
Available online at www.sciencedirect.com

journal homepage: www.ejcancer.com

Clinical Trial  

Afatinib in paediatric patients with recurrent/refractory 
ErbB-dysregulated tumours: Results of a phase  
I/expansion trial☆

Birgit Geoerger a,⁎, Lynley V. Marshall b, Karsten Nysom c,  
Guy Makin d,e, Eric Bouffet f, Anne-Sophie Defachelles g,  
Loredana Amoroso h, Isabelle Aerts i, Pierre Leblond j,  
Paulette Barahona k, Kim Van-Vlerken l, Eric Fu m, Flavio Solca n,  
Robert M. Lorence m, David S. Ziegler o,p,q

a Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris- 
Saclay, Villejuif, France 
b The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK 
c Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark 
d Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK 
e Royal Manchester Children’s Hospital, Manchester, UK 
f The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada 
g Centre Oscar Lambret, Lille, France 
h Oncology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy 
i Institut Curie, PSL Research University, Oncology Center SIREDO, Paris, France 
j Institute of Pediatric Hematology and Oncology, Centre Léon Bérard, Lyon, France 
k Children’s Cancer Institute, Kensington, NSW, Australia 
l SCS Boehringer Ingelheim Comm.V, Brussels, Belgium 
m Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA 
n Boehringer Ingelheim RCV GmbH & Co.KG Vienna, Austria 
o Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia 
p School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia 
q Children’s Cancer Institute, University of New South Wales, Sydney, NSW, Australia  

Received 2 March 2023; Received in revised form 13 April 2023; Accepted 15 April 2023 
Available online 20 April 2023

European Journal of Cancer 188 (2023) 8–19

https://doi.org/10.1016/j.ejca.2023.04.007 
0959-8049/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/). 

☆ Previously presented in part at the Annual Meeting of the European Society of Medical Oncology (ESMO) 2017 in Madrid, Spain (Nysom 
et al., 2017. Annals of Oncology;28 (suppl_5):v22–v42. 10.1093/annonc/mdx363,#86PD).

]]]] 
]]]]]]

⁎ Corresponding author: Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université 
Paris-Saclay, 114 Rue Eduard Vaillant, 94805 Villejuif, France.

E-mail address: birgit.geoerger@gustaveroussy.fr (B. Geoerger).

http://www.sciencedirect.com/science/journal/09598049
www.ejcancer.com
https://doi.org/10.1016/j.ejca.2023.04.007
https://doi.org/10.1016/j.ejca.2023.04.007
https://doi.org/10.1016/j.ejca.2023.04.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejca.2023.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejca.2023.04.007&domain=pdf
mailto:birgit.geoerger@gustaveroussy.fr


KEYWORDS 
Afatinib; 
EGFR; 
HER2; 
Paediatric cancer; 
EGFR::CLIP2 fusion

Abstract Aim: This phase I/expansion study assessed the safety, pharmacokinetics and 
preliminary antitumor activity of afatinib in paediatric patients with cancer.
Methods: The dose-finding part enroled patients (2– < 18 years) with recurrent/refractory 
tumours. Patients received 18 or 23 mg/m2/d afatinib orally (tablet or solution) in 28-d cycles. 
In the maximum tolerated dose (MTD) expansion, eligible patients (1– < 18 years) had tu-
mours fulfilling ≥2 of the following criteria in the pre-screening: EGFR amplification; HER2 
amplification; EGFR membrane staining (H-score > 150); HER2 membrane staining (H- 
score > 0). The primary end-points were dose-limiting toxicities (DLTs), afatinib exposure, 
and objective response.
Results: Of 564 patients pre-screened, 536 patients had biomarker data and 63 (12%) fulfilled 
≥2 EGFR/HER2 criteria required for inclusion in the expansion part. A total of 56 patients 
were treated (17 in the dose-finding and 39 in the expansion part). DLTs were observed in one 
of six MTD-evaluable patients receiving 18 mg/m²/d and in two of five MTD-evaluable pa-
tients receiving 23 mg/m²/d; 18 mg/m²/d was defined as the MTD. There were no new safety 
signals. Pharmacokinetics confirmed exposure consistent with the approved dose in adults. 
One partial response (−81% per Response Assessment in Neuro-Oncology) was observed in a 
patient with a glioneuronal tumour harbouring a CLIP2::EGFR fusion; unconfirmed partial 
responses were observed in two patients. In total, 25% of patients experienced objective re-
sponse or stable disease (95% confidence interval: 14–38).
Conclusion: Targetable EGFR/HER2 drivers are rare in paediatric cancers. Treatment with 
afatinib led to a durable response (> 3 years) in one patient with a glioneuronal tumour with 
CLIP2::EGFR fusion.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

