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BACKGROUND: Histopathological features and molecular biomarkers have been studied as potential prognostic factors.
OBJECTIVE: To investigate the clinical features, molecular phenotypes, and survival prognosis of isocitrate dehydro-
genase (IDH)-mutant (IDHmt) gliomas with histone H3 alterations (H3-alterations).
METHODS: A total of 236 and 657 patients with whole-exome sequencing data were separately collected from the
Chinese Glioma Genome Atlas and The Cancer Genome Atlas databases. Survival analysis of patients with glioma was
performed using Kaplan–Meier survival curves stratified by histone H3 status. Univariate and multivariate analyses were
used to identify the associations between histone H3 status and other clinicopathological factors with survival in patients
with IDH-mutant gliomas.
RESULTS: Diffuse gliomas with H3 alterations are more likely to be high grade in 2 cohorts (P = .025 and P = .021,
respectively). IDHmt glioma patients with H3-alteration had significantly less life expectancy than histone H3 wild-type
(P = .041 and P = .008, respectively). In the Chinese Glioma Genome Atlas cohort, Karnofsky performance scores ≤ 80
(HR 2.394, 95% CI 1.257-4.559, P = .008), extent of resection (HR 0.971, 95% CI 0.957-0.986, P < .001), high WHO
grade (HR 6.938, 95% CI 2.787-17.269, P < .001), H3-alteration (HR 2.482, 95% CI 1.183-4.981, P = .016), and 1p/19q
codeletion (HR 0.169, 95% CI 0.073-0.390, P < .001) were independently associated with IDHmt gliomas. In the The Cancer
Genome Atlas cohort, age (HR 1.034, 95% CI 1.008-1.061, P = .010), highWHO grade (HR 2.365, 95% CI 1.263-4.427, P = .007),
and H3-alteration (HR 2.501, 95% CI 1.312-4.766, P = .005) were independently associated with IDHmt gliomas.
CONCLUSION: Identification and assessment of histone H3 status in clinical practice might help improve prognostic
prediction and develop therapeutic strategies for these patient subgroups.
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According to the 2021 WHO Classification of Tumors of
the Central Nervous System1 (2021 WHO CNS), diffuse
gliomas are classified based on the genetic variations (eg,

isocitrate dehydrogenase [IDH] and histone H3 status) that allow
for a comprehensive neuropathological diagnosis. A growing
number of specific molecular markers can provide valuable
prognostic information.2,3 Therefore, molecular characteristics
have been added to the biomarkers for estimating prognosis and
developing targeted drugs for various tumors.4 The prognosis
of diffuse gliomas can be better mapped out using molecular
pathology. IDH1/2 status, chromosome 1p/19q codeletion,
O6-methylguanine-DNA methyltransferase (MGMT) pro-
moter, and other molecular parameters have become impor-
tant genes/molecular profiles for diffuse gliomas.5-7 Two
newly defined entities of pediatric-type diffuse gliomas are
termed “diffuse midline glioma, H3 K27-altered” and “diffuse
hemispheric glioma, H3 G34-mutant,” which were associated
with histone H3 alterations (H3-alterations) and poor prog-
nosis presented in the 2021 WHO CNS.1,8,9 Histone H3 is 1
of the 5 major histone families in eukaryotic chromatin, and its
sequence variation and modifications play a crucial role in
genome maintenance and gene regulation.10 Nonetheless,
these data are based on particular histone H3 subtypes (H3.1
and H3.3) and come from a single center or database. It is
essential to note that H3-alterations may have different clinical
implications and may not necessarily have only 2 special
molecular features.
Our primary goal of this study was to assess whether there is a

potential link between clinical characteristics and the status of
histone H3, and we collected whole-exome sequencing (WES)
data to investigate the genomic landscape of H3-alterations from
the CGGA database. For this reason, we are particularly interested
in exploring the relationship between clinicopathological char-
acteristics and clinical prognosis from CGGA and TCGA data
sets. The results provided evidence for the interrogation of H3-
alterations in current molecular diagnostics and prognostication of
diffuse gliomas.

