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Objectives. The purpose of this study was to determine the predictive significance of pretreatment pan-immune-inflammation
value (PIV) in patients with newly diagnosed glioblastoma multiforme (GBM) who received postsurgical radiation (RT) and
concurrent plus adjuvant temozolomide (TMZ). Methods. The outcomes of 204 newly diagnosed GBM patients were analyzed
retrospectively. Each eligible patient’s PIV was calculated using the findings of peripheral blood platelet (P), monocyte (M),
neutrophil (N), and lymphocyte (L) counts obtained on the first day of therapy: PIV = P ×M ×N ÷ L. We used receiver
operating characteristic (ROC) curve analysis to discover the ideal cutoff values for PIV concerning progression-free (PFS) and
overall survival (OS) outcomes. The primary and secondary end-points were the OS and PFS divergences across the PIV
groups. Results. In ROC curve analysis, the optimal PIV cutoff was 385, which substantially interacted with PFS and OS results
and categorized patients into low PIV (L-PIV; N = 75) and high PIV (H-PIV; N = 129) groups. Comparative survival analyses
showed that the patients in the H-PIV group had significantly shorter median PFS (6.0 vs. 16.6 months; P < 0:001) and OS
(11.1 vs. 22.9 months; P < 0:001) durations than those in the L-PIV group. The results of multivariate Cox regression analysis
indicated an independent and significant connection between an H-PIV measure and shorter PFS and OS outcomes.
Conclusions. The novel PIV was able to independently stratify newly diagnosed GBM patients into two groups with
fundamentally different PFS and OS outcomes following RT and concurrent plus adjuvant TMZ.

1. Introduction

Glioblastoma multiforme (GBM) is the most common adult
glial tumor, accounting for one-third of all primary brain
tumors [1]. Although maximal safe resection followed by
radiotherapy (RT) plus concurrent and adjuvant temozolo-
mide (TMZ) approach (Stupp regimen) yields the best
results, the prognosis of such patients is bleak, with an esti-
mated 5-year survival rate of less than 10% [2, 3]. Regretta-
bly, neither breakthroughs in imaging, surgical, and RT
techniques nor chemotherapy seemed to improve survival
rates beyond those obtained with the standard Stupp regi-
men [4, 5]. Tumor-treating fields (TTF) therapy was autho-

rized as a novel therapeutic strategy for newly diagnosed
GBM patients, as its concurrent use with adjuvant TMZ
resulted in a substantial survival benefit over standard adju-
vant TMZ alone [6]. However, even with TTF, the study’s
median overall survival (OS) rate was only 20.9 months,
reflecting the drama of such patients.

The widely recognized prognostic factors for newly diag-
nosed GBM include the patients’ age, Eastern Cooperative
Oncology Group (ECOG) performance and neurologic
function status, presence/absence of increased intracranial
pressure, recursive partitioning analysis (RPA) group, the
extent of resection, need for steroids, chemoradiotherapy
scheme, adjuvant chemotherapy choice, and the presence/
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absence of the genetic and molecular markers like isocitrate
dehydrogenase 1/2 (IDH-1/2) mutation, 1p/19q codeletion,
and O6-methylguanine-DNA methyl-transferase (MGMT)
gene promoter methylation [7, 8]. These characteristics,
alone or in combination, resulted in the successful stratifica-
tion of such patients. However, there are hard-to-explain
discrepancies in the ultimate survival results of patients with
indiscernible clinical, pathological, genetic, molecular, and
therapeutic aspects, underscoring the critical need for inno-
vative prognosticators with higher prognostic strengths.