ErbB receptors have been extensively investigated as 
drug targets in adult cancers [1,2], but less so in pae-
diatric indications. ErbB pathway dysregulation 
(e.g. ErbbB amplification or overexpression) has been 
described in multiple paediatric cancers [3–7], and 
treatment outcomes of recurrent diseases remain poor 
[8,9]. Studies of ErbB TKIs in paediatric patients have 
shown limited efficacy [10–15], potentially due to com-
pensatory oncogenic signalling via non-target ErbB re-
ceptors [16]. Afatinib, an irreversible ErbB family 
inhibitor highly penetrant of the blood-brain barrier, 
blocks transphosphorylation of all ErbB dimers in-
cluding those containing ErbB3 [17,18], and may there-
fore be effective against tumours driven by aberrant 
ErbB signalling, including central nervous system (CNS) 
tumours [19].

Validated predictive biomarkers for EGFR TKIs are 
rare in paediatric malignancies and have not generally 
been utilised in previous studies to select patients [10–14]. 
Our systematic biomarker analysis of 297 paediatric pa-
tients with ependymoma, high-grade glioma (HGG), 
medulloblastoma, recurrent/refractory low-grade astro-
cytoma, diffuse intrinsic pontine glioma (DIPG), neuro-
blastoma and rhabdomyosarcoma identified high levels of 
heterogeneity in terms of ErbB dysregulation [20]; 
20–30% of tumour samples (except DIPG [4%] and 

low-grade astrocytoma [0%]) demonstrated ErbB dysre-
gulation, defined as ≥2 of the following molecular markers 
based on Clinical Laboratory Improvement Amendments 
(CLIA)-approved assays validated in adult indications: 
EGFR amplification, HER2 amplification, EGFR over-
expression, or HER2 overexpression.

Here, we report results from the phase I/expansion 
study of afatinib in paediatric patients with tumours 
harbouring ErbB dysregulation. We presumed that si-
multaneous upregulation of at least two EGFR or 
HER2 markers might indicate ErbB pathway activation. 
The activity of afatinib was therefore evaluated in pa-
tients with tumours of a type likely to exhibit EGFR/ 
HER2 amplification or overexpression, in patients se-
lected according to ErbB pathway dysregulation as 
previously defined [20], or in patients with other ErbB 
aberrations (including mutations or gene fusions) likely 
to be oncogenic.

2. Materials and methods

2.1. Patients

This open label, multicentre trial (Clinicaltrials.gov identi-
fier: NCT02372006) enroled patients with recurrent or re-
fractory cancers for whom no curative treatment was 
available. For the dose-finding part (Part 1), eligible 
patients were aged 2– < 18 years at time of consent 
with a histological diagnosis of HGG, DIPG, low-grade 
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astrocytoma, medulloblastoma, primitive neuroecto-
dermal tumour, ependymoma, neuroblastoma, rhabdo-
myosarcoma, or other solid or CNS tumours previously 
reported to frequently harbour ErbB aberrations. For the 
maximum tolerated dose (MTD) dose-expansion part 
(Part 2), eligible patients were aged 1– < 18 years, had 
measurable disease that fulfilled at least two of the fol-
lowing criteria determined from archived material in a pre- 
screening procedure, as previously defined [20]: (i) EGFR 
or (ii) HER2 protein expression, indicated by membrane 
staining with immunohistochemistry (IHC) (H-score > 150 
or > 0, respectively); (iii) EGFR gene amplification de-
tected by fluorescence in situ hybridisation (FISH) (either 
EGFR/Cen7 ≥2.0, or ≥10% of cells with ≥15 copies, or 
≥40% of cells with ≥4 copies, or gene cluster in ≥10% of 
cells); and/or (iv) HER2 gene amplification detected by 
dual-colour, dual-hapten, brightfield in situ hybridisation 
(DDISH) (Her2/CEP17 ≥2.0). Patients with other con-
firmed ErbB alterations or ErbB alterations likely to be 
oncogenic were enroled into an exploratory cohort.

All patients were required to have recovered from 
toxicity from prior anticancer treatment, Karnofsky/ 
Lansky performance status ≥50 (for patients > 12/≤12 
years, respectively), and neurological stability ≥7 d for 
patients with CNS tumours. Key exclusion criteria in-
cluded as follows: radiotherapy, chemotherapy, or sur-
gery within 2, 3 or 4 weeks, respectively, prior to the 
start of study; and inadequate organ function (see 
Supplementary Methods for all criteria).