METHODS

Whole-Exome Sequencing (WES) Data
We retrospectively evaluated all the patients with diffuse glioma who

underwent surgical resection between March 2008 and May 2018 with
WES data in the CGGA.11 The last follow-up data were updated in June
2022. All genomic DNA samples were obtained from patientsʼ tumor/
blood and performed using next-generation sequencing technology.11-13

Detailed methods can be found in the study by Zhao et al.11 In the
CGGA database (http://www.cgga.org.cn/download.jsp), we investigated
all the genomic alteration types of histone H3 genes, while performing
patientsʼ subclassification according to different genes and alteration
modes. In addition, we obtained relevant WES data with H3-alterations
from the TCGA database (https://portal.gdc.cancer.gov/) to further
validate our findings.

Patient Enrollment and Clinicopathological Information
This study obtained clinicopathological information on IDH status,

MGMT promoter methylation, 1p/19q status, pathology, clinical fea-
tures, MRI information, and follow-up data in patients with diffuse
gliomas from the CGGA database. We defined midline violation as tumor
border encroaching basal ganglia, brainstem, corpus callosum, third
ventricle, thalamus, and other midline structures.14 Our inclusion criteria
were (1) preoperative and postoperative MRI (T2-weighted and/or fluid-
attenuated inversion recovery); (2) characteristics information including
sex, age at diagnosis, pathological diagnosis, WHO grade, and pre-
operative Karnofsky performance scores (KPS); and (3) IDH status and
follow-up data. We excluded patients with a survival of fewer than
30 days because the death of these individuals might be due to peri-
operative complications. Because of incomplete information on early
data in retrospective studies, telomerase reverse transcriptase (TERT)
promoter, tumor protein p53 (TP53), and other molecular data were
unavailable in some samples and were not included in our analyses. The
extent of resection (EOR) was evaluated according to the volume of the
removed tumor measured on postoperative MRI by 2 experienced
neuroradiologists.

Similarly, the clinical and follow-up data of diffuse gliomas obtained
from the TCGA website15,16 were used as a validation cohort. These data
were supplemented by other published literature.16 Our data were
extracted from a publicly available database, and some variables (pre-
operative KPS, EOR, and midline violation) were missing. We abide to
the principles of the Declaration of Helsinki, and our study was a ret-
rospective study for which all data were kept anonymous and done after
agreement from the local ethics committee and with the patients’ in-
formed consent.

Statistical Analyses
In our study, we classified 2 subgroups with different WHO grades as

low-grade glioma (LGG, WHO grade 2) and high-grade glioma (HGG,
WHO grade 3 and 4). Overall survival (OS) was measured from the
surgery date to documented death or the last follow-up.

We tested numerical variables using the unpaired, two-tailed t-test
and categorical variables using Fisherʼs exact test or χ2, depending on
the situation. The Fisher’s exact test was performed to analyze cat-
egorical data on account of the χ2 test violation assumptions. If some
statistical variables were not eligible for normal distribution, the
Mann–Whitney U-test was used instead of the t-test. Survival data
were analyzed using the Kaplan–Meier method, and between-group
differences in survival were tested using the log-rank (Mantel–Cox)
test. In the univariate analysis, variables with a P-value <.05 were
entered into the multivariate analysis. A Cox proportional hazards
model was used to analyze the multivariate survival analysis of specific
variables, and the proportional hazards assumption was tested. In
this study, statistical analyses were performed with SPSS software
(version 22.0, SPSS Inc) and a P-value <.05 was considered statistically
significant.

RESULTS

Patient Characteristics
We scrutinized all 286 patients with glioma with WES data

from theCGGAdatabase, and 50 patients were excluded (Figure 1A).
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These excluded samples were due to a lack of follow-up and
necessary clinical data (preoperative KPS, adjuvant therapy after
surgery, etc.). Similarly, a total of 657 samples from the TCGA
database were retained to validate our findings (Figure 1B).
Patient demographics and baseline characteristics from CGGA
and TCGA databases were separately shown in Table 1 and
Supplementary Table 1, http://links.lww.com/NEU/D776. As
shown in Table 1, there was no statistically significant difference
in sex, age, presenting symptoms, and KPS score between these 2
subgroups of patients with H3-alterations and histone H3 wild-
type (H3-WT). The proportion of lesions on the left side in H3-
alteration tumors was significantly higher than in H3-WT ones
(61.1% vs 39.6%, χ2 test, P = .019). The ratio of HGG was
significantly higher in patients with H3-alterations (81.5% vs
65.4%, χ2 test, P = .025).
We found that the ratio of diffuse gliomas with H3-alterations in

HGGs was significantly higher than in LGGs in both cohorts
(Figure 2A, χ2 test, P = .025 and P = .021, respectively). However,
there was no statistical difference between the proportion of

H3-alterations in IDH-mutant and IDHwide-type gliomas in both
cohorts (Figure 2B, χ2 test, P = .093 and P = .096, respectively).

