
Citation: Yang, T.; Liu, D.; Fang, S.;

Ma, W.; Wang, Y. Cytomegalovirus

and Glioblastoma: A Review of the

Biological Associations and

Therapeutic Strategies. J. Clin. Med.

2022, 11, 5221. https://doi.org/

10.3390/jcm11175221

Academic Editor: Sabino Luzzi

Received: 4 July 2022

Accepted: 11 August 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

Cytomegalovirus and Glioblastoma: A Review of the Biological
Associations and Therapeutic Strategies
Tianrui Yang 1,†, Delin Liu 1,†, Shiyuan Fang 2 , Wenbin Ma 1,* and Yu Wang 1,*

1 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100730, China

2 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100730, China

* Correspondence: mawb2001@hotmail.com (W.M.); ywang@pumch.cn (Y.W.);
Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)

† These authors contributed equally to this work.

Abstract: Glioblastoma is the most common and aggressive malignancy in the adult central ner-
vous system. Cytomegalovirus (CMV) plays a crucial role in the pathogenesis and treatment of
glioblastoma. We reviewed the epidemiology of CMV in gliomas, the mechanism of CMV-related
carcinogenesis, and its therapeutic strategies, offering further clinical practice insights. To date,
the CMV infection rate in glioblastoma is controversial, while mounting studies have suggested
a high infection rate. The carcinogenesis mechanism of CMV has been investigated in relation to
various aspects, including oncomodulation, oncogenic features, tumor microenvironment regulation,
epithelial–mesenchymal transition, and overall immune system regulation. In clinical practice, the
incidence of CMV-associated encephalopathy is high, and CMV-targeting treatment bears both anti-
CMV and anti-tumor effects. As the major anti-CMV treatment, valganciclovir has demonstrated
a promising survival benefit in both newly diagnosed and recurrent glioblastoma as an adjuvant
therapy, regardless of surgery and the MGMT promoter methylation state. Immunotherapy, including
DC vaccines and adoptive CMV-specific T cells, is also under investigation, and preliminary results
have been promising. There are still questions regarding the significance of CMV infection and the
carcinogenic mechanism of CMV. Meanwhile, studies have demonstrated the clinical benefits of
anti-CMV therapy in glioblastoma. Therefore, anti-CMV therapies are worthy of further recognition
and investigation.

Keywords: cytomegalovirus; glioblastoma; carcinogenesis; therapeutics

1. Introduction

Glioblastoma (GBM) is the most common and aggressive tumor in the adult central
nervous system. GBM has a dreadful prognosis, despite the combination of surgery,
radiotherapy, and chemotherapy used to treat it. The median overall survival (OS) of
GBM is approximately 14.4 months, and the 5-year survival rate is below 10% [1–3]. GBM
represents one of the greatest challenges in the modern era, with a high recurrence rate and
a low chance of survival. Therapeutic options are extremely limited at the first diagnosis
and relapse. Recent studies have discovered the latent connection between GBM and
cytomegalovirus (CMV), shedding light on the possibility of treating GBM with CMV-
targeting therapy.

CMV is a double-stranded DNA virus and one of the largest and most complicated
kinds of human herpes virus (HHV) [4]. CMV IgG antibodies are found in approximately
60% of adults in developed countries and 100% in developing countries [5]. Notably, the
high CMV detection rate does not equate to high CMV activity. Most CMV infections are
asymptomatic, establishing a lifelong latent infection. Only in immunosuppressed patients,
such as patients with AIDS, organ transplantation patients, and infants [6], will CMV form
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inclusions in the cell nuclei, perinuclear spaces, and plasma, resulting in cell swelling
(cytomegaly) and subsequent CMV disease [5]. CMV infection typically undergoes a three-
phase process [7]: the immediate early phase (IE, 0 to 4 h after cell infection), delayed early
phase (DE, 4 to 24 h after cell infection), and late phase (>24 h after cell infection). In the
IE phase, the proteins IE-72 and IE-86 are expressed to alter the host cell environment and
initiate DNA duplication. In the DE phase, non-structural proteins facilitate the viral DNA
duplication and adjust the immune responses. Structural proteins, such as the envelope
proteins pp65 and gB, are expressed in the late phase and aid in the virus assembly. Proteins,
including IE, pp65, and gB, can serve as detection targets for CMV infection.

