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1  |  INTRODUCTION

Gliomas are malignant tumors originating from the central nervous 
system and are characterized clinically by high morbidity, mortality, 
high infiltrating, and poor prognosis.1,2 The main treatments for glioma 
are direct surgical resection, radiotherapy, and temozolomide chemo-
therapy.3–7 Gliomas are classified as astrocytic, oligodendroglial, and 
ventricular canal tumors based on their malignancy and phenotype.8–10 
Diffuse gliomas can be further typed as astrocytic, oligodendroglial, or 
rare mixed oligodendroglial-astrocytic of World Health Organization 
(WHO) grade II (low grade), III (anaplastic), or IV (glioblastoma). 
According to the WHO histological classification, gliomas are classi-
fied as WHO grade I–IV, with glioblastoma, a WHO grade IV glioma, 

accounting for approximately 45% of malignant brain tumors.11,12 The 
pathogenesis of glioma remains unclear, with tumorigenesis resulting 
from a combination of environmental and genetic factors.

The tumor microenvironment (TME) consists of tumor cells 
and surrounding components.13,14 It includes innate and adaptive 
immune cells (T lymphocytes and B lymphocytes), mesenchymal 
fibroblasts, and vascular and lymphatic vessel networks. Various 
chemokines secreted through autocrine or paracrine make up the 
TME.15–17 Alterations in the microenvironment affect tumorigenesis 
and progression. The immune cell is fundamental in determining the 
fate of cancer and its invasiveness and metastatic capacity.18,19 The 
clinical outcome of cancer patients is interrelated to the composition 
of immune cells that infiltrate tumors.20,21
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Abstract
Gliomas are the most common primary malignant tumors in the central nervous sys-
tem. However, conventional treatments, such as surgical resection and postoperative 
combined chemo- and radio-therapy, are ineffective in improving patients' long-term 
survival. The tumor microenvironment (TME) consists of stromal cells, tumor compo-
nents, and innate and acquired immune cells, and these cells, along with the extracel-
lular matrix, regulate and communicate intercellularly to promote TME formation. The 
immune microenvironment plays a vital role in the development of glioma. Exosomes, 
which are extracellular vesicles (EVs), facilitate intercellular communication and regu-
lation within the TME. Tumor cells can release exosomes to transmit messages, induce 
macrophage polarization, and inhibit immune cell activity, ultimately promoting me-
tastasis and immune evasion. Moreover, immune cells can regulate tumorigenesis and 
progression through exosomes. This review summarized the biological properties of 
exosomes and their effects on the tumor microenvironment and provides an overview 
of the interactions between glioma cells and immune cells.
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Exosomes are extracellular vesicles of 30–150 nm in diameter re-
leased in the form of exocytosis. The intake of exosomes relies on the 
endocytic system after fusion with the cell membrane.22–24 Exosome 
contains various bioactive components,25–28 and most cells (e.g., 
mast cells, tumor cells, dendritic cells, neuron-shaped glial cells) can 
generate exosomes.29–31 The outer membrane of exosomes has the 
property of a cytosolic phospholipid bilayer, effectively maintaining 
the activity and preserving stability in various body fluids.32,33 The 
exosomes are abundant in TME and function as the most critical in-
formation exchange tool between tumor cells and TME.34–38

Exosomes derived from tumor cells promote immune escape by 
directly inhibiting immune cells or regulating the expression of re-
lated cytokines.39,40 Moreover, immune cells in the TME influence 
tumor cell growth, metastasis, and drug resistance by secreting exo-
somes.41–43 This article reviewed the regulation of exosomes in the 
glioma TME and their role in the malignant progression of glioma.

