-0332991
(54). Yet, clinical data from CDK4/6 inhibitor monotherapy has
not been promising (146, 150). Combination of CDK4/6
inhibitors with mTOR and MEK inhibitors (56), radiotherapy, or
chemotherapeutics are potentially viable options (146, 151, 152)
and are being investigated in clinical trials (NCT03709680,

NCT03355794, NCT03434262) following superior pre-
clinical results compared to CDK4/6 inhibitor monotherapy
(151, 152). Ensuring sufficient blood-brain-barrier penetrance
is paramount when investigating CDK4/6 agents with the
different agents demonstrating different brain-penetrance (152,
153). In the case of ribociclib, co-administration of the
ABCB1 inhibitor elacridar dramatically improves brain
penetrance (154).

HDAC inhibitors. Histone deacetylase inhibitors (HDACi)
have shown promising therapeutic potential in many
malignancies and have been investigated in HGG due to the
high frequency of K27M and G34R/V mutations. HDACis
prevent the condensation of chromatin and genetic silencing
caused by histone tail deacetylation (Figure 3A). Phase I and
II trials have investigated the efficacy of HDAC inhibitors
vorinostat, panobinostat, romidepsin and valproic acid for
paediatric and adult HGG (155). However, results from
HDACi monotherapy appear disappointing. Combination
therapy may improve prognosis, though further research is
necessary. Ongoing trials are investigating the combination
of PI3K and HDACi in a single drug agent (fimepinostat,
CUDC-907) in pHGG (NCT02909777, NCT03893487).
Encouraging preliminary results were reported in a phase I
study of MTX110, a water-soluble form of panobinostat,
which allows for convection-enhanced delivery (CED) at
potentially chemotherapeutic doses directly to the tumour
site via catheter system (CED or fourth ventricle infusion)
thereby bypassing the blood-brain barrier (NCT03566199).

DRD2/ClpP (ONC201). ONC201, a small molecule inhibitor,
crosses the blood-brain barrier and directly antagonises the
dopamine receptors D2 (DRD2) and D3 (156). ONC201 also
activates the mitochondrial caseinolytic protease P (ClpP)
protein which is dysregulated in cancer (157, 158). Both
DRD2 antagonism and ClpP activation from ONC201 result
in ATF4 and CHOP transcription factor-mediated upregulation
of the pro-apoptotic TRAIL receptor DR5 which induces
cancer cell death (42, 156). Anecdotal clinical evidence
suggests that ONC201 mediates significant tumour regression
in young adults and children with H3K27M-mutated HGGs
(159, 160) which is supported by pre-clinical data (161). A
phase II trial is underway to investigate ONC201 in paediatric
H3K27M-positive gliomas (NCT03416530).

Interestingly, mitochondrial DNA copy number depletion
has been associated with cancers including pHGG and is
postulated to underlie the molecular basis for the Warburg
effect (162). Shifting glucose metabolism to mitochondrial
oxidation with kinase modulators significantly inhibits
pHGG viability, and pairing this therapeutic strategy with
metformin to simultaneously target mitochondrial function
was shown to disrupt energy homeostasis of tumour cells,
increasing DNA damage and apoptosis (162).
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Table IV. Active clinical trials investigating novel targeted molecular therapies for paediatric high-grade gliomas.

Molecular target                                       Drug                                                Disease                               Upfront/recurrent                Trial             Phase