2. Detection of CMV

Currently, there are various methods for detecting CMV infection, including viral DNA
detection, antigen and/or serum antibody testing, histopathological evidence, and viral
culture. The most widely used indicator of CMV is pp65, which semi-quantitatively reflects
the infection activity [8]. Serological tests for IgM and IgG antibodies are less quantitative
and require a cut-off value with a higher specificity [9]. Pathology, immunohistochemistry
(IHC), in situ hybridization (ISH), polymerase chain reaction (PCR), and tissue microarray
(TMA) can also detect the CMV markers [10,11].

Sensitivity varies among different detection methods. A meta-analysis summarized
the sensitivity levels of different methods and targets [12]. In CMV-positive patients, the IE
protein had the highest association with CMV infection (odds ratio (OR) = 140), followed
by the pp65 nucleic acid (OR = 18), pp65 protein (OR = 3.1), and gB nucleic acid (OR = 3.1).
With respect to the detection methods, pathology analyses were considered to have high
sensitivity. ISH had the highest correlation (OR = 28), polymerase chain reaction (PCR) had
an OR of 3.7, and IHC had an OR of 3.5 [12]. The discrepancy between blood serum and
whole blood samples should also be noted. The CMV DNA level detected was significantly
higher in whole blood samples than that in serum [13]. The establishment of a low-grade
infection in glioma cells also provides an explanation as to why CMV was not consistently
detected by different groups [14].

3. Is CMV Infection Associated with GBM?

CMV has a high detection rate in many primary or metastatic tumors. For instance, in
prostate, breast, and colorectal cancer, CMV infection rates are up to 90–100% [15–17]. In
studies that examined glioma, medulloblastoma, meningioma, and neuroblastoma, CMV
pp65 was positive across all tumor types regardless of age, sex, and WHO classification [18,19].

In glioma patients, the CMV detection rate is controversial. Studies have shown that
the CMV detection rate is higher in glioma patients than in non-glioma patients. Previous
research has suggested that the positive rate of CMV differed more extensively between
GBM patients and control patients than those of Epstein Barr virus, human herpesvirus,
and herpes simplex virus [20]. CMV DNA is detectable in most tumor samples and blood
samples, with a higher detection rate than serum antibodies [11,21,22]. The detection of the
CMV genome also confirmed the higher CMV detection rate in GBM patients than in brain
tumor or epilepsy patients [23]. With respect to the histopathological evidence, the detection
rates of CMV in non-tumor encephalopathies and normal brain samples were significantly
lower than those in glioma samples [24]. However, other studies demonstrated that the
CMV detection rate among the experimental group was not significantly different from that
of the control group [25–27]. A meta-analysis summarized the findings of 32 independent
studies with over 2000 patients and reported that the CMV detection rate varied extensively
due to differences between populations and detection methods [12]. The overall CMV-
positive rate in glioma patients was 63% and was significantly associated with gliomas
(adjusted OR = 3). The detection rate was not significantly different between different
glioma grades [12]. There is no final conclusion about the frequency of CMV in glioma.
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4. CMV Infection Is Associated with the Prognosis of GBM

It has been reported that a higher expression of the IE protein was correlated with
more aggressive tumor progression and shorter OS in extracranial tumors [17]. In GBM
patients, positive serological and pathological CMV detection was associated with poor
prognosis [28,29], and mainstream scholars agree that patients with higher IE protein
expression had significantly shorter OS [24]. A meta-analysis that included seven studies
identified no association between the CMV infection and prognosis [30], but among glioma
patients with confirmed CMV infection, a low pathological positive rate was associated
with better prognosis and longer survival [31,32]. With an IHC cut-off value of 25%,
patients with a lower CMV-positive rate had a 20-month longer OS and an 8-month longer
PFS than patients with a higher rate. The less positive subgroup also had a significantly
higher 2-year survival rate (63.6% vs. 17.2%). However, the difference in median time
to progression was non-significant between the lower and higher positive rate patients
(for CMV-IEA: 14 vs. 6 months, and for CMV-LA: 8.25 vs. 5 months) [31]. Another case–
control study investigated the recursive partition analysis (RPA) subclass, age, surgery, and
adjuvant treatments among patients who survived over 18 months, of whom 40% had a
low CMV-positive rate, and these patients survived for a median of 42.5 months, indicating
that a low-grade CMV infection was strongly associated with long-term survival in GBM
patients [32]. Comparatively, among patients with an OS shorter than 18 months, only
8% had a low positive rate, and 47.5% patients had more than 75% of their tumor cells
infected [32]. Molecular analyses in CMV-positive rate subgroups have shown that the
expression of CMV-IE was significantly associated with p53 mutations, telomerase activity,
and several proto-oncogenes, resulting in a more aggressive tumor phenotype [31,33–35].
This observation further supports the hypothesis that CMV plays a pathogenetic role
in GBM tumors, rather than representing an epiphenomenon, presenting a reasonable
explanation for its poor prognosis.