2  | OVERVIEW OF EXOSOMES

2.1  | Mechanism of exosome formation

Exosomes are generated in normal physiological conditions or re-
sponse to external environmental stimuli. They originate from in-
tracellular invaginations, where the cell membrane forms multiple 
vesicles. These vesicles fuse to form early intracellular vesicles, which 
further mature and bud inward to form luminal vesicles or intralumi-
nal vesicles (ILVs).44–46 ILVs-rich intracellular bodies are called multi-
vesicular bodies (MVBs). Upon fusion with lysosomes intracellularly, 
MVBs are degraded, while the other part is secreted outward to 
form exosomes under the regulation of Rab enzymes of the GTPase 
family.47–49 Exosomes are extracellular vesicles with a diameter of 
30–150 nm generated by almost all cell types.50,51 Exosomes con-
sist of a lipid bilayer containing transmembrane proteins and wrap 
around cytoplasmic proteins, lipids, or nucleic acids.52,53 Exosomes 
can regulate cellular communication by transporting specific exo-
somal contents.54,55 Exosomes are closely associated with normal 
physiological homeostasis and various diseases, including cancer. 
Exosomes are essential mediators of tumorigenesis, proliferation, 
angiogenesis, and distant metastasis.56,57 Currently, the extraction 
of exosomes has become commercially available. The advantages 
and disadvantages of different methods are presented in Table 1.

2.2  |  Exosomes functions

Exosomes are widely distributed in the body fluid of tumor patients 
after being released.58,59 They can enter and deliver biologically ac-
tive substances to target cells, affecting gene expression, protein 
synthesis, and other processes that ultimately regulate the target 
cells' function.60,61 Exosomal surface proteins bind directly to tar-
get cell receptors and stimulate signaling pathways, and they can 

also fuse with target cell membranes and deliver functional pro-
teins, miRNA, and other biomolecules.22,62 The mRNA of exosomes 
can translate corresponding proteins, and miRNA and siRNA regu-
late target cells by affecting the expression of related genes.63,64 
Phagocytose exosomes can either be re-released in target cells or 
degraded by the lysosomal pathway.65,66

The exosomal function is closely related to their cellular ori-
gin and the protein and RNA they contain. Exosomes from dif-
ferent sources have different purposes at different physiological 
and pathological stages.67,68 Exosomes can regulate physiologi-
cal activities and maintain intracellular homeostasis, support the 
body's immune tolerance, and participate in normal physiological 
processes, and pathological processes.69,70 Tumor cell-derived exo-
somes contain antigens, genetics, and other biologically active sub-
stances that are vital in tumorigenesis, proliferation, invasion, and 
metastasis.71 Proteins, miRNAs, and even DNA in tumor-derived 
exosomes are potential markers for non-invasive diagnosis.72,73 As 
natural carriers, the phospholipid bilayer structure of exosomes 
protects the stability of proteins, miRNA, and other biologically 
active substances. Exosomes have similar biological activities as 
parental cells, are widely distributed, exist for a long time in the 
body, and have the advantages of a long half-life and natural non-
toxicity. Due to their nanoscale structure, exosomes can evade 
phagocytosis while freely shuttling between cells and matrix, with 
solid penetration ability and low immunogenicity.74 Exosomes can 
also serve as a means of delivering drugs and miRNAs for tumor 
therapy. Tumor cell-derived exosomes are also potential for tumor 
vaccine development.75

2.3  |  Immune system cells-­derived exosomes (IEXs)

IEXs have a comprehensive spectrum of functions in the immune 
system. IEXs regulate multiple immune signaling pathways, includ-
ing modulation, antigen presentation, antitumor immunity, and im-
mune system suppression. Dendritic cell-derived exosomes (DEX) 
can enhance antitumor immunity and activate specific T cells in 
the direct pathway by expressing the MHCII-peptide complexes, 
costimulatory molecules, and binding to T-cell receptors. In the in-
direct pathway, DEXs deliver the MHC II-peptide complex to other 
DCs, a process named MHC-dressing. Exosomes can transfer anti-
genic peptides from activated to inactivated DCs, which increases 
the number of MHCII-peptide complexes on the surface of DCs to 
activate the T cells. Macrophage-derived exosomes contain over 
5100 proteins, and exosomal miR-21-5p and miR-155-5p secreted 
from nonclassical macrophages (M2) regulate tumor cells' migra-
tion, proliferation, invasion, and angiogenesis. Neutrophils-derived 
exosomes have been shown to have unique protein profiles that 
change in activated and non-activated situations. Immune cells 
generate exosomes with their properties that create an optimal 
microenvironment for function by activating other immune cells, 
inhibiting immune responses, and participating in the licensing 
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phenomenon of APCs. In the following, we will discuss the charac-
teristics of the exosomes of each cell involved in the glioma interac-
tion with the immune system.