Genomic Landscape of Histone H3 Alterations in
Diffuse Gliomas
In the CGGA cohort, we divided all the alterations of

H3 family genes into 3 categories: 16 (10.3%) mutations,
129 (82.7%) amplifications, and 11 (7.1%) deletions. The
landscape of clinicopathological features of 54 sequenced
tumors with H3-alterations in the CGGA cohort is shown
in Figure 3. Among all 54 sequenced gliomas with
H3-alterations, we discovered that 20 family genes of the
histone H3 were altered, in which 8 (40%) mutant genes
occurred in 10 (18.5%) patients. In the TCGA cohort,
mutations were found in only 2 of 20 (10.0%) patients
with LGG with H3-alterations. More information and all
H3-alterations are provided in Supplementary Data, http://
links.lww.com/NEU/D777.

FIGURE 1. Flowcharts of the patients with glioma in the CGGA and TCGA databases. A, In the CGGA database, 236 patients with
glioma were classified into 2 subgroups based on histone H3 status. B, In the CGGA database, 657 patients with glioma were classified
into 2 subgroups based on histone H3 status. CGGA, Chinese Glioma Genome Atlas; IDH, isocitrate dehydrogenase; OS, overall
survival; TCGA, The Cancer Genome Atlas; WES, whole-exome sequencing.
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Predictive Value of Histone H3 Alterations in Patients
With Diffuse Gliomas
Based on these 2 databases, Kaplan–Meier curves of OS stratified

by histoneH3 status were shown in Figure 4. Among all 236 patients
from CGGA, diffuse gliomas with H3-alteration had a worse
prognosis than those with H3-WT (P = .020). However, we did not
find a statistically significant difference between these 2 subgroups
in the TCGA cohort (P = .191). We further conducted survival
analyses on the different patient subgroups stratified by the status of
H3-alterations and IDHmutation in CGGA and TCGAdatabases.

TABLE 1. Patient Demographics and Baseline Characteristics From
CGGA Database (N = 236)

Characteristic H3-alteration H3-WT P valuea Total

Total (%) 54 (22.9) 182 (77.1) 236 (100)

Sex (%) .949

Male 30 (55.6) 102 (56.0) 132 (55.9)

Female 24 (44.4) 80 (44.0) 104 (44.1)

Age at diagnosis,
y, median (range)

40 (15-66) 41 (10-76) .590 41 (10-76)

Presenting
symptom (%)

.273

Headache 19 (35.2) 41 (22.5) 60 (25.4)

Epilepsy 17 (31.5) 63 (34.6) 80 (33.9)

Neurological
dysfunction

20 (37.0) 66 (36.3) 86 (36.4)

Incidental 6 (11.1) 33 (18.1) 39 (16.5)

Preoperative
KPS (%)

.648

Median (IQR) 90 (80-90) 90 (80-90) 90 (80-90)

>80 35 (64.8) 124 (68.1) 159 (67.4)

≤80 19 (35.2) 58 (31.9) 77 (32.6)

Side of the
lesion (%)

.019

Left 33 (61.1) 72 (39.6) 105 (44.5)

Right 17 (31.5) 92 (50.5) 109 (46.2)

Bilateral 4 (7.4) 18 (9.9) 22 (9.3)

Tumor location (%) .599

Frontal 36 (66.7) 115 (63.2) 151 (64.0)

Temporal 22 (40.7) 68 (37.4) 90 (38.1)

Parietal 15(27.8) 35 (19.2) 50 (27.5)

Occipital 3 (5.6) 6 (3.3) 9 (3.8)

Insular 13 (24.1) 21 (11.5) 34 (14.4)

Otherb 12 (22.2) 32 (17.6) 44 (18.6)

EOR (IQR) 100.0% (79.2%-
100%)

100.0%
(86.9%-
100.0%)

.112 100.0%
(85.4%-
100.0%)

Treatment after
surgery (%)

.480

Chemoradio-
therapy

40 (74.1) 116 (63.7) 156 (66.1)

Radiotherapy 7 (13.0) 39 (21.4) 46 (19.5)

TABLE 1. Continued.