There is substantial evidence that systemic inflammation
contributes mightily to the development of gliomas, the pro-
gression of the disease, and the prognosis of patients treated
with comparable therapies [9]. Several blood-borne indica-
tors of systemic inflammation, including cellular compo-
nents or serum proteins like platelets, monocytes,
neutrophils, lymphocytes, C-reactive protein, and albumin,
have been examined for their prognostic usefulness in
GBM patients. The findings of such research invariably indi-
cated a robust relationship between the survival results of
GBM patients and these biomarkers, either individually or
in unique combinations [10–18]. The pan-immune-
inflammatory value (PIV) is a newly created immune
inflammation measure that is a unique combination of
monocyte, platelet, neutrophil, and lymphocyte counts
[19]. In previous reports, PIV showed a strong association
with OS in patients with advanced colorectal cancer,
advanced breast cancer, esophageal cancer, small-cell and
non-small cell lung cancers, and Merkel cell carcinoma
who underwent surgery and/or systemic therapy [19–28].
Gliomas, particularly GBM, have a severe inflammatory
and immunosuppressive milieu that permits them to evade
the antitumor immune response, evidencing that the novel
PIV might be employed as a likely predictor of outcomes
in such patients [9]. As a result of the unavailability of
GBM research, we conducted this retrospective cohort study
to explore the possible prognostic utility of PIV in newly
diagnosed GBM patients who underwent the standard Stupp
regimen.

2. Patients and Methods

2.1. Study Population. We retrospectively reviewed the med-
ical records of all newly diagnosed GBM patients who
underwent postoperative RT plus concurrent and adjuvant
TMZ between February 2007 and December 2020 at Baskent
University Medical Faculty Department of Radiation Oncol-
ogy. Patients fitting the following requisites were eligible for
the study: aged 18 to 80 years, ECOG of 0-1, histologically
confirmed GBM diagnosis according to WHO classification,
no prior chemotherapy or cranial RT, available preoperative
and postoperative gadolinium-enhanced magnetic reso-
nance imaging (MRI) scans, available chemotherapy and
RT details, existing pretreatment complete blood count and
biochemistry tests with adequate hematologic, renal, and
hepatic functions, no direct evidence of active infection,
and no prior immunosuppressive disease history. The use
of nonstandard RT methods such as whole-brain RT or
hypofractionated RT, as well as the absence of TMZ admin-

istration during either the concurrent or adjuvant treatment
phases, were all exclusion criteria.

2.2. Ethics, Consents, and Permissions. The current study was
carried out following the postulates of the Helsinki Declara-
tion and its successors, and its methodology was approved
by the institutional review board before any patient data
was collected. Before commencing the prescribed therapy,
each qualifying patient signed an informed consent form
authorizing the collection and analysis of blood samples,
pathologic specimens, and academic publication of their
findings by themselves or lawfully commissioned deputies.

2.3. Treatment Protocol. All patients were first assessed and
underwent maximal safe resection if deemed practicable, as
instructed by our institutional norms for GBMs. A total dose
of 60Gy (2.0Gy/fx, for 30 days) of partial brain RT was
delivered after surgery using 3-dimensional conformal
(3D-CRT) or intensity-modulated RT (IMRT). According
to our corporate care standards, all treatment plans were
carried out using coregistered CT and contrast-enhanced
MRI fusion images irrespective of the RT technique used.
During the whole course of RT, concurrent TMZ (75mg/
m2/day, once daily, seven days a week, for six weeks) and
prophylactic trimethoprim-sulfamethoxazole against Pneu-
mocystis jirovecii were administered to all patients. Adju-
vant 6 to 12 cycles of TMZ (150/200mg/m2/day, for 5
days, every 28 days) were prescribed for all patients starting
at 3 to 4 weeks of completion of RT and TMZ. Additional
medications, like antiepileptic drugs, were utilized if only
clinically indicated.

2.4. Measurement of PIV. The PIV was calculated as P ×M
×N ÷ L, where P,M, N , and L represent pretreatment plate-
let, monocyte, neutrophil, and lymphocyte counts acquired
on the first day of concurrent RT and TMZ [19].

2.5. Response Assessment.We used brain MRI scans acquired
at 2- and 3-month intervals for the first and second follow-
up years and every 6 months or more frequently as needed
thereafter, following the recommendations of the Response
Assessment in Neuro-Oncology (RANO) working group
report to evaluate therapeutic response [29]. The records
indicated the best response achieved at any time point fol-
lowing the completion of the RT and concurrent TMZ.