NTRK                                                 Larotrectinib                          Solid tumours (incl. CNS)                      Recurrent              NCT03213704        2
                                                           Larotrectinib                          Solid tumours (incl. CNS)                      Recurrent              NCT02637687       1/2
                                                           Larotrectinib                          Solid tumours (incl. CNS)                      Recurrent              NCT02576431        2
                                                             Entrectinib                            Solid tumours (incl. CNS)                      Recurrent              NCT02650401       1/2
                                                           Larotrectinib                                            HGG                                        Recurrent              NCT04655404        1
EGFR                                                 Nimotuzumab                                          DIPG                                         Upfront               NCT03620032        2
                                                           Nimotuzumab                                          DIPG                                         Upfront               NCT04532229        2
                                                           Nimotuzumab                                           HGG                                        Recurrent              NCT00561873        2
                                             Erlotinib, everolimus dasatinib                             DIPG                                         Upfront               NCT02233049        2
                                                Cetuximab + bevacizumab                    GBM, DIPG (CNS)                            Recurrent              NCT01884740      1/2
                                                               Erlotinib                              CNS tumours (incl. HGG)                      Recurrent              NCT00418327        1
                                                           Nimotuzumab                                          DIPG                                       Recurrent              NCT00600054        2
FGFR                                                    Erdafitinib                            Solid tumours (incl. CNS)                Upfront/recurrent        NCT03210714        2
                                                           Cabozantinib                                      GBM, HGG                                    Upfront               NCT02885324        2
c-MET                                                    Volitinib                        CNS tumours (incl. DIPG, HGG)                Recurrent              NCT03598244        1
VEGF                                                Bevacizumab                                           DIPG                                         Upfront               NCT04250064        2
                                                           Bevacizumab                                     HGG, DIPG                                   Upfront               NCT00890786        1
                                              Valproic acid + bevacizumab       CNS tumours (incl. HGG, GBM)                  Upfront               NCT00879437        2
                                                               Apatinib                                               HGG                                        Recurrent              NCT02848794       1/2
ALK                                                      Ensartinib                            Solid tumours (incl. HGG)                      Recurrent              NCT03213652        2
Tyrosine kinase WEE1          Adavosertib + radiotherapy                               DIPG                                        Upfront               NCT01922076        1
(SETD2 deficient 
tumours)
BRAF                                                  Vemurafinib                               Glioma (BRAF-mut)                           Recurrent              NCT01748149        1
                                                            Vemurafinib                      Advanced solid tumours (HGG)                  Recurrent              NCT03220035        2
                                                Dabrafenib + trametinib +                    LGG (BRAF-mut),                             Upfront               NCT04201457       1/2
                                                      hydroxychloroquine                           HGG (BRAF-mut)
                                                              PLX8394                             Solid tumour (BRAF-mut)                      Recurrent              NCT02428712       1/2
BRAF/MEK                              Dabrafenib + trametinib                  LGG (BRAF-mut)/ HGG                 Upfront/recurrent        NCT02684058        2
                                                  Dabrafenib + trametinib                 CNS tumours (incl. GBM)                Upfront/recurrent        NCT03975829        4
                                                Dabrafenib + trametinib +               CNS tumours (incl. HGG)                        Upfront               NCT03919071        2
                                                            radiotherapy
PI3K/mTOR                                        LY3023414                           Solid tumours (incl. CNS)                      Recurrent              NCT03213678        2
                                                           Temsirolimus                                           DIPG                                         Upfront               NCT02420613        1
                                                    Paxalisib (GDC-0084)                  CNS tumours (incl. DIPG,                       Upfront               NCT03696355        1
                                                                                                                      DMG, GBM)
BCR-ABL + mTOR                  Dasatinib + everolimus                 HGG/LGG/DIPG (PDGFR)               Upfront/recurrent        NCT03352427        2
RET + BCR-ABL                       Vandetanib, dasatinib                                    DIPG                                         Upfront               NCT00996723        1
CDK4/6                                      Palbociclib-isethionate                             CNS tumours                                 Recurrent              NCT02255461        1
                                                            Abemaciclib                                            HGG                                        Recurrent              NCT02644460        1
                                                              Ribociclib                                       CNS tumours                                 Recurrent              NCT03434262        1
                                                   Palbociclib, irinotecan,                      Solid tumours, DIPG                            Upfront               NCT03709680        1
                                                           temozolomide
                                                             Palbociclib                                Solid tumours, HGG                     Upfront/recurrent        NCT03526250        2
                                                            Abemaciclib                                     CNS tumours                                 Recurrent              NCT04238819        1
                                                              Ribociclib                            DIPG, HGG, CNS tumours                       Upfront               NCT03355794        1
HDAC                                                 Panobinostat                                            DIPG                                       Recurrent              NCT02717455        1
                                                               MTX110                         DIPG, DMG, thalamic gliomas                    Upfront               NCT04264143        1
                                                               MTX110                                     Medulloblastoma                              Recurrent              NCT04315064        1
                                                               MTX110                                               DIPG                                         Upfront               NCT03566199       1/2
HDAC + PI3K                        Fimepinostat (CUDC-907)               Solid tumours (incl. CNS)                      Recurrent              NCT02909777        1
                                                Fimepinostat (CUDC-907)           DIPG, HGG, medulloblastoma            Recurrent/upfront       NCT03893487        1
DRD2/ClpP                                            ONC201                                     HGG (H3K27M)                       Recurrent/upfront       NCT03416530        1
                                                               ONC201                                         GBM, HGG                                  Recurrent              NCT02525692        2
                                                               ONC201                                         HGG, DIPG                                   Upfront               NCT03134131      NA
IDH                                                       Ivosidenib                            Solid tumours (incl. CNS)                      Recurrent              NCT04195555        2