5. Mechanisms of CMV-Related Glioma Tumorigenesis

Many preliminary studies have focused on the correlations between CMV and glioma
and its tumorigenesis mechanisms from various perspectives. To date, theories regarding
tumorigenesis include oncomodulation, oncogenic features, the regulation of the tumor
microenvironment, regulation of epithelial-mesenchymal transition (EMT), and the overall
regulation of the immune system (Figure 1).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. Mechanisms of CMV-induced glioma tumorigenesis. There are five major mechanisms of 
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inositol 3-kinase/protein kinase B (PKB). 
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genesis. Multiple studies have indicated that CMV can interfere with the cell cycle, induce 
telomerase activation and the DNA damage response, and thus inhibit apoptosis. For in-
stance, the replication stress instigated by CMV infection stimulates the human DNA 
damage response. Meanwhile, viruses hijack the human stress response transcriptional 
factors to enhance their own expression of IE72 and IE86. In clinical testing, CMV protein 
markers are elevated after DNA damage by radiochemotherapy or the recurrence of GBM 
[37]. CMV is also capable of inducing angiogenesis and cell migration. CMV inhibits cell 
differentiation and facilitates cancer stem cell preservation. CMV can also induce the ex-
pression of oncogenes and inhibit tumor suppressors, such as the p53 mutation. The epi-
genetic regulation of cell proliferation and immune evasion was also observed in CMV 
infection [38]. 

5.2. Oncogenic Features 
Researchers have discovered that there is a morphological transforming region II im-

bedded in the CMV genome, which can transform mouse fibroblast cells into malignant 
cells [39]. The IE protein expressed in the early phase of CMV infection can induce cell 
transformation through a ‘hit and run’ mechanism, which can activate telomerase to facil-
itate oncogenesis [40]. Additionally, the IE protein facilitates the correct nuclear localiza-
tion of the CMV genome during mitosis through the chromatin-tethering domain. The IE 
protein can also maintain the mitotic cell cycle of the host cells and induce cell prolifera-
tion [41]. In addition, CMV expresses the US28 protein, which induces IL-6 expression and 
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Figure 1. Mechanisms of CMV-induced glioma tumorigenesis. There are five major mechanisms of
CMV tumorigenesis: oncogenic, oncomodulation, epithelial-mesenchymal transition, modified tumor
microenvironment, and influence on the overall immune system. CMV, cytomegalovirus; TGFβ,
transforming growth factor β; MMP-2, matrix metalloproteinase-2; PI3K/AKT, phosphatidylinositol
3-kinase/protein kinase B (PKB).
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5.1. Oncomodulation

Although earlier studies reported that CMV had oncogenic abilities in in vitro exper-
iments and experiments on immunodeficient mice [36], CMV was not able to transform
normal human cells. Thus, CMV was considered to have an indirect influence on oncoge-
nesis. Multiple studies have indicated that CMV can interfere with the cell cycle, induce
telomerase activation and the DNA damage response, and thus inhibit apoptosis. For
instance, the replication stress instigated by CMV infection stimulates the human DNA
damage response. Meanwhile, viruses hijack the human stress response transcriptional
factors to enhance their own expression of IE72 and IE86. In clinical testing, CMV pro-
tein markers are elevated after DNA damage by radiochemotherapy or the recurrence of
GBM [37]. CMV is also capable of inducing angiogenesis and cell migration. CMV inhibits
cell differentiation and facilitates cancer stem cell preservation. CMV can also induce the
expression of oncogenes and inhibit tumor suppressors, such as the p53 mutation. The
epigenetic regulation of cell proliferation and immune evasion was also observed in CMV
infection [38].

5.2. Oncogenic Features

Researchers have discovered that there is a morphological transforming region II
imbedded in the CMV genome, which can transform mouse fibroblast cells into malignant
cells [39]. The IE protein expressed in the early phase of CMV infection can induce cell trans-
formation through a ‘hit and run’ mechanism, which can activate telomerase to facilitate
oncogenesis [40]. Additionally, the IE protein facilitates the correct nuclear localization of
the CMV genome during mitosis through the chromatin-tethering domain. The IE protein
can also maintain the mitotic cell cycle of the host cells and induce cell proliferation [41].
In addition, CMV expresses the US28 protein, which induces IL-6 expression and STAT3
phosphorylation, both promoting paracrine signaling in oncogenesis [42]. A higher level
of VEGF expression is also induced by CMV, which recruits the perivascular cells and
promotes angiogenesis [43]. Other studies have indicated that CMV is associated with
GSK-3β inhibition and the activation of the WNT, NF-κB, EGFR, ERK, amphiregulin, and
SOX-2 pathways [44,45].