2.6. Statistical Analyses. The primary endpoint was deter-
mined as the potential link between the pretreatment PIV
values and the overall survival (OS) results, defined as the
interval between the initiation of RT plus concurrent TMZ
and the date of death/last visit. The secondary endpoint
was the progression-free survival (PFS: the time interval
between the initiation of RT plus concurrent TMZ and the
date of the first observation of disease progression or
death/last visit). Medians and ranges were employed to
express quantitative variables, while categorical variables
were described as percentage frequency distributions. The
Pearson χ2 test was used to compare demographic charac-
teristics between groups. The research participants were sep-
arated into the requisite number of groups for intergroup
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comparisons if necessary. To estimate survival results,
Kaplan-Meier survival curves were operated, with two-
sided log-rank test analyses being employed for intergroup
comparisons. For multivariate comparisons, the Cox pro-
portional hazards model was applied, with those factors that
indicated significance in univariate comparisons included.
Any 2-tailed P < 0:05 was deemed statistically significant.

3. Results

Table 1 summarizes the pretreatment patient and disease
features of all 204 patients who participated in the investiga-
tion. The committed RT dosage and concurrent TMZ were
administered to all patients.

Of all the eligible patients, 19 (9.3%) were still alive and
14 (6.9%) remained progression-free after a median follow-
up time of 17.6 months (range = 2:4–108.3). The overall
study cohort’s median PFS and OS times were 10.3 months
(95% confidence interval (CI): 7.8–13.1 months) and 15.8
months (95% CI: 13.0–18.6 months), respectively. The

matching 5-year PFS, OS, and actuarial brain control rates
were 6.4%, 7.3%, and 6.9%, respectively. In the absence of
extracranial metastases, the most common treatment failure
patterns were infield (≥80% of T1 enhanced tumor volume
was within 95% isodose line) and marginal (>20% but
≤80% of the tumor volume was within the 95% isodose line),
which accounted for 83.5% and 8.2% of all cases,
respectively.

Receiver operating characteristic curve analysis deter-
mined the ideal PIV cutoffs as 382 (area under the curve
(AUC): 69.7%; sensitivity: 67.4%; specificity: 65.6%) for
PFS and 388 (AUC: 72.7%; sensitivity: 68.2%; specificity:
66.4%) for OS, which display significant connections with
the results (Figure 1). However, because both cutoffs were
numerically close, the research cohort was divided into two
groups with rounded cutoff values of 385 (arithmetic average
of two values) for intergroup comparisons: low PIV (L-PIV):
PIV < 385 (N = 75) and high PIV (H-PIV): PIV ≥ 385
(N = 129). Baseline demographic comparisons indicated that
the two PIV groups had nearly identical distributions of all

Table 1: Baseline patient and disease characteristics.

Characteristic
Whole cohort
(n = 204)

L-PIV
(n = 75)

H-PIV
(n = 129) P value

Median age, y (range) 58 (21-80) 60 (34-80) 57 (21-79) 0.73

Age group, n (%)

< 50 years 65 (31.9) 24 (32.0) 41 (32.2) 0.85

≥ 50 years 139 (68.1) 51 (68.0) 88 (68.2)

Gender, n (%)

Female 69 (33.8) 27 (36.0) 42 (32.6) 0.32

Male 135 (66.2) 48 (64.0) 87 (67.4)

ECOG, n (%)

0 122 (59.8) 44 (58.7) 78 (60.5) 0.71

1 82 (40.2) 31 (41.3) 51 (39.5)

RTOG RPA class, n (%)

III 79 (38.7) 29 (38.7) 50 (38.8) 0.91

IV 84 (41.1) 31 (41.3) 53 (41.1)

V 41 (20.2) 15 (20.0) 26 (20.1)

Median symptom duration, months (range) 2.1 (0.3-6.2) 2.3 (0.3-6.2) 1.9 (0.3- 4.8) 0.43

Symptom duration group, n (%)

< 3 months 148 (72.5) 55 (73.3) 93 (72.1) 0.88

≥ 3 months 56 (27.5) 20 (26.7) 36 (27.9)

Extent of surgery, n (%)

Gross total 71 (34.8) 25 (33.3) 46 (35.7) 0.69

Subtotal 99 (48.5) 38 (50.7) 61 (47.3)

Biopsy 34 (16.7) 16 (16.0) 9 (17.0)

Anticonvulsant use, n (%)