2.2. Study design

In Part 1, patients received escalating doses of afatinib 
(oral, as tablet or solution including via feeding tube), 
starting with 80% of the adult recommended dose 
per m2 body surface area (BSA) using allometric scaling 
(18 mg/m2/d); dose escalations to 100%, 125% and 150% 
of the adult dose were planned via a rolling six design 
[21]. Patients who missed > 25% of their doses during 
Cycle 1 for reasons other than toxicity were excluded 
from MTD analysis. In Part 2, patients (with markers 
for EGFR and/or HER2 dysregulation) were recruited 
into expansion cohorts according to histology (DIPG, 
HGG, ependymoma and other solid tumours, including 
extracranial and CNS tumours) and received the MTD 
(Supplementary Fig. A1). Patients continued treatment 
until disease progression, undue toxicities, or dis-
continuation for any other reason.

The trial was performed in accordance with the 
principles of the Declaration of Helsinki and the 
International Conference on Harmonization Good 
Clinical Practice (ICH GCP) guidelines, and was ap-
proved by ethics committees and medical authorities as 
per local regulatory requirements. For all patients, 
parent(s)/legal guardian(s)’ written informed consent 
and age-appropriate patient assent were provided.

2.3. End-points

The primary safety end-point for Part 1 was the oc-
currence of dose-limiting toxicities (DLTs), defined as 
any of the following events considered related to afa-
tinib: Grade (G)4 haematologic toxicity lasting for ≥7 d; 
G3–4 non-haematologic toxicity (except G3 fever); G ≥2 
worsening of renal function, G2 nausea and/or vomiting 
or diarrhoea lasting for ≥7 d despite supportive treat-
ment; G5 events. The MTD was determined as the 
highest dose at which no more than one in six patients in 
the dose-finding part (Part 1) experienced a DLT, as-
sessed during the first treatment cycle.

Pharmacokinetic end-points included the afatinib 
area under the plasma concentration-time curve over the 
dosing interval τ at steady state (AUCτ,ss), the max-
imum measured plasma afatinib concentration at steady 
state (Cmax,ss), AUC following the first dose (AUC0–24), 
the maximum measured plasma concentration (Cmax), 
time from (last) dosing to the maximum concentration 
at steady state (tmax[,ss]), and accumulation (or effective) 
half-life (t1/2,effective).

For Part 2, the primary efficacy end-point was ob-
jective response (OR) by investigator assessment. Other 
efficacy end-points included progression-free survival 
(PFS; from first treatment until progression or death), 
duration of OR (from first documented response until 
disease progression or death) and overall survival (OS; 
from first treatment until death).

2.4. Assessments

Biomarker assays were performed centrally by 
TARGOS Molecular Pathology GmbH using tissue 
samples from archived tumour blocks, or tissue sec-
tions [20].

Adverse events (AEs) were assessed according to 
National Cancer Institute Common Terminology 
Criteria for Adverse Events (CTCAE) v3.0. Hepatic 
injury and DLTs were considered AEs of special in-
terest.

Tumour response was assessed every 8 weeks until 
progression of disease, according to the given tumour 
type, using Response Evaluation Criteria in Solid 
Tumors (RECIST) version 1.1 [22,23], International 
Neuroblastoma Response Criteria (INRC) [24], Re-
sponse Assessment in Neuro-Oncology (RANO) [25], or 
World Health Organization (WHO) criteria [26]. For 
anti-tumour activity, patient data from the dose-finding 
part and the MTD-expansion cohorts were pooled.

Plasma pharmacokinetic sampling was performed on 
Days 1 and 8 of Cycle 1 (see Supplementary Methods).

2.5. Statistical analyses and sample size

Approximately 30 patients were planned to be recruited 
for Part 1 (Supplementary Fig. A1). Once the MTD was 
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determined, at least five patients with confirmed ErbB 
dysregulation were to be accrued into each expansion 
cohort. A total of 20 patients was originally planned for 
the MTD-expansion cohort. However, following a 
written request from the FDA, trial recruitment was 
changed to instead include ≥5 patients in each cohort 
according to histology (DIPG, HGG, ependymoma and 
other solid tumours), in order to confirm a safe RP2D 
and to assess tumour response. An exploratory cohort 
of patients with proven genomic, transcriptomic or 
proteomic alterations which were not defined in the 
biomarker prevalence study was also included. As-
suming a response rate of 20% or 30%, the estimated 
probability of observing at least one response per cohort 
would be 67% or 83%, respectively. Assuming a bio-
marker prevalence of 10–15%, 322–485 patients were to 
be screened to recruit 38 patients into the expansion 
cohorts. All analyses were descriptive and exploratory.

2.6. Preclinical evaluations

Animal experiments were executed in compliance with 
appropriate institutional guidelines and regulations and 
after approval from the Regierungspräsidium Freiburg 
(protocol approval number Az. 35-9185.81/G-20/163).