Characteristic H3-alteration H3-WT P valuea Total

Chemotherapy 4 (7.4) 13 (7.1) 17 (7.2)

None 3 (5.5) 14 (7.7) 17 (7.2)

Midline
violation (%)

.442

Nonmidline
glioma

42 (77.8) 150 (82.4) 192 (81.4)

Midline glioma 12 (22.2) 32 (17.6) 44 (18.6)

Grade (%) .025

LGG 10 (18.5) 63 (34.6) 73 (30.9)

HGG 44 (81.5) 119 (65.4) 163 (69.1)

IDH status (%) .093

IDHmt 26 (48.1) 111 (61.0) 137 (58.1)

IDH-WT 28 (51.9) 71 (39.0) 99 (41.9)

1p/19q
status (%)

.665

Noncodel 34 (63.0) 115 (63.2) 149 (63.1)

Codel 15 (27.8) 59 (32.4) 74 (31.4)

NA 5 (9.3) 8 (4.4) 13 (5.5)

MGMT promoter
status

.898

Unmethylated 13 (24.1) 42 (23.1) 55 (23.3)

Methylated 27 (50.0) 83 (45.6) 110 (46.6)

NA 14 (25.9) 57 (31.3) 71 (30.1)

CGGA, Chinese Glioma Genome Atlas; EOR, extent of resection; H3-alteration, histone H3
alteration; H3-WT, histone H3 wild-type; HGG, high-grade glioma; IDH, isocitrate de-
hydrogenase; IDHmt, IDH-mutant; IDH-WT, IDH wild-type; IQR, interquartile range; KPS,
Karnofsky performance score; LGG, low-grade glioma; MGMT, O6-methylguanine-DNA
methyltransferase; NA, not applicable.
Results in bold represent P < 0.05.
aComparison between H3-alteration gliomas and H3-WT gliomas.
bBasal ganglia, brainstem, corpus callosum, third ventricle, thalamus, and other midline
structures.
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For IDH-mutant gliomas from the CGGA and TCGA cohorts,
patients withH3-alterations showed a worse survival prognosis than
those with H3-WT (Figure 5A and 5B, P = .041 and P = .008,
respectively). However, for IDH wild-type gliomas, no significant
difference was found in overall survival between these 2 subgroups
(Figure 5C and 5D, P = .620 and P = .990, respectively).

COX Regression Analyses of Survival in Patients With
IDH-Mutant Gliomas
To further investigate the influence that H3-alterations and other

clinical factors may exert on the prognosis of IDH-mutant gliomas, we
performed univariate and multivariate COX regression analyses of
survival, respectively, in 137 patients from the CGGA database and
337 patients from the TCGA database. 1p/19q codeletion status was
missing for 2 of 137 IDH-mutant gliomas in the CGGA cohort. Of
the 337 IDH-mutant gliomas in TCGA, 1p/19q codeletion status was
missing for only 1 H3 wild-type. MGMT status was missing for 47 of
137 IDH-mutant gliomas in the CGGA cohort. All there unknown
MGMT statuses were H3 wild-type in the TCGA cohort.
Of the CGGA cohort, in univariate analysis, preoperative KPS