Yes 76 (37.3) 27 (36.0) 49 (38.0) 0. 48

No 128 (62.7) 48 (64.0) 80 (62.0)

Corticosteroid use, n (%)

Yes 114 (67.1) 41 (54.7) 73 (56.6) 0.54

No 90 (29.9) 34 (45.3) 56 (33.4)

Abbreviations: L-PIV: low pan-immune-inflammation value; H-PIV: high pan-immune-inflammation value; ECOG: Eastern Cooperative Oncology Group;
RTOG RPA: Radiation Therapy Oncology Group recursive partitioning analysis.
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characteristics (Table 1). The therapeutic features of the ini-
tial RT and TMZ, as well as adjuvant TMZ and salvage ther-
apies were, identical between the L-PIV and H-PIV groups
(Table 2). But, although the failure patterns were similar
between the two groups, comparative analysis showed that
the H-PIV cohort had a significantly higher total brain fail-
ure rate than its L-PIV counterpart (93.1 percent vs. 84 per-
cent, P = 0:02) (Table 2). Comparative Kaplan-Meier curve
estimates revealed that the H-PIV group had significantly
shorter median PFS (7.3 vs. 17.4 months, P < 0:001) and
OS (12.4 vs. 24.9 months, P < 0:001) durations than the L-
PIV group (Figure 2). Likewise, the 1-, 3-, and 5-year PFS
and OS rates were markedly inferior in the H-PIV group
(Table 2 and Figure 3). Of note, there was no 5-year survivor
in the H-PIV group compared to 20.8% of the L-PIV group.

Results of the univariate analyses revealed the pretreat-
ment H-PIV group (vs. L-PIV), subtotal resection/biopsy
only (vs. gross total resection), and RTOG RPA class V
(vs. class III-IV) as the factors related to significantly worse
PFS and OS outcomes, all of which maintained their inde-
pendent significance in multivariate analysis (Table 3).

4. Discussion

The present retrospective cohort study sought to determine
the prognostic power of novel PIV in newly diagnosed
GBM patients treated with standard Stupp regimen. Our
findings suggest a clear relationship between the patients’
adverse immune-inflammation status and poor clinical out-
comes, as a higher PIV (≥385) was associated with signifi-
cantly worse PFS and OS outcomes independent of the
other prognostic variables, namely the well-established
tumor resection type and the RTOG RPA classification.

The extent of the surgery, ECOG performance status,
and RTOG RPA class comprise the fittest conventional non-
genetic prognostic variables in GBM patients undergoing the
standard Stupp regimen. However, underpinning the need
for more objective stratification methods, these parameters
bear the risk of being influenced by the surgeon’s neurosur-

gical expertise and the radiation oncologists’ possible subjec-
tivity when recording the patient’s performance score
component of the RTOG RPA class. Additionally, similar
to our multivariate results, Chaichana et al. argued that
age, a component of the RTOG RPA classification, was not
a valid predictor of outcomes [30]. As a different approach,
limited research has shown that blood-borne platelets,
monocytes, neutrophils, and lymphocytes, which are ubiqui-
tous in the highly inflamed GBM microenvironment, have
high prognostic usefulness either alone or in distinct unique
blends [31]. Constructing sound grounds for our current
research, despite the facts conclusively confirming its prog-
nostic competence in various extracranial malignancies
[19–28], the unique PIV has never been examined for its
prognostic potential in GBM patients. In this respect, the
present research represents the first effort to investigate the
prognostic strength of novel PIV in newly diagnosed GBM
patients who underwent the standard Stupp regimen.