Table IV. Continued



IDH inhibitors and PARP inhibitors. IDH inhibitors induce a
dose-dependent reduction of the oncometabolite 2-
hydroxyglutarate and partially reverse histone modification and
DNA hypermethylation inhibiting tumour growth in vivo and
in vitro (163). Ivosidenib (AG-120) and enasidenib (AG-221),
two reversible selective inhibitors of IDH1- and IDH2-mutant
enzymes, respectively, have received FDA-approval for acute
myeloid leukaemia (AML). Early phase trials demonstrate an
acceptable safety profile from IDH1/2 inhibitors in advanced
solid tumours including glioma, however, further research is
necessary to evaluate efficacy (164, 165). 

IDH mutations inhibit DNA double-strand break repair by
homologous recombination. Hence, inhibiting the alternative
method of repair [base-excision repair (BER)] via poly ADP-
ribose polymerase (PARP) inhibitors is an effective strategy
to mediate synthetic lethality of IDH-mutant cancer cells
(166). BER also reverses DNA-alkylation damage from
TMZ, thus the addition of PARP inhibitors to TMZ may
increase efficacy compared to TMZ alone (41). BGB-290, a
PARP inhibitor which can penetrate the blood-brain barrier,
is being investigated in combination with TMZ for IDH-

mutant glioma (NCT03749187). In a phase I study, the
PARP inhibitor olaparib reliably penetrated recurrent GBM
at radiosensitizing concentrations (167). A phase II study of
olaparib in advanced solid tumours including pHGG is
underway (NCT03233204). Veliparib is also being
investigating in combination with TMZ (NCT03581292).

UPS proteasome inhibitors. The ubiquitin-proteasome
system (UPS) maintains cellular homeostasis by regulating
intracellular protein degradation through polyubiquitination
and subsequent degradation of the ubiquitin-tagged target
(168). Proteosome inhibitors act on this pathway,
preferentially inducing programmed cell death in
transformed malignant cells (168). Marizomib is being tested
for the first time in children in a phase I trial for paediatric
DIPG, individually, and in combination with the HDACi
panobinostat (NCT04341311). In adults, following
successful assessment in phase I trials for newly diagnosed
and recurrent GBM, marizomib is being investigated in
phase III trial in combination with standard TMZ-based
radiochemotherapy (NCT03345095). 
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Table IV. Continued

Molecular target                                       Drug                                                Disease                               Upfront/recurrent                Trial             Phase

PARP                                                     BGB-290                                LGG/HGG (IDH-mut)                   Recurrent/upfront       NCT03749187        1
                                                               Olaparib                             Solid tumours (incl. HGG)                Upfront/recurrent        NCT03233204        2
                                                 Veliparib + temozolomide                           HGG, GBM                                  Recurrent              NCT03581292        2
UPS + HDAC                    Marizomib (MRZ) + panobinostat                           DIPG                                       Recurrent              NCT04341311        1
ADAM10                                             INCB7839                                       GBM, DIPG                                  Recurrent              NCT04295759        1
IDO                                                      Indoximod                           DIPG, GBM, ependymoma                       Upfront               NCT04049669        2
SINE                                                      Selinexor                       Solid tumours (incl. HGG, GBM)                Recurrent              NCT02323880        1
EZH2                                                  Tazemetostat                                     CNS tumours                                 Recurrent              NCT03155620        2
                                                           Tazemetostat                              Solid tumours (HGG)                          Recurrent              NCT03213665        2
BET proteins                                      BMS-986158                          Solid tumours (incl. CNS)                      Recurrent              NCT03936465        1
PKC                                              2-hydroxyoleic acid
                                                     Solid tumours, HGG                                  Recurrent                                NCT04299191                   1/2
PD-1                                                    Cemiplimab                           CNS tumours (incl. HGG)                Upfront/recurrent        NCT03690869        1
                                                             Nivolumab                             DIPG, DMG (H3K27M)                        Recurrent              NCT02960230        2
BMI 1 + EZH2                                      PTC596                                          DIPG, HGG                                   Upfront               NCT03605550        1
Antineoplaston                             Atengenal, astugenal                                     DIPG                                         Upfront               NCT02742883        2
αvβ3 integrin                                       Cilengitide                                             DIPG                                       Recurrent              NCT01165333        1
FTI                                                        Tipifarnib                             CNS tumours (incl. HGG)                      Recurrent              NCT00070525        2