(>80 vs ≤80, HR 2.039, 95% CI 1.142-3.624, P = .016), EOR

(HR 0.958, 95% CI 0.945-0.972, P < .001), treatment after
surgery (P = .022), midline violation (nonmidline vs midline, HR
3.029, 95% CI 1.598-4.677, P = .001), grade (LGG vs HGG, HR
5.795, 95% CI 2.793-12.023, P < .001), histone H3 status (H3-
WT [histone H3 wild-type] vs H3-alteration [histone H3 alter-
ation], HR 1.921, 95% CI 1.017-3.629, P = .044), and 1p/19q
codeletion status (noncodel vs codel, HR 0.154, 95% CI 0.069-
0.342, P < .001) were all associated with OS in IDH-mutant
gliomas (Table 2). In multivariate analysis, preoperative KPS (>80
vs ≤80, HR 2.394, 95% CI 1.257-4.599, P = .008), EOR (HR
0.971, 95% CI 0.957-0.986, P < .001), grade (LGG vs HGG, HR
6.938, 95% CI 2.787-17.269, P < .001), histone H3 status (H3-
WT vs H3-alteration, HR 2.482, 95% CI 1.183-4.981, P = .016),
and 1p/19q codeletion status (HR 0.169, 95% CI 0.073-0.390,
P < .001) were significant prognostic factors. In the TCGA cohort,
some parameters (preoperative KPS, EOR, and midline violation)
were not included in these analyses because these data were not
measured or not disclosed. In univariate analysis, age (HR 1.034,
95% CI 1.009-1.060, P = .008), grade (LGG vs HGG, HR 2.513,
95%CI 1.360-4.647, P = .003), and histoneH3 status (H3-WT vs
H3-alteration, HR 2.279, 95% CI 1.213-4.280, P = .010) were
associated with survival in IDH-mutant gliomas (Table 3). In

FIGURE 2. Associations betweenH3-alterations andWHO grade or IDH status in diffuse gliomas from CGGA and TCGA databases.A, Among all sequenced tumors, H3-
alteration was significantly increased in high-grade gliomas in the CGGA and TCGA cohorts (χ2 test, P = .025 and P = .021, respectively). B, The proportion of IDH-WT
gliomas with H3-alteration was higher than IDHmt gliomas, but statistically significant differences were not found in the CGGA and TCGA cohorts (χ2 test, P = .093 and
P = .096, respectively). CGGA, Chinese Glioma Genome Atlas; H3-alteration, histone H3 alteration; HGG, high-grade glioma; IDH, isocitrate dehydrogenase; IDHmt,
IDH-mutant; IDH-WT, IDH wild-type; LGG, low-grade glioma; TCGA, The Cancer Genome Atlas.
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multivariate analysis, age (HR = 1.034, 95% CI 1.008-1.061, P =
.010), grade (low-grade vs high-grade, HR 2.365, 95% CI 1.263-
4.427, P = .007), and histone H3 status (wild-type vs alteration,
HR 2.501, 95% CI 1.312-4.766, P = .005) were significant prog-
nostic factors for OS. To further test our hypothesis, we selected H3-
alterations and other clinical factors for COX regression analyses of
survival in patients with IDH wild-type gliomas. We found histone
H3 was no longer an independent prognostic factor in 2 cohorts
(Supplementary Tables 2 [http://links.lww.com/NEU/D778]
and 3 [http://links.lww.com/NEU/D779]). In summary, H3-

alteration was particularly proved to be an independent prognos-
tic risk factor for IDH-mutant gliomas from both CGGA and
TCGA databases.

DISCUSSION

In this research, we discussed the observation of diffuse IDH-
mutant glioma with H3-alterations, which had distinctive clinical
features, molecular patterns, and survival prognosis. In 2012,

FIGURE 3. The landscape of clinicopathological features of 54 sequenced tumors with H3-alterations in the CGGA cohort. Twenty
genes from 54 patients were observed altered and included 17 (85.0%) protein-coding genes and 3 (15%) pseudogenes. HIST3H3
amplification was the most prevalent actionable alteration. As for the genetic alteration of histone H3, 8 genes were mutated in 10
(18.5%) of 54 patients. All 16 mutations included 5 missense mutations, 1 start-lost mutation, and 10 multiple mutations. In-
terestingly, all 10 patients with LGG with H3-alterations were not found to have a mutation. CGGA, Chinese Glioma Genome Atlas;
H3-alteration, histone H3 alteration; IDH, isocitrate dehydrogenase; KPS, Karnofsky performance score; MGMT, O6-methylguanine-
DNA methyltransferase; TCGA, The Cancer Genome Atlas; OS, overall survival.
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genome sequencing studies brought the remarkable finding that
cancer-related mutations can occur in the histones themselves.17,18