3  |  TUMOR MICRO​ENV​IRO​NMENT

Tumor cells typically invade normal tissues and establish a tumor 
microenvironment (TME) consisting of immune cells, stromal cells, 
vascular endothelial cells, and extracellular matrix (ECM).76–79 Tumor 
cells can recruit and activate these components to form a tumor-
inhibiting inflammatory microenvironment, which can prevent 
tumor progression during the early stages of colonization or prolifer-
ation80,81 (Figure 1). However, persistent tumor antigen stimulation 
and immune activation can lead to a depleted or remodeled state 
of the effector cells in the microenvironment, resulting in an immu-
nosuppressive microenvironment that promotes malignant tumor 
phenotypes82–84 (Figure 1). Immunotherapeutic strategies targeted 
at the TME can stimulate or restore the innate tumor-suppressive 
capacity of the immune system, create a favorable immune microen-
vironment, and produce a comprehensive response.85–87

Tumor metastasis is the primary cause of mortality. The pre-
metastatic microenvironment of tumors refers explicitly to the mi-
croenvironment in which the primary tumor focus is prepared for 
distant dissemination and colonization of tumor cells (Figure 2). The 

pre-metastatic microenvironment includes tumor-derived secretory 
factors, extracellular vesicles, macrophages, neutrophils, and T cells. 
With the manipulation of the primary tumor, multiple changes occur 
at distant sites, including the formation of PMN, inflammation, im-
munosuppression, angiogenesis/vascular permeability, organophilic, 
reprogramming, and lymphangiogenesis.

The glioma microenvironment refers to the internal and ex-
ternal environment closely associated with glioma development, 
proliferation, and metastasis, including the structure, function, and 
metabolism of the tumor-host tissue and the intrinsic environment 
of glioma cells.88–90 Glioma cells require large amounts of nutrients 
to meet their metabolic needs. The plasticity of glioma metabolism 
allows them to adapt to a depleted or changing nutritional envi-
ronment, reshaping the tumor immune microenvironment.91–93 The 
tumor-promoting effect of glioma-associated microglia (GAMs), 
macrophages, regulatory T cells (Treg), and the inactivation of nat-
ural killer (NK) cells in TME can reduce the antitumor effect and 
are closely related to the formation of glioma immunosuppressive 
microenvironment.88,94 In addition to immunosuppressive factors, 
the TME accumulates metabolites from tumor proliferation, such 
as adenosine and lactate.95,96 Hypoxic TME increases the release 
of ATP and AMP. The nucleotidases CD39 and CD73 catalyze the 
conversion of ATP to AMP and AMP to adenosine extracellularly, 
resulting in a significant increase in adenosine levels in immune 
regulation.97,98

TABLE  1 The separation techniques for exosomes.

Detection methods Advantages Disadvantages

Ultracentrifugation The obtained exosomes are not contaminated by the 
separation reagent, and the number of separations 
is large, and the processed sample is small

The instrument is expensive, the sample volume is 
large, the time consumption is long, and protein 
contamination still exists when exosomes are 
observed by electron microscopy

Sucrose Density Gradient 
Centrifugation

High purity of exosomes The preliminary preparation is complicated, time-
consuming, and cannot completely separate 
exosomes from proteins

Polyethylene Glycol (PEG) Simple operation, no special equipment required, more 
economical, and high yield of exosomes

Precipitation of some non-exosome hydrophobic 
substances resulting in insufficient exosome 
purity

Kit method Simple, less time-consuming, and higher yield of 
exosomes

The obtained exosome precipitate contains many 
impurities, and samples from different sources 
need to be extracted using different kits, and the 
kits are more expensive

SEC High purity of exosomes enables the isolation of 
structurally intact and functionally active vesicles

Special equipment required

Ultrafiltration Rapid separation of exosomes of different sizes with 
high capture efficiency

