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Abstract: Glioblastoma (GBM) is regarded as an aggressive brain tumor that rarely develops ex-
tracranial metastases. Despite well-investigated molecular alterations in GBM, there is a limited
understanding of these associated with the metastatic potential. We herein present a case report of a
43-year-old woman with frontal GBM with primitive neuronal component who underwent gross total
resection followed by chemoradiation. Five months after surgery, the patient was diagnosed with an
intraspinal GBM metastasis. Next-generation sequencing analysis of both the primary and metastatic
GBM tissues was performed using the Illumina TruSight Tumor 170 assay. The number of single
nucleotide variants observed in the metastatic sample was more than two times higher. Mutations in
TP53, PTEN, and RB1 found in the primary and metastatic tissue samples indicated the mesenchy-
mal molecular GBM subtype. Among others, there were two inactivating mutations (Arg1026Ile,
Trp1831Ter) detected in the NF1 gene, two novel NOTCH3 variants of unknown significance pre-
dicted to be damaging (Pro1505Thr, Cys1099Tyr), one novel ARID1A variant of unknown significance
(Arg1046Ser), and one gene fusion of unknown significance, EIF2B5-KIF5B, in the metastatic sample.
Based on the literature evidence, the alterations of NF1, NOTCH3, and ARID1A could explain, at least
in part, the acquired invasiveness and metastatic potential in this particular GBM case.

Keywords: glioblastoma; metastasis; NF1; NOTCH3; ARID1A; mutation

1. Introduction

Glioblastoma (GBM) is the most common glial brain tumor in adults (median age
of 65 years), which accounts for nearly 50% of malignant primary brain tumors [1] and
represents a disease with a dismal prognosis. GBM is characterized by rapid infiltrative
spread within the central nervous system. Following surgical resection, GBM progresses
from residual tumor cells in approximately half of the patients even before the initiation of
oncological treatment [2] and inevitably leads to death either due to brain stem infiltration
or brain swelling [3]. Median survival corresponds to 14–16 months, notwithstanding
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the aggressiveness of oncological treatment [4,5]. Despite the aggressiveness and inva-
sive nature of GBM, extracranial metastases are rare clinical events. The incidence of
symptomatic GBM metastasis has been estimated in approximately 2% of patients by dif-
ferent studies [6,7]; however, systemic GBM metastases were detected in 6–27% of autopsy
series [8,9].

The aim of our report is to present a case of spinal GBM metastasis, describe its
molecular background, and search for differences in gene mutation profiles between the
primary and metastatic disease to outline possible molecular pathways of metastatic spread.
This topic is becoming ever more relevant since there seems to be an increasing trend of
extracranial metastasis in GBM, likely due to the steadily increasing overall survival in
GBM patients [4,6].

2. Case Report

A 43-year-old woman with organic psychosyndrome was examined by a neurolo-
gist and subsequently referred to a neurosurgeon with an MRI finding of an intra-axial
contrast-enhancing lesion in the left frontal lobe with perilesional edema and midline shift
(Figure 1A). The patient underwent MRI-navigated fluorescence-guided surgery using
5-aminolevulinic acid (5-ALA), which led to the opening of the left lateral ventricle due to
tumor infiltration of the ventricular wall. Tissue samples from the tumor core and resection
margins were collected separately for histological evaluation. Based on an MRI obtained
within 48 h after surgery, the extent of resection was marked as a gross total resection
(Figure 1B).
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Figure 1. Imaging of the primary brain tumor. Preoperative axial brain MRI (postcontrast T1 weighted
images) showing an intra-axial contrast-enhancing lesion in the left frontal lobe with perilesional
edema and compression of the adjacent third and lateral cerebral ventricles (A). Postoperative MRI is
showing total tumor resection. The resection cavity communicates with the frontal horn of the left
lateral ventricle (B).
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The sample from the tumor core displayed diffusely infiltrating hypercellular glioma
with numerous foci of geographic and palisading necrosis as well as multiple microvascular
proliferations. Tumor cells of astrocytic differentiation showed marked pleomorphism,
including multinucleated giant cells and sparse regions with epithelioid morphology al-
ternating with regions formed by small cells growing in solid formations or even areas
formed by spindle-shaped cells (Figure 2). No foci of true rosettes or pseudorosettes were
detected. Immunohistochemically (IHC), the primary tumor cells displayed expression of
the GFAP, which varied among different components (Figure 3A,B), and proliferation index
Ki-67 (MIB-1) diffusely in 40% of tumor cells, in hotspots reaching up to 99% (Figure 3C).
Using the mutation-specific antibody, IHC did not show the R132H mutation in the IDH1
gene. Subsequent Sanger sequencing of the IDH1 (codon 132) and IDH2 (codon 172) genes
confirmed the IDH-wild type status of the tumor. Mutational analysis of the histone 3 genes
(H3F3A and HIST1H3B) was negative, and TERT C228T and C250T promoter mutations
were not identified. In addition, the tumor displayed strong nuclear p53 immunoposi-
tivity (Figure 3F), intense nuclear and cytoplasmic p16 expression, and retained nuclear
expression of ATRX. Methylation-sensitive high-resolution melting confirmed the unmethy-
lated status of the MGMT promoter. Tissue samples from the resection margins featured
secondary structures of infiltrating glioma—the perivascular spreading and perineuronal
satellitosis of tumor cells. The neoplasm was diagnosed as GBM, IDH-wildtype, WHO
G4, according to the integrated diagnosis of the fifth edition of the WHO Classification of
Tumors of the Central Nervous System 2021 [10].