5.3. Tumor Microenvironment

CMV infection induces COX-2 and 5-LO expression in the tumor microenvironment,
leading to the expression of PGE2 and leukotriene as part of inflammatory processes. PGE2
induces cell proliferation and angiogenesis, inhibits apoptosis, and activates invasion,
encouraging the formation of the tumor microenvironment [46,47]. CMV infection of the
monocytes and neural stem cells generates IL-10 and induces the recruitment of the tumor
microenvironment-associated monocytes (macrophages and microglial cells). These mono-
cytes present with the M2 immunosuppressive phenotype, with down-regulated MHC and
costimulatory molecules. CMV infection also upregulates B7-H1, an immunosuppressive
molecule, which enhances tumor stem cell migration [48].

5.4. Epithelial–Mesenchymal Transition

Epithelial–mesenchymal transition (EMT) is an important mechanism of epithelial
tumor metastasis. In addition, TGFβ is the lynchpin molecule of the EMT mechanism. CMV
induces the expression of TGFβ through multiple pathways [49]. For instance, the IE-72
and IE-86 proteins activate extracellular latent TGFβ1 through matrix metalloproteinase-2
(MMP-2) [49,50]. US28 also facilitates EMT by inducing GSK3β activity. The phosphoryla-
tion of GSK3β activates the transcription factors of oncogenes, such as Smads and Snail, to
trigger EMT [39]. Additionally, by regulating the IL-10, COX-2, RAS/ERK, and PI3K/AKT
pathways, CMV can promote the invasion of tumor cells [51].
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5.5. Overall Immune System

CMV can also influence the mode of overall immunity. This kind of immune modula-
tion might be related to patient age [52]. In young patients, CMV can generate a broad T-cell
receptor pool, enhance the range and ability of T-cell recognition, and enhance anti-tumor
immune reactions. The upregulation of CX3CR1 indicates that CMV-specific T cells can
recolonize and establish T-cell surveillance. However, in elderly patients, CMV primarily
results in T-cell senescence and, therefore, a low survival rate. Unlike PD-1, which can
be reversed by checkpoint inhibitors, this senescence is irreversible. Senescent T cells
can still access the memory T-cell pool and compete with the binding of specific T-cell
receptors, altering the immune reaction and suppressing the overall anti-tumor immune
response [53,54].

6. CMV-Associated Encephalopathy in Standard Therapy

According to the NCCN guidelines, the standard therapy for GBM includes sur-
gical resection, radiotherapy, and temozolomide (TMZ) chemotherapy [55]. However,
studies have reported that radiotherapy can induce the reactivation of CMV, causing CMV-
associated encephalopathy, which was defined as a fast neurological decline during the
first half course of radiation. According to a case report [56], four patients with sudden,
unexpected neurologic decline unrelated to tumor progression during radiotherapy all
had high serum CMV DNA copies. Three recovered after ganciclovir or valganciclovir
treatment. This suggests that radiotherapy can stimulate CMV reactivation. A prospective
observational study [57], GLIO-CMV-01, included 50 patients (27 with metastatic brain
tumors and 23 with high-grade gliomas). Among the patients with positive serological
CMV antigens prior to treatment, 48% experienced CMV viremia, and 87% experienced
CMV-associated encephalopathy that required active treatment. No CMV-associated en-
cephalopathy occurred among the CMV serology-negative patients. In addition to surgery
and radiochemotherapy, many GBM patients also receive glucocorticoids in the periopera-
tive period. Studies have shown that glucocorticoids may be linked to the reactivation of
CMV [57,58].

CMV-associated encephalopathy is associated with poor prognosis. It has been re-
ported that, at 150 days after radiotherapy, 74% (14/19) of patients without CMV en-
cephalopathy were still alive, while only 54% (7/13) of patients with CMV encephalopathy
were still alive. Meanwhile, the use of ganciclovir or valganciclovir mitigated the en-
cephalopathy symptoms and improved the prognosis [57]. Another study demonstrated
that, in 118 brain tumor patients with sudden neurologic decline during radiotherapy, 24%
had CMV viremia. Among GBM patients, the OS was 99 days in the encephalopathy group
compared with 570 days in the unaffected group. For NSCLC brain metastases, the OS was
47 versus 219 days in the encephalopathy group and the unaffected group, respectively.
Further analysis showed that a low basophilic granulocyte count before treatment was
associated with a higher risk of CMV-associated encephalopathy [59]. The high incidence
of CMV-associated encephalopathy and poor survival time suggest that researchers should
carry out clinical treatment targeting CMV.