Filters can easily become clogged with vesicles and 
other macromolecular substances, causing the 
membrane to become overstressed and broken

Separation method is based 
on surface component 
affinity

Higher recovery and less impurity protein Based on special protein adsorption

ACE separation method The ability to simplify the exosome extraction and 
recovery process, significantly reducing processing 
steps and time-consuming

Requires an AC electric field to be applied

Microfluidic chip method Simple operation and high capture rate Requires nanofilters
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4  |  EXOSOME-­MEDIATED INTERACTION 
IN GLIOMA

4.1  |  Interaction between glioma and immune cells 
in the TME

Glioma is a primary malignant tumor in the central nervous system 
(CNS), characterized by aggressive growth and difficulty in clinical 
cure. These features may be related to the low immunogenicity of 
glioma cells and the tumor immunosuppressive microenvironment.99 
Immune cells in the TME compete with glioma cells for nutrients, 
and the metabolites produced during this competition can affect im-
mune cell differentiation and function. Glioma cells can influence the 
process of immune cells by secreting exosomes, and promote their 
malignant progression (Table 2). Similarly, immune cells can influence 

glioma progression by delivering substances to glioma cells through 
exosomes (Table 3).

4.2  | Dendritic cells (DCs)

Studies have shown that dendritic cell-derived exosomes (DEX) can 
enhance antitumor immunity and activate specific T cells to combat 
tumor cells. Using methods to upregulate and downregulate exo-
some production by immune cells is a novel way to regulate immu-
nity against tumors and infected cells, as well as immune reactions 
in some autoimmune and allergic diseases. DCs are the cells in the 
T cell-mediated immune response to cancer within the organism. 
DCs and their precursors in tumors can be recruited and respond 
to several molecular signals, including cell death, inactivation, and 
successful maturation in the TME.100 Immature DCs cannot initiate 

F IGURE  1 The primary cells involved 
in the tumor immune microenvironment. 
In the tumor immune microenvironment, 
some cells (NKT1, M1, N1, DC, ILC1, NK1, 
and Th1) directly kill tumor cells, while 
others (MDSC, M2, N2, ILC2, NK2, Th2, 
and Treg) cause immunosuppression. 
N1, N1-polarized neutrophils; N2, N2-
polarized neutrophils.

F IGURE  2 The primary process of tumor metastasis. Tumor metastasis mainly includes invasion, intravasation, circulation, extravasation, 
and colonization. It also provides for the involvement of macrophages, neutrophils, and T cells.
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T-cell responses to tumors and may induce immune tolerance, while 
mature DCs can migrate to tumor-draining lymph nodes to create 
T-cell responses, recruit T cells into the TME, and produce immu-
nostimulatory cytokines to regulate the TME.101

Research suggests that chaperone-rich cell lysates (CRCLs) may 
play an essential role in developing antitumor vaccines. DCs from 
CRCLs loaded with GL261-derived glioma cells can significantly pro-
long the survival of tumor-bearing mice and inhibit tumor growth 
in vivo by secreting exosomes. The CRCL-GL261-DCs promote cell 
proliferation and cytotoxic T lymphocyte (CTL) activity of CD4+ and 
CD8+ T cells in vitro. Mechanism findings suggest that CRCL-GL261-
DCs can negatively regulate Casitas B cell line lymphoma (Cbl)-b and 
c-Cbl signaling to lead to activation of phosphatidylinositol 3-kinase 
(PI3K)/Akt and extracellular signaling-regulatory kinase (ERK) signal-
ing in T cells.102 Cerebrospinal fluid (CSF) exosomes from GBM pa-
tients contain the unique protein-LGALS9 ligand, which binds to the 
TIM3 receptor of DCs in CSF and further interferes DCs recognition, 
inhibits the presentation of antigen, resulting in the deactivation of 
cytotoxic T cell-mediated antitumor immune responses. Blockade of 
the tumor secretory exosome LGALS9 in a mouse GBM tumor model 
significantly promoted DCs antigen presentation activity and dura-
ble antitumor immunity.103 Targeting LGALS9 may be an effective 
therapeutic tool for GBM.