To assess the impact of the newly-discovered 
CLIP2::EGFR fusion on EGFR activation and in-
hibitory action of afatinib, preclinical assessments were 
undertaken in addition to the clinical evaluations within 
the trial. CLIP2::EGFR (based on the patient DNA 
sequence) and CLIP2::EGFR D837R (negative control) 
constructs were generated on a pMSCV-PGK-Puro- 
IRES-GFP backbone. Transduced NIH-3T3 cells were 
cultured for in vitro EGFR activation assays and 3D 
proliferation assays, and were implanted into 9- to 11- 
week-old female nude mice (NMRI nu/nu mice; 
CRL:NMRI-Foxn1nu, Charles River Laboratories) for 

Table 1 
Patient characteristics. 

Dose-finding level 1 Dose-finding level 2 MTD expansion Total

Number of patients, N 8 9 39 56
Gender, n (%)

Male 4 (50) 5 (56) 23 (59) 32 (57)
Female 4 (50) 4 (44) 16 (41) 24 (43)

Median age, years (range)a 9.5 (4.0–17.0) 14.0 (2.0–16.0) 11.0 (3.0–18.0) 11.5(2.0–18.0)
Tumour histology, n (%)

High-grade glioma 3 (38) 4 (44) 6 (15) 13 (23)
Diffuse intrinsic pontine glioma 0 0 4 (10) 4 (7)
Low-grade astrocytoma 0 0 1 (3) 1 (2)
Ependymoma 1 (13) 1 (11) 8 (21) 10 (18)
Medulloblastoma 1 (13) 0 0 1 (2)
Primitive neuroectodermal tumour 2 (25) 1 (11) 1 (3) 4 (7)
Neuroblastoma 0 1 (11) 3 (8) 4 (7)
Rhabdomyosarcoma 1 (13) 2 (22) 4 (10) 7 (13)
Otherb 0 0 12 (31) 12 (21)

Median time from first histological diagnosis, years (range) 1.8 (0.6–4.0) 2.0 (0.5–6.1) 1.8 (0.2–10.7) 1.8 (0.2–10.7)
Baseline Karnofsky or Lansky score category

100–80 6 (75) 7 (78) 32 (82) 45 (80)
70–50 2 (25) 2 (22) 7 (18) 11 (20)

Prior anticancer treatment, n (%)
Chemotherapy 8 (100) 9 (100) 28 (72) 45 (80)
Radiotherapy 8 (100) 8 (89) 32 (82) 48 (86)
Surgery 7 (88) 8 (89) 31 (79) 46 (82)
Immunotherapyc 0 1 (11) 7 (18) 8 (14)
Other targeted therapyd 0 0 12 (31) 12 (21)

Number of lines of chemotherapy, n (%)
0 0 0 11 (28) 11 (20)
1 3 (38) 2 (22) 6 (15) 11 (20)
≥2 5 (63) 7 (78) 22 (56) 34 (61)

Number of lines of radiotherapy, n (%)
0 0 1 (11) 7 (18) 8 (14)
1 3 (38) 3 (33) 20 (51) 26 (46)
≥2 5 (63) 5 (56) 12 (31) 22 (39)

MTD, maximum tolerated dose.
a Patients who reached 18 years after signing consent for pre-screening but before treatment start were permitted in this paediatric trial.
b This group included patients with tumours of the following histology: adenoid cystic carcinoma, fibrolamellar hepatic carcinoma, osteo-

sarcoma, nasopharyngeal carcinoma, adrenocortical carcinoma, choroid plexus carcinoma, undifferentiated high-grade intracranial tumour, 
atypical teratoid rhabdoid tumour, glioneuronal tumour, neuroectodermal neoplasm (n = 1 each) and hepatocellular carcinoma (n = 2).

c Immunotherapies include as follows: monoclonal antibodies Ch.14.18; (n = 3); anti-GD2 antibodies + interleukin 2 (n = 2); nivolumab (n = 3).
d Other targeted therapies include as follows: nimotuzumab (n = 3); lapatinib with bevacizumab; imetelstat; tazemetostat; retinoic acid (n = 1 

each); bevacizumab monotherapy (n = 3; the patient who received tretinoin also received bevacizumab in a later line); sorafenib (n = 3).  
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in vivo xenograft assays (see Supplementary Materials
for detailed methods).