More studies have expanded the range of malignancies known to
harbor mutations in histone H3 to include leukemia, giant cell
tumors of the bone, chondroblastoma, pediatric soft tissue sar-
coma, and chondrosarcoma.19 Consequently, many studies have
reported the genomic landscape of specific H3-alterations in gli-
omas and their relationship with clinical characteristics and
prognosis.20-22 They have mainly focused on the H3.1 and H3.2
replicative histones and H3.3 and CENPA histone variants, while
we tried to extend the scope to the whole histone H3 family as
much as possible. We proposed that H3-alterations may cause poor
outcomes and have particular clinical characteristics in patients with
glioma. In the CGGA cohort, amplifications of histone H3 family
genes were identified as the most common alterations. It may reveal
strong genetic heterogeneity among the histone H3 family genes
associated with diffuse glioma in their clinical behavior. Therefore,
further investigation of various H3-alterations in genomics and
epigenetics is needed in the future.
The findings in our study revealed that patients with genetic

alterations in the histone H3 family showed shorter survival and
tended to occur in HGGs. The previous studies also reported that
H3-alterations were associated with WHO grade and molecular
patterns relevant to the biology of gliomas.20 Patients with glioma
with IDHmutation have a relatively good prognosis.5,7 However,
the IDH-mutant gliomas were often also molecularly heteroge-
neous at presentation, and in oligodendrogliomas, combined 1p
and 19q loss were significantly associated with longer survival.
Thus, we assumed that it could be further refined according to the
different statuses of histone H3 in patients with glioma. In the
study, IDH status was not correlated with H3-alterations in the 2

cohorts. Then, we further stratified patients with diffuse glioma
into subgroups according to the status of IDH mutation and H3-
alterations. This finding indicated that IDH-mutant gliomas with
H3-alteration were more malignant than IDH-mutant gliomas
with H3-WT. It suggested that histone H3 status testing could be
valuable for developing a future grading approach for IDH-
mutant gliomas.
We performed univariate and multivariate analyses to identify

clinical characteristics and prognostic variables associated with
survival outcomes in patients with IDH-mutant gliomas. In the
COX regression analyses of the CGGA cohort, preoperative
KPS, EOR, grade, histone H3 status, and 1p/19q codeletion
status were independent prognostic factors, as indicated by other
studies.23-29 EOR has emerged as one of the most important
prognostic factors for gliomas. This also confirms that surgery is
the preferred treatment for gliomas. However, we could not
validate it using the TCGA cohort because of insufficient data
of EOR. Future validation is needed in cohort with more
samples. However, H3-alteration was proved to be an inde-
pendent prognostic factor for patients with IDH-mutant glioma
in the CGGA and TCGA cohorts. We also performed univariate
and multivariate analyses to further explore the influence of
H3-alterations on IDHwild-type gliomas, and we found histone
H3 was no longer an independent prognostic factor in 2 cohorts
(Supplementary Tables 2 [http://links.lww.com/NEU/D778]
and 3 [http://links.lww.com/NEU/D779). The underlying
mechanisms, H3-mutation on gliomas with different IDH status
and their implications, should be further evaluated in basic research
studies.
In our COX multivariate analysis, radiotherapy, chemother-

apy, and MGMT methylation did not significantly change the

FIGURE 4. Kaplan–Meier curves of overall survival stratified by histone H3 status. A, Overall survival of patients with glioma with H3-alteration was significantly shorter
in the Chinese Glioma Genome Atlas cohort (P = .020). B, In the The Cancer Genome Atlas cohort, a downward trend of overall survival with H3-alteration can be seen,
but the effect was not statistically significant (P = .191).
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OS in the 2 cohorts. These results suggested that standard ra-
diotherapy or chemotherapy might not be viable treatment
options for tumors with these genetic characteristics. However, it
is worth noting that radiotherapy is over-represented in both
databases (66.1% in the CGGA and 65.4% in the TCGA). As
shown in Table 1 and Supplementary Table 1, http://links.lww.
com/NEU/D776, the ratio of treatment for different histone H3
status did not reach a statistically significant in both databases (χ2

test, P = .480 and P = .129, respectively). For IDH-mutant
gliomas, 81 patients (59.1%) and 172 (51.0%) patients received

chemoradiotherapy. There was no study specifically for routine
chemoradiotherapy of the different statuses of histone H3
in IDH-mutant gliomas. We need more prospective data so
that we can reach to a conclusion. Currently, several histone
H3-targeting strategies have emerged as potential treatment
paradigms. GD2-targeted CAR-T cells were used in H3K27M
glioma orthotopic xenograft models with good results, and
clinical trials have shown that it has been well tolerated.30 An-
other study has reported that H3K27M gliomas are vulnerable to
transcriptional disruption using bromodomain inhibition or