4.3  | Myeloid-­derived suppressor cells (MDSCs)

Myeloid-derived suppressor cells protect tumor cells from immune 
attack by negatively regulating the immune response, depleting 

essential amino acids like arginine and cysteine, necessary for T 
cell activation, and the production of reactive oxygen and nitrogen 
species that repress T cell function.104 MDSCs also induce immune 
tolerance by recruiting regulatory T cells and Th17 cells through 
cytokine secretion such as TGF-β, IL-10, IFN-γ, and upregulating 
ligands like CD86.100 Additionally, MDSCs suppress innate immu-
nity by inducing macrophage polarization towards the M2 pheno-
type and inhibiting NK cell-mediated cytotoxic effects.105 Apart 
from immunosuppressive functions, MDSCs upregulate vascular 
endothelial growth factors promoting angiogenesis and tumor 
growth acceleration.106 Stimulated PBMCs from healthy donors 
with anti-CD3, anti-CD28, and IL-2 with glioma stem cell-derived 
exosomes significantly inhibited T cell activation, proliferation, 
and Th1 cytokine production but enhanced purified CD4+ T cell 
proliferation without affecting cell viability.107 Glioma-derived ex-
osomes repress T-cell immune responses by acting on monocyte 
maturation rather than interacting directly with T cells. Hypoxia-
induced glioma-derived exosomes can more effectively induce 
MDSCs than normoxia-induced exosomes by promoting the ex-
pression of miR-10a and miR-21, targeting RORA, and PTEN.108 
Additionally, hypoxia-induced glioma cells can stimulate func-
tional MDSC differentiation by transferring exosomal miR-92a, 
activating the proliferative ability of MDSCs by targeting HBP1 
and PRKAR1A. Glioma cell line-derived exosomes, BATF2-Exo, 
can inhibit MDSC chemotaxis by inhibiting intracellular SDF-1α, 
while exosomal miR-1246 activates MDSC differentiation and ac-
tivation via the DUSP3/ERK pathway.109 Furthermore, the upregu-
lation of POU5F1 and hnRNPA1 enhances miR-1246 transcription 
and packaging. Suppression of hypoxia-driven exosomal miR-1246 

TABLE  2 Overview of glioma cell-derived exosome cargos and their biological effects in TME.

Donor cell Exosomal cargos Receiving cell Biological effects References

Glioma cells / Monocytes Suppress T-cell immune responses 107

Glioma cells miR-10a/miR-21/RORA/PTEN MDSCs Induce MDSCs expansion and activation 108

Glioma cells miR-29a/miR-92a /HBP1/
PRKRA1A

MDSCs Activate the proliferation of MDSCs 150

Glioma cells SDF-1α/CXCR4 MDSCs Induces MDSC recruitment 109

Glioma cells miR-1246/DUSP/ERK MDSCs Drive differentiation and activation of MDSCs 151

Glioma cells miR-1298-5p/SETD7 /MSH2 MDSCs Promote immunosuppression of MDSCs 110

Glioma cells miR-1983/TLR7/MyD88-IRF5/
IRF7/IFN-β

NK cells Stimulate NK cell responses 114

GL26 cells IFN-γ and Granzyme B CD8+ cells Inhibit cell growth 121

GSCs / CD4+ T Promote cell growth 107

Glioma cells CD73 T cells Promote clonal proliferation of T cells 122

GBM cells miR-451/miR-21/c-Myc Microglia Inhibit cell growth 136

GBM cells miR-214-5p/CXCR5 Microglia Regulate the inflammatory response of microglia 137

Glioma cells miR-1246/TERF2IP/STAT3/NF-κB Macrophage Promote M2 macrophage polarization 138

GBM cells Arginase-1 Macrophage Promote M2 macrophage polarization 139

Glioma cells IL-6-pSTAT3-miR-155-3p-
autophagy-pSTAT3

Macrophage Promote M2 macrophage polarization 141

Glioma cells Circ-NEIL3/HECTD4/IGF2BP3 TAMs Confer immunosuppressive properties on TAMs 143
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6  |    GUO et al.