The most striking finding of our study was the demon-
stration of a strong and independent prognostic significance
for pretreatment PIV in such patients, with PIV ≥ 385 mea-
sures being linked to significantly lower median OS (12.2 vs.
22.9 months; P < 0:001) and PFS (10.3 vs. 16.2 months; P
< 0:001) than their PIV < 385 counterparts. What is more,
substantiating the long-term prognostic relevance of high
PIV values, none of the PIV ≥ 385 patients could survive
beyond 5 years, compared to a 5-year OS rate of 20.8% in
the PIV < 385 patients. Similarly, the 5-year PFS rate was
also substantially lower in the PIV ≥ 385 cohort (0% vs.
18% for PIV < 385). Given that these results were acquired
with using almost indistinguishable salvage regimens, they
collectively hint the PIV ≥ 385 GBM as an exceedingly
aggressive tumor phenotype that is resistant to both initial
standard therapy and salvage therapies. It is challenging to
discuss these results in a proof-based manner, as they have
no credible predecessors in the GBM literature. Nonetheless,
they appear to be in flawless harmony with previously pub-
lished PIV research for other cancer sites [19–28] as well as
one SII and one SIRI study recently reported by our team for
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Figure 1: The results of receiver operating characteristic curve analyses. (a) Progression-free survival. (b) Overall survival.
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GBM patients managed in a similar manner [17, 18]. The
findings of our previously published study on the effect of
SII in similarly treated GBM patients indicated notably
shorter median PFS (6.0 vs. 16.6 months; P < 0:001) and
OS (11.1 vs. 22.9 months; P < 0:001) durations in the high
SII than low SII patient cohorts [17]. The second trial, in
which we addressed at the prognostic importance of pre-
treatment SIRI, discovered that the high SIRI group had sub-
stantially inferior median PFS (6.6 vs. 16.2 months;
P < 0:001) and OS (12.2 vs. 22.9 months; P < 0:001) than
the high SIRI cohort [18]. Moreover, multivariate Cox
regression analysis substantiated SII and SIRI as indepen-

dent predictors of PFS and OS, respectively, in both
research. In comparison to SII and SIRI, the innovative
PIV is a more comprehensive biological marker since it
incorporates both platelet and monocyte counts into its for-
mula simultaneously: PIV = platelet count × SII or PIV =
monocyte count × SIRI. Therefore, our present findings
make sense given that both platelets and monocytes of PIV
are involved in increased cell survival and proliferation,
tumor development, worsened chronic local and systemic
inflammation, and decreased antitumor immunity.

The poor PFS and OS outcomes found in our H-PIV
GBM group may be explained by the presence of increased

Table 2: Treatment characteristics and clinical outcomes.

Characteristic
Whole cohort
(n = 204)

L-PIV
(n = 75)

H-PIV
(n = 129) P value

Adjuvant TMZ cycles, n (%)

1-6 84 (41.2) 33 (44.0) 51 (39.5) 0.32

7-12 120 (58.8) 42 (56.0) 78 (60.5)

Brain failure, n (%)

Absent 14 (6.9) 12 (16.0) 2 (1.6) 0.02

Present 190 (93.1) 63 (84.0) 127 (98.4)

Brain failure type, n (%)

None 14 (6.9) 12 (16.0) 2 (1.6) 0.19

Infield 164 (80.4) 56 (74.6) 108 (83.7)

Marginal 16 (7.7) 5 (6.7) 11 (8.5)

Distant 4 (1.9) 0 (0) 4 (3.1)

Infield and distant 5 (2.6) 2 (2.7) 3 (2.3)

Marginal and distant 1 (0.5) 0 (0) 1 (0.8)

Salvage treatment, n (%)

Absent 71 (34.8) 27 (36.0) 44 (34.1) 0.91

Present 133 (65.2) 48 (64.0) 85 (65.9)

Salvage treatment, n (%)

None 71 (34.8) 27 (36.0) 44 (34.1) 0.57

BEVIRI 38 (18.7) 14 (18.7) 24 (18.6)

RO 17 (8.3) 7 (9.3) 10 (7.8)

SRS/SRT 17 (8.3) 6 (8.0) 11 (8.5)

RO + SRS/SRT 16 (7.8) 6 (8.0) 10 (7.8)

RO + BEVIRI 19 (9.4) 6 (8.0) 13 (10.0)

RO + SRS + BEVIRI 17 (8.3) 6 (8.0) 11 (8.5)

Unknown 9 (4.4) 3 (4.0) 6 (4.7)

Progression-free survival

Median, mo. (95% CI) 10.3 (7.8-131) 17.4 (13.3-21.4) 7.3 (5.3-9.3) <0.001
1-year, % 48.2 69.0 36.0 0.007