3. Results

3.1. Patients

Between May 2015 and August 2020, 564 patients were pre- 
screened across 28 sites in 11 countries, including 519 pa-
tients pre-screened for inclusion in the MTD-expansion 
cohorts. Of these, 381 were ineligible based on negative 
biomarker assessment, 107 patients did not meet other in-
clusion/exclusion criteria and 20 were not treated for other 
reasons (Supplementary Fig. A2). Of 536 patients with 
biomarker data, 63 (11.8%) were positive for ≥2 biomarkers 
(Supplementary Table A1). Fifty-six patients received afa-
tinib (median age of 11.5 years [range 2–18], 57% male; 
Table 1): 17 patients in the dose-finding part (eight and nine 
patients received 18 mg/m2/d and 23 mg/m2/d, respectively) 
and 39 in the MTD-expansion cohorts. Afatinib was ad-
ministered orally as tablet or solution or using a feeding 
tube in 22 (39%), 32 (55%) and four (7%) patients, respec-
tively (one patient switched from liquid solution to tablet, 
and one from solution to feeding tube). In the expansion 
cohorts, 28 (72%) patients had EGFR H-scores > 150, 22 
(56%) patients had positive EGFR FISH, 22 (56%) patients 
had HER2 IHC scores > 0, and nine (23%) patients had 
positive HER2 DDISH (Table 2, Fig. 1A); 79% of patients 
had two biomarkers and 15% had three (Fig. 1B).

The median duration of treatment with afatinib until 
cutoff was 53 d (range 2–337). Reasons for treatment 
discontinuation were progressive disease (n = 49, 88%), 
AEs other than DLT (n = 3, 5%), refused trial medica-
tion (n = 2, 4%), and DLT, (n = 1, 2%). One patient 
remained on study treatment for 255 d without 

progression before trial close (5th August 2020) and was 
transferred to a compassionate use program.

3.2. Safety

In Part 1, 11 of 17 patients were evaluable for MTD de-
termination (five patients received < 80% of the 28 doses in 
Cycle 1 and were replaced; one patient was treated [18 mg/ 
m2/d] after the MTD had been exceeded). At the starting 
dose, one of six evaluable patients experienced DLT (G3 
diarrhoea) during treatment Cycle 1. At 23 mg/m2/d, two of 
five evaluable patients experienced DLT (G3 decreased 
appetite considered serious due to hospitalisation and as-
sociated with moderate diarrhoea); G4 hypernatremia, de-
hydration, diarrhoea, G3 decreased appetite, hypokalemia, 
cheilitis, rash). Afatinib once daily at 80% of the re-
commended adult dose per m2 BSA using allometric scaling 
(18 mg/m2/d) was therefore identified as the MTD for 
paediatric patients. Out of 56 patients overall, 6 patients 
(11%) experienced DLT events during the first treatment 
cycle, and 11 patients (20%) experienced DLT at any time 
during the trial.

Overall, 56 patients received a total of 144 cycles of 
therapy. Any-grade AEs and G ≥3 AEs were experi-
enced by 56 (100%) and 35 (63%) patients, respectively. 
Treatment-related AEs were experienced by 52 (93%) 
patients, most commonly diarrhoea, stomatitis, dry 
skin, and vomiting (Table 3). G3 and G4 treatment-re-
lated AEs were reported in eight (14%) and two (4%) 
patients, respectively.

Treatment-related AEs leading to dose reduction 
were experienced by eight (14%) patients. AEs leading 
to discontinuation of afatinib were experienced by six 
(11%) patients. AEs of special interest and serious 
AEs were experienced by 11 (20%; all were DLT events 
as reported above; hepatic injury was not reported) and 

Table 2 
Summary of biomarker characteristics of patients in the treated set of the MTD-expansion cohort. 

HGG (n = 6) DIPG (n = 4) EP (n = 8) Othera (n = 19) Exploratory (n = 2) Total (N = 39)

EGFR FISH, n (%)
Positive 5 (83) 4 (100) 2 (25) 11 (58) 0 22 (56)
Negative 1 (17) 0 6 (75) 8 (42) 2 (100) 17 (44)

HER2 DDISH, n (%)
Positive 2 (33) 2 (50) 1 (13) 4 (21) 0 9 (23)
Negative 4 (67) 2 (50) 7 (88) 13 (68) 2 (100) 28 (72)
Missing 0 0 0 2 (11) 0 2 (5.1)

EGFR IHC, n (%)
H-score  >  150 4 (67) 2 (50) 8 (100) 14 (74) 0 28 (72)
H-score ≤ 150 2 (33) 2 (50) 0 5 (26) 2 (100) 11 (28)

HER2 IHC, n (%)
H-score  >  0 1 (17) 0 8 (100) 12 (63) 1 (50) 22 (56)
H-score = 0 5 (83) 4 (100) 0 7 (37) 1 (50) 17 (44)

CLIP2::EGFR fusion, n (%)
Positive 0 0 0 0 1 (50) 1 (3)