NTRK, Neurotrophic tyrosine receptor kinase; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; c-MET,
mesenchymal epithelial transition factor; VEGF, vascular endothelial growth factor; ALK, anaplastic lymphoma kinase; WEE1, nuclear
serine/threonine-protein kinase associated with western equine encephalitis; SETD2, SET domain containing 2; BRAF, serine/threonine-protein
kinase B-Raf; MEK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; mTOR, mechanistic target of rapamycin; BCR-ABL,
breakpoint cluster region protein-abelson murine leukemia viral oncogene homolog 1; RET, rearranged during transfection proto-oncogene; CDK,
cyclin-dependant kinases; HDAC, histone deacetylase; DRD2, dopamine receptor D2; ClpP, caseinolytic protease proteolytic subunit;IDH, isocitrate
dehydrogenase; PARP, poly-ADP ribose polymerase; UPS, ubiquitin/proteasome system; ADAM10, a disintegrin and metalloproteinase domain-
containing protein 10; IDO, indoleamine 2,3-dioxygenase; SINE, short interspersed nuclear element; EZH2, enhancer of zeste homolog 2; BET,
bromodomain and extraterminal domain; PKC, protein kinase C; PD-1, programmed cell death protein 1; BMI 1, B cell-specific moloney murine
leukaemia virus integration site 1; FTI, farnesyltransferase inhibitor; CNS, central nervous system; HGG, high-grade glioma; GBM, glioblastoma
multiforme; DIPG, diffuse intrinsic pontine glioma; DMG, diffuse midline glioma; LGG, low-grade glioma.



ADAM10/17 inhibitors. Currently, 22 different ADAMs (a
disintegrin and metalloproteases) have been identified with
functions of adhesion, sperm-egg fusion, angiogenesis,
migration, cell survival, degradation, and proliferation (169,
170). ADAM10/17 overexpression is observed in cancer cell
lines while deficiency decreases growth (170). INCB7839, a
novel, orally available, potent and selective inhibitor of
ADAM10 and 17 proteases designed to block EGFR pathway
activation, has been evaluated in phase I and II trials for
previously treated solid tumours, with promising results
especially in breast cancer (171). However, the dose-limiting
toxicity of INCB7839 monotherapy was deep venous
thrombosis. A phase I study is investigating INCB7839 in
children with recurrent/progressive HGGs (NCT04295759).

IDO inhibitors. Indoleamine 2,3-dioxygenase (IDO) acts as
an immune checkpoint preventing autoimmunity. In cancer,
increased IDO levels enable tumour immune escape. IDO-
inhibition reinstates cancer immune surveillance (172). In a
preclinical GBM model, the addition of IDO-blocking drugs
to TMZ and radiotherapy enhanced survival due to a tumour-
directed inflammatory response (173). In a phase I trial, the
combination of the IDO inhibitor Indoximod with radiation
and chemotherapy in upfront paediatric DIPG was tolerable
and offered prolonged survival to historical controls (174).
Hence, a phase II trial is underway (NCT04049669). IDO
inhibition in combination with radiotherapy, immunotherapy,
and immunogenic chemotherapies was serve as an important
adjunct in turning immunogenically ‘cold’ tumours into ‘hot’
(175). The importance of tumour immune profiling in pHGG
to characterise treatment responsiveness and further enhance
therapeutic decision-making has been highlighted in phase II
trials (176).

Selective inhibitors of nuclear export (SINE) and XPO1.
XPO1 (exportin 1) mediates nuclear export of cellular
proteins during interphase (177). Overexpression is
associated with poor prognosis across cancers including
gliomas (178). Selective inhibitors of nuclear export (SINE),
such as Selinexor, inhibit XPO1 and have demonstrated
safety and broad antitumour efficacy in a phase I study in
adults with advanced solid tumours including GBM (179).
Selinexor is being investigated in phase I trial in children and
young adults with recurrent or refractory solid tumours or
HGGs (NCT02323880).

Conclusion

Paediatric HGG is a highly heterogeneous disease
characterised by distinct molecular signatures which may be
used for diagnostics, clinical characterisation, and treatment
optimisation. Despite advances in targeted molecular
therapies, pHGG features poor outcomes. Future clinical

trials of pHGG will stratify patients into subgroups according
to their molecular characteristics through biomarker
identification. Numerous clinical trials are underway to
investigate novel targeted therapeutic agents. Combination
therapies may offer clinical benefit and require further
systematic investigation.
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