Imaging prior to the oncological treatment uncovered GBM’s rapid early progres-
sion [2] (Figures 4A and 5A). The patient received standard focal radiotherapy plus con-
comitant daily temozolomide followed by adjuvant temozolomide. Fractionated conformal
radiotherapy was delivered using the volumetric modulated arc therapy (VMAT) technique
to a total dose of 60 Gy in 30 daily fractions of 2 Gy each. Concomitant chemotherapy
consisted of oral temozolomide at a daily dose of 75 mg/m2 given 7 days per week from
the first to the last day of radiotherapy. After a 4-week break, the patient underwent only
two cycles of adjuvant oral temozolomide for 5 days (first cycle 150 mg/m2 and second
cycle 200 mg/m2) every 28 days. Although no sign of further progression of residual
intracranial GBM was seen on the follow-up MRI 3 months after chemo-radiotherapy
(Figures 4B and 5B), the patient presented with the sudden onset of quadriparesis and
paresthesia of the trunk and all extremities shortly afterward (five months after the diag-
nosis was established). MRI examination of the spine revealed intradural extramedullary
spinal expansion at the C6 level with spinal cord compression and edema (Figures 6 and 7).
Laminectomy of C5–C7 and decompression of the spinal canal with biopsy were performed
since radical resection was not possible. Histopathological examination displayed hyper-
cellular glial neoplasm formed by plumb epithelioid cells with abundant pale eosinophilic
cytoplasm and prominent nuclear pleiomorphism alternating with small cells with minimal
cytoplasm and dense nuclear chromatin (Figure 8A). Tumor cells expressed GFAP and
neuron-specific enolase (Figure 8D,F). The diagnosis of metastatic GBM infiltrating both the
dura mater and the spinal cord was made based on the clinical presentation as an intradural
extramedullary mass and microscopic similarities in the primary and metastatic tumor.
Despite the hypofractionated course of palliative radiotherapy on the area of intraspinal
infiltration (20 Gy in 5 fractions), the patient’s neurological condition deteriorated, and
she was transferred to a palliative care institution after two weeks. Finally, she succumbed
eight months after the surgery for the brain GBM and less than three months after the
spinal GBM metastasis occurred.