expression in glioma cells and PD-L1 expression in MDSCs is a 
promising new approach for treating glioma. Finally, enrichment 
of miR-1298-5p in CSF exosomes significantly inhibits glioma pro-
gression by promoting the immunosuppressive effects of MDSCs 
and glioma through targeting SETD7 and MSH2.110

4.4  | Natural killer (NK) cells

NK cells represent a significant subset of lymphocytes in innate im-
munity. They enhance cytotoxicity in the immune response by releas-
ing various cytokines, including perforin, interferon-γ (IFN-γ), tumor 
necrosis factor (TNF), granulocyte-macrophage colony-stimulating 
factor (GM-CSF), and macrophage inflammatory protein-1 (MIP-
1).111,112 Interleukin-15 (IL-15) significantly increases the potential 
of NK cell-derived exosomes (NK-Exo) for immunotherapy. NK-Exo 
containing IL-15 (NK-Exo-IL-15) demonstrated greater cytolytic ac-
tivity against glioblastoma and significantly increased NK cell cy-
totoxicity. Neither NK-Exo nor NK-Exo-IL-15 was toxic to normal 
cells or mice. NK-Exo-IL-15 inhibited the proliferation of mouse 
glioblastoma xenografts compared to NK-Exo.113 Glioma-released 
exosome-derived miR-1983 plays a vital role in the innate antiglioma 
NK-mediated circuit regulated by galectin-1 (Gal-1). As an endog-
enous TLR7 ligand, miR-1983 activates TLR7 in pDC and cDC via the 
5′-UGUUU-3′ motif at its 3′ end and further activates downstream 
signaling, stimulating IFN-β secretion via MyD88-IRF5/IRF7, and ul-
timately eradicating gliomas through stimulation of NK cells.114

4.5  |  T cells and B cells

Lymphocytes have a complex role in tumor immune escape and in-
hibition of tumor growth.115,116 CD4+ T cells and CD8+ T cells can 
hinder tumor growth and metastasis through specific immune re-
sponses.117,118 However, regulatory B cells (Bregs) utilize immune 

resistance through Tregs and can promote tumor immune es-
cape.119,120 GL26 cell-derived exosomes significantly suppressed the 
percentage of CD8+ T cells in splenocytes by inhibiting the release 
of IFN-γ and granzyme.121 Glioma stem cell (GSC)-derived exosomes 
function as mediators of intercellular communication and promote 
tumor immune escape by inhibiting T cell activation, proliferation, 
and Th1 cytokine production while enhancing the proliferation of 
purified CD4+ T cells. Furthermore, glioma-derived exosomes in 
PBMC directly promote the production of IL-10 and arginase 1 by 
unstimulated CD14+ monocytes and down-regulate HLA-DR, pro-
ducing a phenotype similar to monocyte myeloid-derived suppres-
sor cells (Mo MDSCs).107 The concentration of exosome-derived 
CD73+ in tumor-derived extracellular vesicles (TDEVs) was signifi-
cantly higher in the body fluids of GBM patients. In vitro, results 
showed that T cells could take up CD73+ TDEVs released from GBM 
cells. In vivo, defects in exosome synthesis and CD73 expression sig-
nificantly inhibited tumor growth in GBM-bearing mice and restored 
clonal proliferation of T cells in central and peripheral regions.122

4.6  | Macrophage

The macrophage-derived exosomes contain over 5100 proteins, 
with their composition changing upon activation. Activated mac-
rophage exosomes promote inflammation by triggering the NLRP3 
receptor-dependent inflammasome, TOLL-like receptors (TLR), and 
TNF-related signaling pathways. Additionally, macrophage-derived 
exosomes inhibit the expression of β1 integrins, thus inhibiting en-
dothelial and tumor migration. Exosomes generated from nonclas-
sical macrophages (M2) containing high levels of miR-21-5p and 
miR-155-5p molecules regulate tumor migration, proliferation, inva-
sion, and angiogenesis. The miR-21-5p enhances the proliferation 
and drug resistance of tumor cells by targeting PTEN, P21, PCD, and 
apoptotic protease activating factor 1 (APAF1). On the other hand, 
miR-130b-3p expression level increases in MB patients' plasma 

TABLE  3 Overview of immune cell-derived exosome cargos and their biological effects in TME.