7. Anti-CMV Therapy in GBM

Many studies have suggested that anti-CMV therapy can restrain glioma progression
in vitro and in vivo. Relevant clinical trials have been promoted (Tables 1 and 2). There are
four major treatment strategies for targeting CMV: valganciclovir, dendritic cell vaccine,
adoptive CMV-specific T-cell therapy, and peptide vaccine (Figure 2).
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Table 1. CMV-related clinical studies to treat GBM, with published articles.

Treatment Year Trial Registration Trial Name Interventions Patients N Phase Outcome Reference

Valganciclovir

2013 NCT00400322 VIGAS Valganciclovir +
CRT vs. CRT ND-GBM 42 I/II

No difference in tumor volume,
OS, and PFS. OS-24 27.3% in
experiment arm vs. 25% in
control. Treatment >6 m OS

24.1 m, <6 m OS 13.1 m.
Treatment >6 m OS-2 year

67.6%, OS-4 year 27.3%

Soderberg-
Naucler, C.

[60]

2013 - VIGAS
re-analysis

Valganciclovir +
CRT vs. CRT ND-GBM retrospective

Valganciclovir vs.
control HR 2.44, treatment
>6 m vs. control HR 0.441,

treatment >6 m vs. <6 m HR
1.351

Soderberg-
Naucler, C.

[61]

2014 - VIGAS
re-analysis

Valganciclovir +
CRT vs. CRT ND-GBM retrospective Patients with lower viral load

have better prognosis
Malte

Ottenhausen [62]

2013 -
VIGAS
further
study

Valganciclovir +
CRT vs. CRT ND-GBM 50 retrospective

OS-24 62% in experiment arm
vs. 18% in control; OS 25.0 m
vs. 13.5 m. Treatment >6 m

OS-24 70%, OS 30.1 m

Soderberg-
Naucler, C.

[63]

2020 - Valganciclovir +
CRT vs. CRT R-GBM 8 retrospective

OS after relapse 19.1 m in
experiment arm vs. 12.7 m in
control; OS-24 37.5% vs. 2.8%

Soderberg-
Naucler, C.

[64]

DC vaccine

2017 NCT00639639 ATTAC-GM

DI-TMZ +
GM-CSF + CMV

pp65
RNA-pulsed DC

vs. CRT

ND-GBM 11 I
PFS 25.3 m, OS 41.1 m,

4 patients survived longer
without progression (59–64 m)

John H. Sampson
[65]

2015 NCT00639639 ATTAC

CMV pp65
RNA-pulsed DC
+ Td+ CRT vs.
unpulsed DC +

Td+ CRT vs.
CRT

ND-GBM 12 I

PFS, OS no worse than control,
3 patients survived >36.6 m. Td
enhances DC vaccine because
CCL3 enhances DC migration
and inhibits tumor progression

John H. Sampson
[66]



J. Clin. Med. 2022, 11, 5221 7 of 16

Table 1. Cont.

Treatment Year Trial Registration Trial Name Interventions Patients N Phase Outcome Reference

CAR-T

2014 ACTRN12609000338268

Autologous
CMV

pp65-specific T
cells

R-GBM 19 I
PFS 246 d, OS 403 d, 4 of

10 patients remained
progression-free during study

Rajiv Khanna [67]

2020 ACTRN12615000656538

Autologous
CMV

pp65-specific T
cells

ND-GBM 25 I

PFS 25 m, PFS-12 20%, OS 21 m,
OS-12 52%. Treatment before

relapse was significantly longer
OS than that after relapse

Rajiv Khanna [68]

2020 NCT02661282

Autologous
CMV

pp65-specific T
cells

ND + R-GBM 65 I/II
Increased circulating

CMV-CD8 T cells, but did not
improve survival

Amy B
Heimberger [69]

2017 NCT00693095. ATCT

CMV
pp65-specific T

cells + CMV
pp65

RNA-pulsed DC
vs. CMV

pp65-specific T
cells

ND-GBM 22 I

CMV DC vaccine enhanced
polyfunctionality of adoptive

CMV-specific T cells, correlated
with OS.