To further apprehend the unique molecular features that might lead to extracra-
nial GBM metastasis, next-generation sequencing (NGS) studies of both the primary and
metastatic GBM were performed. DNA and RNA sequencing libraries were prepared
from the primary GBM and metastatic tissue by employing the Illumina TruSight Tumor
170 assay and NextSeq 500 sequencer (Illumina Inc., San Diego, CA, USA). Data analysis
was performed using the Illumina BaseSpace Sequence Hub, and the Variant Interpreter
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(Illumina’s Basespace tool) was used for the filtering and annotation of DNA variants. The
custom variant filter was set up, including only variants with coding consequences and a
GnomAD frequency value less than 0.01. Since the size of the TrueSight Tumor 170 panel
was lower than 1 Mbp of exonic regions, the tumor mutational burden could not be accu-
rately estimated. However, the number of single nucleotide variations (SNVs) observed in
the metastatic sample was more than two times higher compared to the primary GBM. The
detected gene variants of both the primary GBM and metastasis are listed in Table 1. Only
one gene fusion of unknown significance, EIF2B5-KIF5B, was detected.
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Figure 2. Histology of the primary GBM. Hypercellular high-grade diffuse glioma featuring signifi-
cant cellular pleomorphism, including multinucleated giant cells, nuclear atypia, brisk mitotic activity,
multiple microvascular proliferations, and necroses (A) (original magnification 100×). Regions with
spindle cell morphology (B), small round blue cell morphology corresponding to regions of PNC (C),
and epithelioid morphology (D) (original magnification 200×).
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Figure 3. Immunohistochemical analysis of the primary tumor—GBM PNC, IDH wildtype. Immuno-
histochemical expression of GFAP in tumor cells (A), which was reduced in foci with PNC morphol-
ogy (B). The proliferation index Ki-67 in hotspots morphologically corresponding to PNC reached
up to 99% (C). In regions with PNC morphology, the expression of synaptophysin was detected
immunohistochemically (D). The expression of neuron-specific enolase was observed throughout
the tumor (E), as well as intense nuclear immunopositivity for p53 (F). GBM tumor cells displayed
diffuse and strong expression of nestin (G). Beta-catenin expression was limited to the membrane,
lacking nuclear expression (H) (original magnification 100×).
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Figure 4. Imaging of the primary brain tumor prior to and after the oncological treatment. Axial
brain MRI (postcontrast T1 weighted images) prior to oncological treatment displaying GBM’s rapid
early progression in the left frontal lobe (A) and two months after the chemo-radiotherapy (B).
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Figure 5. Imaging of the primary brain tumor prior to and after the oncological treatment. Axial brain
MRI (fluid-attenuated inversion recovery images) prior to oncological treatment displaying GBM’s
rapid early progression in the left frontal lobe (A) and two months after the chemo-radiotherapy (B).
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Figure 6. Imaging of the spinal metastasis. Five-month postoperative cervical spine MRI (postcontrast
T1 weighted images) showing intradural expansion (arrow) at the C6 level intimately related to the
spinal cord with spinal cord compression (A). Axial section showing intradural expansion (arrow)
partially encircling the spinal cord and spreading into the neural foramen (B).

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 7. Imaging of the thoracic and lumbar spine. Preoperative MRI of the thoracic (A) and lumbar 

spine (B) did not show other pathological changes related to GBM metastasis. 
Figure 7. Imaging of the thoracic and lumbar spine. Preoperative MRI of the thoracic (A) and lumbar
spine (B) did not show other pathological changes related to GBM metastasis.
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Figure 8. Histological and immunohistochemical analysis of GBM metastasis. Spinal metastasis—

hypercellular high-grade diffuse glioma (A) infiltrating dura mater and spinal cord (B), verified by Figure 8. Histological and immunohistochemical analysis of GBM metastasis. Spinal metastasis—
hypercellular high-grade diffuse glioma (A) infiltrating dura mater and spinal cord (B), verified by
special staining—van Gieson, which stains collagen fibers red (C). Immunohistochemical expression
of GFAP in tumor cells (D), synaptophysin (E), neuron-specific enolase (F), nestin (G), and beta-
catenin displaying only membranous expression (H) (original magnification 100×).
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Table 1. List of gene alterations detected by the NGS sequencing of the primary and metastatic GBM.
Genetic alterations are separated based on their occurrence in the tumor samples. Yellow highlighted
genes are genetic alterations shared by both primary and metastatic GBM. Altered genes identified
only in the primary GBM are labeled orange. Altered genes detected only in the metastatic GBM are
labeled red.

Gene Symbol VID cDOT pDOT Consequence ACMG
Classification

TP53 17:7577548:T c.733G>A p.Gly245Ser missense_variant Pathogenic
PTEN 10:89717672:T c.697C>T p.Arg233Ter stop_gained Pathogenic
RB1 13:48955573:A c.1689G>A p.Trp563Ter stop_gained Likely pathogenic

DHFR 5:79950728:79950
727:CAGCGCCCC c.420_428dup - 5_prime_UTR_variant Likely pathogenic

MET 7:116435786:G c.3930A>G p.Ile1310Met missense_variant

Uncertain
significance, some

pathogenic
evidence

INPP4B 4:143003277:A c.2549C>T p.Ser850Leu missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

CTNNB1 3:41266897:T c.568C>T p.Arg190Cys missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

CDK6 7:92247520:T c.700G>A p.Val234Met missense_variant,
splice_region_variant

Uncertain
significance, likely

pathogenic—
minor

evidence
BRAF 7:140508723:A c.577G>T p.Glu193Ter stop_gained Pathogenic

DNMT3A 2:25463224:C c.2269A>G p.Asn757Asp missense_variant Likely pathogenic
CSF1R 5:149440455:T c.1939G>A p.Val647Ile missense_variant Likely pathogenic