CLIP2, CAP-Gly domain containing linker protein 2; DDISH, dual-colour, dual-hapten, brightfield in situ hybridisation; DIPG, diffuse intrinsic 
pontine glioma; EGFR, epidermal growth factor receptor; EP, ependymoma; FISH, fluorescence in situ hybridisation; HER2, human epidermal 
growth factor receptor 2; HGG, high-grade glioma; IHC, immunohistochemistry; MTD, maximum tolerated dose.

a HER2 DDISH data missing for two patients.  
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33 (59%) patients, respectively. Three fatal AEs were 
reported (hydrocephalus, respiratory distress, re-
spiratory arrest), none considered treatment-related.

3.3. Pharmacokinetics

The pharmacokinetics analysis set included 17 patients 
from Part 1 (18 mg/m2/d: n = 8; 23 mg/m2/d: n = 9) and 39 
patients from Part 2. At 18 mg/m2/d, the geometric mean 
(gMean) AUCτ,ss was 758 ng*h/ml (geometric coefficient of 

variance [gCV] 56.8%); the gMean Cmax at steady state was 
52.6 ng/ml (gCV 57.5%); AUC0–24 was 364 ng*h/ml and 
tmax, tmax,ss and t1/2,effective were 3.5 h, 4.0 h and 27.2 h, re-
spectively (Supplementary Table A2). Steady state was 
reached at Day 8 (Supplementary Fig. A3).

3.4. Antitumor activity

Of 56 patients treated, one experienced a partial re-
sponse (PR) (ORR: 1.8%, 95% confidence interval [CI]: 

Fig. 1. Biomarker characteristics in patients treated in the expansion cohorts, and best-recorded change in tumour size among patients in 
the treated set with measurable disease. A. Proportion of patients treated in the expansion cohorts (n = 39) with each biomarker. B. 
Proportion of patients treated in the expansion cohorts with either 0, 1, 2, or 3 biomarkers present. Ci. Waterfall plot of best-recorded 
change in tumour size from baseline in patients in the treated set with available best change in tumour size data (n = 36). Colour coding 
indicates histology. Axis cutoff at 150%; tumour volume changes > 150% are indicated in text on the plot. Cii. Biomarkers present for 
patients in Ci (MTD-expansion cohorts and dose-finding cohorts). *Patient with partial response (unconfirmed in two patients). †Patient 
had ERBB3 V104L mutation in addition to HER2 receptor expression and was thus enroled in the study. ‡Patient was negative for all 
four selection biomarkers but had a CLIP2::EGFR fusion, considered to be the tumour driver, and was thus enroled in the study. The 
patient also demonstrated an EGFR IHC H-score of 85 (therefore below the threshold of 150). No other ErbB mutations were recorded in 
this patient cohort. DDISH, dual-colour, dual-hapten, brightfield in situ hybridisation; DIPG, diffuse intrinsic pontine glioma; EGFR, 
epidermal growth factor receptor; EP, ependymoma; FISH, fluorescence in situ hybridisation; HER2, human epidermal growth factor 
receptor 2; HGG, high-grade glioma; IHC, immunohistochemistry; LGA, low-grade astrocytoma; NB, neuroblastoma; OTH, other; PD, 
progressive disease; PR, partial response; RMS, rhabdomyosarcoma, SD, stable disease. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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0.05–9.6) and 13 had stable disease as best response 
(disease control rate: 25.0% (95% CI: 14.4–38.4). Best 
change in tumour size and biomarker data are presented 
in Fig. 1Ci and Cii for patients with measurable disease.

One patient in the ErbB-alteration expansion cohort 
had a confirmed PR (RANO; Fig. 2A and B). This 
patient, who had a glioneuronal tumour with a CLI-
P2::EGFR gene fusion (Fig. 2C and D), had an 81% 
reduction from baseline and resolution of all clinical 
symptoms. As of February 2023, the patient was still 
benefiting from continuous afatinib treatment for > 3 
years (David S. Ziegler, personal communication). One 

patient with ependymoma (EGFR IHC score > 150; 
HER2 DDISH+; HER2 IHC > 0) and one with choroid 
plexus carcinoma (EGFR IHC score > 150; HER2 
IHC > 0) experienced PR at Cycle 2 but progressed at 
the subsequent assessment (PFS: 110 and 173 d, re-
spectively). Additionally, one patient carrying an 
ERBB3 V104L mutation experienced 20% reduction in 
tumour size. Overall, median PFS was 1.8 months (95% 
CI: 1.5–1.9) and median OS was 4.6 months (95% CI: 
3.8–8.7). Further details of response-evaluable patients 
are presented in Supplementary Table A3.