John H. Sampson
[70]

N, number; CRT, standard chemoradiotherapy; ND, newly diagnosed; R, recurrent; GBM, glioblastoma; PFS, progression-free survival; OS, overall survival; OS-24/-5, 24 month/5
month overall survival; HR, hazard ratio; m, month(s); d, day(s); TMZ, temozolomide; DI-TMZ dose-intensified temozolomide; DC, dendritic cell; Td, tetanus-diphtheria; GBM,
glioblastoma; HGG, high-grade glioma.
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Table 2. Ongoing clinical trials of anti-CMV treatment in GBM.

Treatment Research
Team

Trial
Registration Year Trial Name Study Title Treatment Plan Patients N Phase Status

Valganciclovir
Cecilia

Soderberg-
Naucler

NCT04116411
September

2019–August
2024

VIGAS2
A Clinical Trial Evaluating

the Efficacy of Valganciclovir
in Glioblastoma Patients

Valganciclovir +
CRT vs. placebo +

CRT
ND-GBM 220 II,

Randomized recruiting

DC vaccine

Gary
Archer NCT03615404 October

2018–July 2020 ATTAC-P

Cytomegalovirus (CMV)
RNA-Pulsed Dendritic Cells

for Pediatric Patients and
Young Adults With WHO

Grade IV Glioma, Recurrent
Malignant Glioma, or

Recurrent Medulloblastoma

DI-TMZ + GM-CSF
+ Td + CMV pp65
RNA-pulsed DC

ND + R-GBM,
recurrent

medulloblas-
toma

11 I completed

Gary
Archer NCT03927222

September
2019–

December
2023

I-ATTAC

Immunotherapy Targeted
Against Cytomegalovirus in

Patients With
Newly-Diagnosed WHO
Grade IV Unmethylated

Glioma

DI-TMZ + GM-CSF
+ Td+ CMV pp65
RNA-pulsed DC

ND-GBM 48 II recruiting

Duane
Mitchell NCT02465268

August
2016–June

2024
ATTAC-II

Vaccine Therapy for the
Treatment of Newly

Diagnosed Glioblastoma
Multiforme

GM-CSF + Td +
CMV pp65

RNA-pulsed DC vs.
un-pulsed PBMC

ND-GBM 120 II,
Randomized recruiting

Gary
Archer NCT02366728

October
2015–August

2020
ELEVATE DC Migration Study for

Newly-Diagnosed GBM

DC + CMV pp65
RNA-pulsed DC +

TMZ vs. Td + CMV
pp65 RNA-pulsed

DC + TMZ vs.
basiliximab + Td+

CMV pp65
RNA-pulsed DC +

TMZ

ND-GBM 100 II,
Randomized

Active, not
recruiting
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Table 2. Cont.

Treatment Research
Team

Trial
Registration Year Trial Name Study Title Treatment Plan Patients N Phase Status

Gary
Archer NCT03688178

August
2020–March

2025
DERIVe

DC Migration Study to
Evaluate TReg Depletion In

GBM Patients With and
Without Varlilumab

DC
pre-conditioning

vaccine + TMZ vs.
Td pre-conditioning
+ DC vaccine + TMZ

vs. DC Vaccine +
varlilumab (Td

pre-conditioning) +
TMZ

ND + R-GBM 112 II,
Randomized recruiting

DC vaccine+
CAR-T

John
Sampson NCT00693095

September
2008–April

2015
ERaDICATe

Evaluation of Recovery From
Drug-Induced Lymphopenia

Using
Cytomegalovirus-specific
T-cell Adoptive Transfer

CMV-autologous
lymphocyte transfer

(CMV-ALT) vs.
CMV-ALT + CMV
pp65 RNA-pulsed

DC

ND-GBM 23 I, Randomized completed

CAR-T Nabil
Ahmed NCT01109095

October
2010–March

2018
HERT-GBM

CMV-specific Cytotoxic T
Lymphocytes Expressing
CAR Targeting HER2 in

Patients With GBM

HER2-CAR
CMV-specific CTL R-GBM 16 I completed

Peptide
Vaccine

Gary
Archer NCT02864368

December
2016–

September
2021

PERFORMANCE
Peptide Targets for

Glioblastoma Against Novel
Cytomegalovirus Antigens

PEP CMV + Td +
CRT vs. PEP CMV +

Td+ TMZ
ND-GBM 70 I, Randomized Active, not

recruiting

Observational Benjamin
Frey NCT02600065

November
2015–

February
2020

GLIO-CMV-01

Analysis of CMV Infections
in Patients With Brain

Tumors or Brain Metastases
During and After

Radio(Chemo)Therapy

CRT + TMZ HGG,
metastases 250 Observation recruiting

N, number; CRT, standard chemoradiotherapy; ND, newly diagnosed; R, recurrent; GBM, glioblastoma; TMZ, temozolomide; DI-TMZ dose-intensified temozolomide; Td, tetanus-
diphtheria; DC, dendritic cell; y/o, years old; PBMC, peripheral blood mononuclear cell; PEP, peptide; HGG, high-grade glioma. Trials were searched for on the website: clinicaltrials.gov
until 1 July 2022.