Donor cell Exosomal cargos Receiving cell Biological effects References

DCs c-Cbl/PI3K/Akt/ERK CD4+ and CD8+ T cells Promote cell proliferation and inhibit tumor 
growth

102

DCs LGALS9 T cells Promotes DCs tumor antigen-presenting 
activity and durable antitumor immunity

103

NK cells IL-15 Glioma cells Inhibits the growth of glioblastoma 152

Neutrophils DOX Glioma cells Inhibits the growth of glioma 128

TAMs miR-27a-3p/miR-22-3p/
miR-221-3p

GSCs Induction of GSC proneuromesenchymal 
transition

153

M2 microglia miR-7239-3p/BMAL1 Glioma cells Promote glioma proliferation and migration 140

M2 macrophages miR-15a/miR-92/
CCND1/RAP1B

Glioma cells Inhibit tumor cell migration and invasion 154

TAMs Lnc-TAL/ENO1/p38/
MAPK

M2 microglia Lead to chemotherapy resistance 155
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exosomes, inhibiting the proliferative ability of tumor cells via inhib-
iting the SIK1 and p53 signaling pathways. The expression levels of 
miR-101-3p and miR-423-5p are significantly higher in MB patients' 
plasma exosomes than in healthy controls.123 Moreover, exosomes 
carrying miR-101-3p and miR-423-5p suppress tumor cell prolifera-
tion, migration, and invasion and enhance cell apoptosis, which could 
be tumor-suppressive by targeting the FoxP4 gene. Furthermore, 
miR-101-3p can target EZH2 to increase its tumor-suppressive 
effect.124

4.7  | Neutrophils

Neutrophils are the most abundant type of leukocytes and play a 
crucial role in the inflammatory response's progression.125 Their ex-
osomes are essential for innate immunity, as neutrophils are among 
the first cells present at the site of inflammation. However, whether 
neutrophils exhibit pro- or antitumor properties in a microenviron-
mentally relevant manner depends on multiple cytokine receptors 
on their surface, enabling them to respond to various signals.126,127 
Activated neutrophil-derived exosomes can alter airway smooth 
muscle cells' proliferation and biological properties, suggesting 
their role in airway structural changes in asthma. A bio-inspired 
neutrophil-exosome (NEs-Exos) system has been identified for 
delivering doxorubicin drugs for glioma treatment. In vivo experi-
ments have shown that drug-loaded NEs-Exos can penetrate the 
BBB and migrate to the brain. Moreover, NEs-Exos can chemically 
respond to inflammatory stimuli and target infiltrating tumor cells 
in inflamed brain tumors. Intravenous injection of NEs-Exos/DOX 
effectively inhibits tumor growth and prolongs survival in a glioma 
mouse model.128

4.8  |  Tumor-­associated macrophages (TAMs)

Tumor-associated macrophages play a crucial role in tumor growth, 
invasion, and metastasis. These inflammatory immune cells have 
two forms of activation, the M1 type and the M2 type.129 M1 TAMs 
have antitumor properties and effectively identify and destroy can-
cer cells through phagocytosis and cytotoxicity.130,131 They perform 
key functions, such as secreting toxic intermediates and various 
inflammatory factors, activating Th1 cells, participating in the Th1 
immune response, and having proinflammatory and antitumor ef-
fects.132,133 In contrast, M2 TAMs can promote tumor progression 
by secreting cytokines that regulate tumor growth and angiogen-
esis and reduce patient survival.134,135 The expression of miR-451/
miR-21 is significantly increased in GBM-derived exosomes, leading 
to the malignant progression of GBM by targeting c-Myc mRNA ex-
pression.136 Additionally, exosomal miR-214-5p derived from GBM 
can regulate the inflammatory response of microglia via targeting 
CXCR5.137 Studies have shown that HGDEs, unlike GDEs, signifi-
cantly promote glioma proliferation, migration, and invasion by in-
ducing M2 macrophage polarization. MiR-1246 enriched in the CSF 

of GBM patients can inhibit M2 macrophage polarization by target-
ing TERF2IP.138