3-year, % 10.8 25.6 2.4 <0.001
5-year, % 6.4 18.0 0 <0.001

Overall survival

Median, mo. (95% CI) 15.8 (13.0-18.6) 24.9 (22.0-27.8) 12.4 (10.5-14.2) <0.001
1-year, % 63.9 82.5 53.1 0.003

3- year, % 11.8 25.6 4.2 <0.001
5-year, % 7.3 20.8 0 <0.001

Abbreviations: L-PIV: low pan-immune-inflammation value; H-PIV: high pan-immune-inflammation value; TMZ: temozolomide; BEVIRI: bevacizumab plus
irinotecan; RO: reoperation; SRS/SRT: stereotactic radiosurgery/stereotactic radiotherapy.
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systemic inflammation in combination with significantly
reduced antitumor immunity; however, the exact mecha-
nisms underlying these results remain unknown. A recent
meta-analysis by Feng et al. confirmed the critical role of
chronic systemic inflammation, the seventh hallmark of can-
cer, in gliomagenesis, and glioma prognosis, linking elevated
circulating levels of pro-inflammatory markers to a signifi-
cantly increased risk of glioma development and worse prog-
nosis [32]. These findings were bolstered by the discovery
that inflammatory and immune cells account for approxi-
mately 30% of total GBM mass [33], with the great bulk of
them supporting GBM genesis, growth, and invasiveness.
Among these cells, elevated neutrophil counts have long
been linked to accelerated tumor growth and treatment

resistance [34], with GBM exhibiting the highest neutrophil
infiltration of all gliomas [35]. Neutrophils may hamper
cytolytic CD8+ T-cells, natural killer cells, and CD4+ sup-
pressor T cells, which may aid GBM cell survival and disease
progression by generating an immunosuppressive microen-
vironment [36]. Furthermore, also the GBM itself causes
severe exhaustion, accelerated aging, reduced antitumoral
functions, and loss of proliferative capacity in T-cells, to a
point where senescent T-cells are unable to proliferate even
when stimulated [37, 38]. In gliomas, as a source of tumor-
associated macrophages, monocytes are recruited to the
brain parenchyma [39], where they acquire the tumor-
promoting immunosuppressive properties of myeloid-
derived suppressor cells after cell-to-cell contact with GBM
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Figure 2: Comparative survival outcomes between the pan-immune-inflammation value (PIV) groups. (a) Progression-free survival. (b)
Overall survival (dark blue: low pan-immune-inflammation value; red: high pan-immune-inflammation value).
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cells [40]. Platelets and their aggregates may favor tumor
progression by facilitating NF-Κb mediated epithelial-
mesenchymal transition, protecting tumor cells from
immune surveillance via TGF-β mediated down regulation
of NKG2D on the surface of NK-cells, and direct protection
of GBM cells via cloak formation [41–44]. Although it is dif-
ficult to establish a direct hypothetical link between the local
immune cell infiltrate of GBM and the systemic immune and
inflammation response, destroying the cardinal dogma that
the central nervous system (CNS) is an immune-privileged
site, evidence has demonstrated that the central nervous sys-
tem (CNS) is not an immune-privileged site since Meda-
war’s groundbreaking discovery in 1948, which was later
confirmed by Nedergaard in 2013 [45, 46]. Therefore, such
preliminary evidence, when combined with the previously
mentioned SII and SIRI studies in GBM patients, suggests
that increased levels of proinflammatory and immunosup-
pressive platelets, monocytes, and neutrophils, as well as
decreased levels of anti-inflammatory and immune-
competent lymphocytes, may be responsible for the deterio-
rated PFS and OS results in the high PIV cohort, as we
observed here.