FIGURE 5. Kaplan–Meier curves of overall survival stratified by histone H3 status and IDH status. A, In the CGGA cohort, OS of patients with glioma with IDHmt
was significantly different between H3-WT and H3-alteration (P = .041). B, In the TCGA cohort, OS of patients with glioma with IDHmt was significantly different
between H3-WT and H3-alteration (P = .008). C, As a contrast, in the CGGA cohort, a statistically significant correlation was not identified in histone H3 status
(P = .620). D, In the TCGA cohort, a statistically significant correlation was not identified in histone H3 status (P = .990). CGGA, Chinese Glioma Genome Atlas;
H3-alteration, histone H3 alteration; H3-WT, histone H3 wild-type; IDH, isocitrate dehydrogenase; IDHmt, IDH-mutant; IDH-WT, IDH wild-type; OS, overall
survival; TCGA, The Cancer Genome Atlas.
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CDK7 blockade.31 Novel targeted drugs are critical for this
specific subtype of patients with malignant gliomas in the future.
Previous studies established the importance of molecular bio-

markers in diagnosing and monitoring diffuse gliomas.1,3,4,29,32 As
molecular biomarker research advances, stratification of gliomas
according to their molecular characteristics will become a critical
component of future precision therapy.23-26,29,33,34 Identification
and assessment of histone H3 status in clinical practice might help

improve prognostic prediction and develop therapeutic strategies
for these patient subgroups.

Limitations
There are 3 main limitations in our research. First, a bias

exists in patient selection, because all the patients undergoing
surgery had a craniotomy in the CGGA cohort. Some patients
were eliminated because of unresectable tumors or unavailable

TABLE 2. Univariate and Multivariate Analyses of Survival of IDH-Mutation Glioma From CGGA Database

Covariates

Univariate Multivariate

HR 95% CI P value HR 95% CI P value

Age at diagnosis 0.976 0.945-1.008 .145

Preoperative KPS

KPS >80 1 Reference — 1 Reference —

KPS ≤80 2.039 1.142-3.642 .016 2.394 1.257-4.559 .008

EOR (%) 0.958 0.945-0.972 <.001 0.971 0.957-0.986 <.001

Treatment after surgery .022 .132

Chemoradiotherapy 1 Reference — 1 Reference —

Radiotherapy 0.382 0.187-0.781 .008 0.745 0.342-1.622 .459

Chemotherapy 0.431 0.075-1.291 .108 0.245 0.055-1.049 .066

None 0.310 0.132-1.403 .162 2.420 0.594-9.857 .217

Midline violation

Nonmidline glioma 1 Reference — 1 Reference —

Midline glioma 3.029 1.598-4.677 .001 1.390 0.674-2.868 .373

Grade

Low-grade 1 Reference — 1 Reference —

High-grade 5.795 2.793-12.023 <.001 6.938 2.787-17.269 <.001

Histone H3 status

H3-WT 1 Reference — 1 Reference —

H3-alteration 1.921 1.017-3.629 .044 2.482 1.183-4.981 .016

1p/19q codeletion status

Noncodel 1 Reference — 1 Reference —

Codel 0.154 0.069-0.342 <.001 0.169 0.073-0.390 <.001

MGMT promoter status

Unmethylated 1 Reference —

Methylated 1.406 0.636-3.108 .399

CGGA, Chinese Glioma Genome Atlas; EOR, extent of resection; H3-alteration, histone H3 alteration; H3-WT, histone H3 wild-type; IDH, isocitrate dehydrogenase; KPS, Karnofsky
performance score; MGMT, O6-methylguanine-DNA methyltransferase.
Results in bold represent P < 0.05.
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for surgery. Second, our study was a retrospective analysis
with many samples coming from earlier data. Some molecular
biomarkers were not available to ensure the cohort had a
sufficient number, so we had to exclude some samples without
other molecular biomarkers for analyses. And last, a more in-
depth investigation of the mechanisms of H3-alterations and
glioma is needed.

CONCLUSION

Our study mainly represents a potentially significant dis-
covery that diffuse IDH-mutant gliomas with H3-alterations
are distinguished by unique clinical characteristics, molecular
expression profile, and survival prognosis. An understanding of
the characteristics associated with this type of tumor may
provide insight into successful therapeutic options aimed at
prolonging survival and establishing accurate treatment in the
future.
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