TAMs reprogrammed by GBex produce immunosuppressive 
and tumor growth-promoting proteins, including Arginase-1 that 
promotes glioblastoma growth. However, the pro-growth effect of 
Arginase-1 carried by TAM-derived exosomes can be reversed by 
the selective Arginase-1 inhibitor nor-NOHA.139 MiR-7239-3p in M2 
microglia exosomes promotes glioma proliferation and migration, 
while miR-92 inhibits tumor cell migration and invasion by target-
ing CCND1 or RAP1B and regulating the PI3K/AKT/mTOR signaling 
pathway.140 H-GDEs promote autophagy and M2-like macrophage 
polarization, thereby promoting glioma progression through the 
IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback 
loop.141 Additionally, the miRNA-124 delivered by HEK293T-derived 
EV exerted synergistic antitumor effects by inhibiting the growth 
of human GBM cells and suppressing M2 microglia polarization.142 
Finally, circ-NEIL3, upregulated in glioma tissue and stabilized by hn-
RNPA2B1, can promote tumorigenesis and oncogenic progression 
by blocking HECTD4-mediated ubiquitination and by driving macro-
phage infiltration into the TME.143

5  |  PROSPECT AND CONCLUSION

The significance of TME in tumor progression is increasingly recog-
nized, as it actively participates in the process of tumor advance-
ment. Tumor cells in TME account for about 30% of the population. 
Immune cells within the tumor have been found to play either a 
tumor-suppressing or promoting role, while some have a bidirec-
tional regulatory role.144,145 The functions of both tumor cells and 
immune cells in the TME are reciprocal, as the behavior of tumor 
cells is closely linked to tumorigenesis and progression, which 
then influences the biological behavior of stromal cells in the TME. 
Immunotherapy strategies have shown positive effects and poten-
tial cures for advanced high-grade tumor patients; however, TME 
evolves dynamically through compensatory feedback mechanisms, 
blocking immunotherapeutic effects, generating drug resistance, 
and even tumor progression.77,146,147

Under normal physiological conditions, PD-1/PD-L1 signaling 
pathway activation induces peripheral immune tolerance, which 
maintains T-cell immune homeostasis, and prevents immune 
overactivation-mediated tissue damage. At the same time, tumor 
cells use the immunosuppressive function of PD-1/PD-L1 to evade 
host immune surveillance and produce tumor growth-promoting 
effects (Figure 3). Given the complex nature of the tumor immune 
microenvironment, improvements are still needed in molecules or 
signaling pathways targeting TME for immunotherapy to be effec-
tive. The main barriers to the effectiveness of immunotherapy cur-
rently include inadequate responses of the host immune system to 
tumor antigens, low infiltration of immune cells in solid tumors, and 
formation of immunosuppressive TME.86,148

Various immunotherapeutic agents targeting TME have been 
developed in this stage, however, the combination of diverse 
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immunosuppressive signals makes it challenging for single-targeted 
therapeutic regimens to have long-lasting effects. In the tumor micro-
environment, the metabolism between glioma cells and other immune 
cells promotes the immune escape of glioma cells. Therefore, it is criti-
cal to explore the mechanisms by which immune cells obtain sufficient 
nutrients to maintain their antitumor activity. Although the metabo-
lites of glioma cells can influence the differentiation and function of 
immune cells, further studies are required to determine whether the 
intrinsic mechanisms by which metabolites affect immune cells differ 
in different gliomas. The combination of tumor immunotherapy with 
metabolic enzyme target inhibitors may maintain the metabolic fit-
ness of TIL cells.149 However, glioma cells and immune cells often use 
the same metabolic pathways for proliferation, so attention needs to 
be paid to their potential therapeutic toxicity. Selective targeting of 
tumor cell-specific metabolic markers may avoid damage to immune 
cells, significantly promote antitumor immune responses, and reduce 
the adverse effects of immunotherapy. Additionally, the differential 
expression of amino acid and nutrient transport proteins between 
glioma cells and lymphocytes, especially the carriers involved in the 
interaction, should be considered. These differences make it possible 
to selectively inhibit tumor cell metabolic pathways.
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