clinicaltrials.gov
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virus; DC, dendritic cell; CAR-T chimeric antigen receptor T cell; CTL, cytotoxic T lymphocyte. 
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Figure 2. Various pathways of CMV-related treatment of glioblastoma. There are four major treatment
methods targeting CMV. Valganciclovir is an anti-CMV drug, which also shows potential survival
benefits for GBM. Immune therapy can exploit the CMV pp65 antigen as a specific target for the
tumor cells. CAR-T cells can be engineered to target the CMV pp65 antigen, directly killing the
tumor. Dendritic cells primed by the CMV pp65 antigen serve as a dendritic cell vaccine to recruit the
cytotoxic T lymphocytes. CMV can also be used to create peptide vaccines. CMV, cytomegalovirus;
DC, dendritic cell; CAR-T chimeric antigen receptor T cell; CTL, cytotoxic T lymphocyte.

7.1. Valganciclovir

Valganciclovir inhibits viral DNA duplication by competing with deoxyguanosine
triphosphate to bind the DNA polymerase. Randomized controlled trials indicated that val-
ganciclovir was effective in treating CMV disease and solid organ transplant recipients [71].
Anti-CMV drugs were able to suppress medulloblastoma and neuroblastoma xenografts
in vivo by 72% and 40%, respectively [57,72]. Valganciclovir has been proven to be effective
in CMV-positive medulloblastoma, while CMV-negative tumors do not benefit from this
treatment [73].

The efficacy of valganciclovir in GBM is of great interest. The most relevant stud-
ies are the Valcyte Treatment of Glioblastoma Patients in Sweden (VIGAS) trial and its
follow-up studies. VIGAS is a double-blind, randomized controlled trial that included
42 newly diagnosed GBM patients and compared the impacts of standard treatment with
or without a standard dose of valganciclovir until the disease progression or voluntary
withdrawal [60]. In the safety assessment, valganciclovir was safe and well tolerated in
parallel with chemoradiotherapy. The primary endpoint (reduced tumor volume on MRI
at 6 months, PFS, OS) was unfortunately not reached. Among patients who had taken
valganciclovir for at least 6 months, the survival benefit was more significant. The median
OS of patients with at least 6 months of valganciclovir treatment was 24.1 months, versus
13.1 months in patients with a shorter treatment duration and 13.7 months in the con-
trol group [60,62]. However, a subsequent article from the same research group reported
significant controversy and publicity. A further exploratory analysis enrolled 28 patients
receiving valganciclovir, with a median OS of 25.0 months compared with 13.5 months
in the contemporary controls and a 2-year OS rate of 62% versus 18% [63]. After further
improvement of the analytical methods, valganciclovir was still associated with survival
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benefits, and the sustained valganciclovir subgroup had prolonged survival [61]. This
study has been heavily criticized based on its unjustified patient selection bias, the limited
characterization of the control group, the mathematical assessment of the data analysis,
and the low detection rate of CMV infection [74–77]. These critical issues severely lessened
the validity of the VIGAS trial, which provided limited evidence for the effects of valganci-
clovir therapy. The same research team then reviewed 102 newly diagnosed GBM patients
and discovered that OS was positively correlated with valganciclovir treatment, complete
resection, and the methylated MGMT promoter [64].

Valganciclovir treatment in secondary and recurrent GBM also showed promising
results. Among 44 secondary GBM patients, 8 of them used valganciclovir as an add-on to
secondary therapy. The OS after recurrence improved from 12.7 months to 19.1 months
and the 24-month OS rates increased from 2.8% to 37.5% [78]. The latest retrospective
study included 29 recurrent GBM patients, who used valganciclovir as an add-on. The
dose was well tolerated and prolonged OS from 7.4 months to 12.1 months, compared with
the control group, irrespective of MGMT methylation status or re-operation. However,
neither of these two retrospective studies tested for CMV infection or viral load. They also
included widely varying second-line therapies, including reoperation, hypofractionated
radiation therapy, temozolomide, lomustine (CCNU), bevacizumab, and/or gamma knife
treatment [79].