3.5. Validation of the oncogenic CLIP2::EGFR fusion 
and its sensitivity to afatinib

During screening, the EGFR::CLIP2 fusion was con-
sidered to have oncogenic potential and the patient was 
therefore included in the exploratory cohort. As the 
oncogenic function of the novel CLIP2::EGFR gene 
fusion was unknown, in parallel with the patient’s 
treatment, we constructed a preclinical model based on 
the patient’s gene fusion sequence to explore its onco-
genic role. In CLIP2::EGFR-expressing NIH/3T3 cells, 
phosphorylated CLIP2::EGFR (CLIP2::pEGFR) was 
observed, as measured by antibody staining on two 
different tyrosines, showing tyrosine kinase activation 
(Fig. 3A). These data are corroborated by the absence of 
phosphorylation observed when using the kinase-im-
peded construct CLIP2::EGFR D837R. Parental cells 
(negative control) did not show a band at the corre-
sponding position. In CLIP2::EGFR NIH/3T3 cells, 
incubation with afatinib dose-dependently reduced 
CLIP2::pEGFR immunoreactivity (Fig. 3B) and 
showed long-lasting inhibition. Afatinib inhibited cell 
proliferation in CLIP2::EGFR-expressing 3D cultures 
(half maximal inhibitory concentration [IC50]: 
0.81 nmol/l) but had no effect on the proliferation of 
NIH/3T3 parental cells (Fig. 3Ci and Cii). Tumour 
growth was faster in mice implanted with NIH/3T3 
CLIP2::EGFR cells (n = 26) than NIH/3T3 parental 
cells (n = 10; Fig. 3D), even when grown under permis-
sive conditions for the parental cells [27]. Tumour vo-
lumes were significantly larger at Day 21 for mice 
transplanted with CLIP2::EGFR cells versus parental 
(P  <  0.0001, Welch’s t-test; Fig. 3D inset). When NIH/ 
3T3 CLIP2::EGFR-implanted mice were randomised to 
afatinib or vehicle treatment, afatinib (10 mg/kg/d) in-
duced tumour growth regressions in all animals (n = 9), 
whereas vehicle (water; n = 8; Fig. 3E) treatment showed 
no effect on tumour growth.

4. Discussion

This study established the MTD of afatinib in paediatric 
patients and assessed the activity of afatinib in paedia-
tric patients selected according to the presence of hy-
pothesis-guided potential biomarkers.

Table 3 
Summary of adverse events and treatment-related adverse events, 
maximum CTCAE grade. 

Patients, n (%) Any 
grade

Grade ≥3

Any AE 56 (100) 35 (63)
AEs leading to afatinib dose reduction 8 (14) 5 (9)
AEs leading to discontinuation of afatinib 6 (11) 3 (5)
Protocol-defined AESIsa 11 (20) 9 (16)
SAEs 33 (59) 25 (45)
Treatment-related AEs leading to afatinib 

dose reduction
8 (14) 5 (9)

Treatment-related AEsb 52 (93) 10 (18)
Gastrointestinal

Diarrhoea 41 (73) 3 (5)
Stomatitis 14 (25) 1 (2)
Vomiting 13 (23) 0
Abdominal pain 11 (20) 0
Nausea 9 (16) 0
Mucosal inflammation 7 (13) 0
Constipation 4 (7) 0

Dermatological/skin/eye
Dry skin 14 (25) 0
Paronychia 11 (20) 2 (4)
Cheilitis 10 (18) 1 (2)
Acneiform dermatitis 10 (18) 0
Rash 5 (9) 1 (2)
Maculo-papular rash 5 (9) 0
Pruritus 4 (7) 0
Dry eye 4 (7) 0
Conjunctivitis 3 (5) 0
Dry lip 3 (5) 0
Xerosis 3 (5) 0

General symptoms
Decreased appetite 9 (16) 2 (4)
Weight decreased 8 (14) 0
Fatigue 7 (13) 0
Epistaxis 6 (11) 0
Headache 3 (5) 0

Laboratory alterations
Anaemia 4 (7) 0
Hypokalemia 4 (7) 2 (4)
Hyponatremia 3 (5) 1 (2)
Alanine aminotransferase increased 3 (5) 1 (2)
White blood cell count decreased 3 (5) 0

AE, adverse event; AESI, AE of special interest; CTCAE, National 
Cancer Institute Common Terminology Criteria for Adverse Events; 
SAE, serious AE.

a All AESIs observed were dose-limiting toxicities; no hepatic toxi-
city was observed.