One critical topic that has yet to be solved is whether
PIV is a reliable prognostic factor. Because it is one replica-
ble and objectively measurable biochemical factor, the novel
PIV seems to meet the criteria for being prognostic for newly
diagnosed GBM patients: any patient or disease-related fea-
ture that is objectively measurable and provides information
on the likely outcome of cancer in untreated individuals
[47]. Likewise, regardless of the patient’s clinical situation,
the four cellular components of PIV are available at no addi-
tional expense as part of a routine complete blood count
assay, are simple to compute, and are relevant to all patients.
In our opinion, the novel PIV has the potential to be a reli-
able and independent prognostic factor for newly diagnosed
GBM patients. This opinion is based mostly on its efficient
utility in different tumor locations, the aforementioned
unique features, and discriminative capacity to stratify

patients into discrete groups with significantly varied PFS
and OS results, as established in our study. As a result, if rat-
ified, novel PIV could be a valuable addition to traditional
prognosticators, allowing for the stratification of GBM
patients into two prognostic groups, with individualized
treatment selections enhancing one group’s outcomes while
sparing the other from the hopeless complications of aggres-
sive treatment schemes.

Several factors limit the strength of the current study. First,
our research is a single-center retrospective cohort analysis
without a validation cohort, which is prone to selection bias,
a typical problem in such studies. Second, as we chose only
similarly treated individuals with a presenting ECOG perfor-
mance score of 0-1, the presented results may not be typical
of all GBM patients, as some may have poorer performance
scores and/or receive different RT or chemotherapy regimens.
Third, these findings ought to be appreciated with caution due
to variances in salvage therapies that, while statistically insig-
nificant, might have skewed the final results in favor of either
PIV group. Fourth, we were unable to perform PIV group spe-
cific analysis according to the genetic markers owing to a lack
of patient identification and categorization per MGMT meth-
ylation, isocitrate dehydrogenase-1 (IDH-1) and IDH-2,
PDGF, PTEN, EGFR, p53, ATRX, and TERT status. And fifth,
while individual or simultaneous broad variations in the
counts of the PIV components may significantly alter the opti-
mal cutoff during the RT plus TMZ and maintenance TMZ
periods, our PIV measures and associated cutoff values only
reflect the results of a single time point snapshot. Hence, our
discoveries should be treated cautiously and accepted as
hypothesis-generating rather than firm guides until the results
of suitably designed large-scale research become available.
Nevertheless, despite such limitations, if our findings are veri-
fied, we assume that they will be useful in prognostic stratifica-
tion of such patients, which would be useful in projecting the
patient prognosis and, hopefully, determining the best treat-
ment options with the advent of more efficient anti-GBM
medications.

Table 3: The bar chart demonstrating the 1-, 3-, and 5-year survival outcomes for the entire study population and per pan-immune-
inflammation value groups.

Variable
Progression-free survival Overall survival

Univariate
P value

Multivariate
P value

HR
Univariate
P value

Multivariate
P value

HR

Age (≤50 vs. >50 years) 0.64 — 1.06 0.73 — 1.04

Gender (male vs. female) 078 — 0.97 0.81 — 0.95

ECOG (0 vs. 1) 0.39 — 0.93 0.35 — 0.91

RTOG-RPA group (III vs. IV-V) <0.001 <0.001 0.67 <0.001 <0.001 0.63

Symptom duration (<3 vs. ≥3 months) 0.42 — 0.89 0.45 — 0.91

Extent of resection (GTR vs. STR/biopsy) 0.027 0.036 0.53 0.024 0.029 0.48

Anticonvulsant usage (no vs. yes 0.83 — 0.96 0.87 — 0.98

Steroid usage (no vs. yes) 0.17 — 0.84 0.19 — 0.86

Adjuvant TMZ cycles (≤6 vs.7-12) 0.24 — 0.88 0.20 — 0.83

PIV group (L-PIV vs. H-PIV) <0.001 <0.001 0.38 <0.001 <0.001 0.41

Abbreviations: HR: hazard ratio; ECOG: Eastern Cooperative Oncology Group; RTOG RPA: Radiation Therapy Oncology Group recursive partitioning
analysis; GTR: gross total resection; STR: subtotal resection; TMZ: temozolomide; L-PIV: low pan-immune-inflammation value; H-PIV: high pan-
immune-inflammation value.
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5. Conclusions

While more research is needed to substantiate our findings,
the current study discovered that the novel comprehensive
PIV, an affordable, noninvasive, readily accessible, simple
to compute, and reproducible biological marker, was able
to independently stratify newly diagnosed GBM patients
into two groups with significantly different PFS and OS out-
comes after partial brain RT and concurrent TMZ followed
by adjuvant TMZ.
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