Another team reported that the combination of valganciclovir and bevacizumab
exhibited a better survival trend in recurrent GBM patients. The subgroup of concurrent
valganciclovir and bevacizumab had a 6-month PFS (PFS-6) of 50% and a median OS of
11.3 months, which were significantly longer than those of the historical controls [80]. An
ongoing phase-II randomized controlled multi-center trial using valganciclovir is awaited.

7.2. Dendritic Cell Vaccine

CMV can be specifically recognized by the T cells or MHC as foreign matter. It is
enriched in tumor tissue yet sparsely scattered in the peripheral blood and other tissue.
Preclinical studies have predicted the potential treatment effects of immunotherapy target-
ing CMV-specific immune cells [81,82]. CMV-specific dendritic cell (DC) vaccines usually
target the pp65 antigen. The first phase-I clinical trial, ATTAC-GM, used a DC vaccine
with dose-intensive TMZ and GM-CSF and showed preliminary clinical benefits [65]. The
median OS was 37.7 months, and the survival rate at 60 months was 36.4%. A total of
4 out of 11 patients remained stable for 59–64 months after diagnosis. Another ATTAC
trial compared the effects of tetanus toxoid preconditioning on a DC vaccine with standard
TMZ [66]. The median OS was 38.3 months in the experimental group, with an 18-month
OS of 66.7% and a 60-month OS of 33.3%. The DC-only group reached a median OS of
13.9 months. ATTAC trials showed that the immune adjuvant tetanus toxoid combined
with the DC vaccine is a promising therapy. Using tetanus toxoid preconditioning before
DC vaccination promotes DC cell migration, stimulates the immune response, and is asso-
ciated with prolonged survival [83]. It has been reported that one-third of GBM patients
who have received CMV-specific DC vaccines have shown surprisingly elongated sur-
vival [84]. Multiple clinical trials are being initiated to study the role of tetanus diphtheria
(NCT03615404, NCT03927222, NCT02465268, NCT02366728, NCT03688178, NCT00693095).

7.3. Adoptive CMV-Specific T Cells

Represented by CAR-T, adoptive cell therapy (ACT) targeting CMV has also been
studied recently. CMV-specific CD8 T cells target tumor cells directly and stimulate the
cytokines, NK cells, macrophages, and memory T cells indirectly. A prospective phase-I
study with 25 newly diagnosed GBM patients treated with CAR-T therapy yielded a me-
dian OS of 21 months and a PFS of 10 months [68]. The subgroup analysis suggested that
patients receiving CAR-T therapy before recurrence had a median OS of 23 months, in
comparison with patients who received CAR-T after recurrence, whose median OS was
14 months. The T-cell gene signature was associated with improved long-term survival [68].
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Another phase-I/II clinical trial included 65 newly diagnosed or recurrent GBM patients
whose OS, PFS, and PFS-6 were 12 months, 1.3 months, and 19%, respectively. Further
study demonstrated that the DC vaccine ATTAC can enhance the polyfunctionality of
ACT therapy and increase overall survival, indicating its potential for combination im-
munotherapy [70]. Generally, the effect of T cells is attenuated and does not revert the
immunologically inhibitory microenvironment. Researchers also noted that patients with
CMV-positive blood serum samples were not always sensitive to CMV-specific T cells.
The underlying mechanism requires future study [69]. Further clinical trials are ongoing
(NCT01109095, NCT00693095).

8. Conclusions

Studies have suggested that the CMV infection rate is high in glioma patients, which
is associated with survival prognosis. As an immunosuppressive microenvironment in
glioma, CMV is reactivated and then promotes tumorigenesis through various strate-
gies [56,85]. Anti-CMV treatments, such as valganciclovir, have demonstrated promising
survival benefits in glioma. Patients may benefit from adjuvant anti-CMV treatment as
part of comprehensive therapy. Immunotherapy is mostly carried out in the early stage of
clinical trials; however, the immunotherapy of DC vaccines and adoptive CMV-specific T
cells has displayed promising results. In general, anti-CMV treatment shows potential and
is a treatment mode deserving of clinicians’ attention. Future clinical research should not
only focus on the CMV infection rate or the relationship between CMV infection and tu-
morigenesis, but also anti-CMV treatments and combination therapies (e.g., glucocorticoids
and radiotherapy).
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