b Treatment-related AEs listed affected ≥3 patients.  
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At the established MTD for paediatric patients 
(18 mg/m²/d), afatinib exposure in children was similar 
to that in adults receiving 40 mg/d, an effective adult 
dose. Consistent with reports in adults [28,29], 

moderate interpatient variability in exposure was ob-
served and the most common treatment-related AEs 
were diarrhoea, dry skin, stomatitis, and vomiting. 
G ≥3 treatment-related AEs affected 18% of patients (a 

Fig. 2. CLIP2::EGFR gene fusion and tumour response in a patient with a glioneuronal tumour. A. Timeline of patient case history. B. 
MRI scans of patient pretreatment and after approximately 1 year on afatinib treatment. C. CLIP2::EGFR fusion DNA sequence and 
breakpoints. D. Breakpoints and schematic of CLIP2::EGFR fusion coding RNA. CLIP2, CAP-Gly Domain Containing Linker Protein 
2; EGFR, epidermal growth factor receptor; PR, partial response.
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Fig. 3. Afatinib in preclinical models expressing CLIP2::EGFR fusion protein. A. EGFR and pEGFR immunoreactivity in NIH/3T3 cells 
expressing CLIP2::EGFR and CLIP2::EGFR D837R. B. pEGFR immunoreactivity in NIH/3T3 cells expressing CLIP2::EGFR in-
cubated with afatinib (10–300 nM) or vehicle (DMSO) for 1 h, 4 h, or 24 h. C. Afatinib sensitivity of NIH/3T3 cells (Ci: CLIP2::EGFR; 
Cii: parental) using CellTiter-Glo® 3D Proliferation assays. D. Tumour growth volume in mice implanted with NIH/3T3 cells (red: 
CLIP2::EGFR; black: parental). Inset: tumour volume on Day 18. E. Relative tumour volumes with corresponding standard deviations in 
mice implanted with NIH/3T3 CLIP2::EGFR cells, treated with vehicle (water; n = 8) or afatinib (n = 9). CLIP2, CAP-Gly Domain 
Containing Linker Protein 2; d, day; DMSO, dimethyl sulfoxide; EGFR, epidermal growth factor receptor; h, hour; NIH/3T3, National 
Institute of Health, 3T3 fibroblast cell line, inoculum 3 × 105 cells; pEGFR, phosphorylated EGFR. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
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lower proportion than in the LUX-Lung stu-
dies) [30,31].

In the MTD-expansion part, we implemented criteria 
from our recent biomarker study [20] to select for ErbB- 
driven malignancies and thus provide the most likely setting 
to observe responses in paediatric cancers associated with 
afatinib, an ErbB-targeting drug. The most common posi-
tive results were EGFR FISH, EGFR IHC, and HER2 
IHC (15–20% each of pre-screened patients); HER2 am-
plification/polysomy was observed in only 5% of patients. 
One patient had an EGFR gene fusion, and none had 
EGFR-activating mutations, illustrating the rarity of ErbB 
mutations in paediatric cancers. Despite the presumed 
biomarker-driven selection criteria, afatinib did not de-
monstrate substantial anti-tumour activity in any of the pre- 
specified indications or in children with recurrent or re-
fractory malignant tumours with ErbB pathway dysregu-
lation as defined in the biomarker study. The present 
analysis did not stratify according to type of EGFR FISH 
test result (e.g. amplification versus high polysomy). There 
is some evidence that tumours with EGFR amplification 
may be sensitive to afatinib [32–35]. Focal EGFR amplifi-
cation is observed less frequently in paediatric cancers than 
forms of polysomy [20]. It is possible that the low ORR in 
our study is, in part, attributable to a low proportion of 
EGFR amplification-positive tumours. The only confirmed 
OR was in the patient with a CLIP2::EGFR gene fusion, 
the first known occurrence in paediatric oncology. The 
durable response in this patient provides strong evidence 
supporting the effective penetrance of afatinib in CNS tu-
mours, and reinforces the importance of targeting fusions, 
as this important class of somatic alterations can drive 
cancers sensitive to targeted agents [36–39]. Functional 
measures of oncogenic signalling, for example, EGFR sig-
nalling-associated protein complexes, may represent an-
other biomarker type that could predict afatinib sensitivity 
[40]. There are few reports of ErbB fusions in paediatric 
cancers of the CNS [41]; however, our comprehensive pre-
clinical experiments demonstrated that the CLIP2::EGFR 
fusion caused afatinib-sensitive activation of the EGFR 
kinase and resulted in fast-growing tumours, illustrating its 
transforming and oncogenic addiction potential in human 
tumours.

5. Conclusion

Although afatinib was generally not active in this assumed 
biomarker-preselected paediatric population, afatinib re-
presents a valuable salvage treatment option for patients 
with certain rare ErbB-activating mutations.
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