CARD11 7:2987212:T c.217G>A p.Ala73Thr missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

EP300 22:41572399:T c.4928C>T p.Ser1643Leu missense_variant

Uncertain
significance, some

pathogenic
evidence

NF1 17:29654741:A c.5493G>A p.Trp1831Ter stop_gained Pathogenic
CARD11 7:2984016:A c.514G>T p.Glu172Ter stop_gained Pathogenic
CREBBP 16:3779578:T c.5470G>A p.Ala1824Thr missense_variant Likely pathogenic
NOTCH3 19:15290914:T c.3296G>A p.Cys1099Tyr missense_variant Likely pathogenic

ARID1A 1:27094430:T c.3138G>T p.Arg1046Ser missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

MTOR 1:11259396:T c.4172G>A p.Arg1391Gln missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence
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Table 1. Cont.

Gene Symbol VID cDOT pDOT Consequence ACMG
Classification

EGFR 7:55233118:G c.1868A>G p.Asn623Ser missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

EGFR 7:55273060:T c.3383C>T p.Pro1128Leu missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

CHEK1 11:125507382:G c.757A>G p.Arg253Gly missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

CDK4 12:58144737:T c.491T>A p.Ile164Asn missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

SLX4 16:3651029:A c.1114C>T p.Arg372Trp missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

NF1 17:29557364:T c.3077G>T p.Arg1026Ile missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

RAD51C 17:56772457:A c.311G>A p.Cys104Tyr missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

NOTCH3 19:15285102:T c.4513C>A p.Pro1505Thr missense_variant

Uncertain
significance, likely

pathogenic—
minor

evidence

3. Discussion

In this work, we present a unique case of GBM with extracranial metastasis and
its genetic background. In the described case, recurrent inactivating mutations in TP53
(Gly245Ser), PTEN (Arg233Ter), and RB1 (Trp563Ter) were observed in both samples,
strongly supporting the metastatic origin of the spinal tumor. Alterations in these genes
were indicative of the mesenchymal molecular subtype of GBM, typically associated with a
poor prognosis. Furthermore, this gene alteration pattern was recently linked to glioblas-
toma with primitive neuronal component (GBM PNC) [11]. Similarly to the described case
study, our case focally expressed synaptophysin (Figure 3D) and neuron-specific enolase
(Figure 3E) and focally exhibited excessive proliferation activity Ki-67 (reaching up to 99%)
(Figure 3C), and thus was reclassified as GBM PNC, despite featuring other morphologi-
cal components such as epithelioid or giant cells. MYC/NMYC amplification, a common
finding in GBM PNC [12], was not detected in either primary or metastatic samples. This
rare GBM variant has a greater tendency toward leptomeningeal spread, which has been
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detected in up to 40% of cases [11]. Alterations in tumor suppressor genes TP53, PTEN,
and RB1 have been detected in 6 of 14 genetically evaluated metastatic GBM, including
our case (43%). Among these, only one tumor was histologically diagnosed as GBM PNC,
apart from the presented case [13–17]. On the other hand, this gene alteration pattern is not
specific to GBM PNC since it was also revealed in gliosarcoma [13].

Apart from alteration in the p53 (apoptosis and senesce) and Rb pathways (cell-cycle
progression), the described case harbored multiple gene alterations in the PI3K pathway,
the main regulator of cell growth, survival, proliferation, invasion, and metastasis (Figure 9).
A missense mutation in MET oncogene, the regulator of epithelial–mesenchymal transition,
has been associated with elevated cell invasion, proliferation, and survival in atypical
tissue environments. Furthermore, the MET gene was marked a signature gene of the
mesenchymal molecular subtype [18,19].
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Figure 9. Regulatory pathway alterations in GBM. Altered genes in both primary and metastatic
GBM are yellow, altered genes identified only in the primary GBM are orange, and altered genes
detected only in the metastatic GBM are red. Adapted from Brennan et al. 2013 and Castellano et al.
2011.

To outline the possible molecular pathways of the metastatic spread of this particular
GBM case, the gene mutation profiles of primary and metastatic tumors were compared. We
suspected that the altered genes detected exclusively in the GBM metastasis are likely to be
linked with the gain in the metastatic potential of GBM. During the disease progression, two
inactivating mutations in NF1 genes were acquired by the metastasizing GBM cells, which
strongly supported and defined the mesenchymal molecular phenotype. The mesenchymal
molecular subtype of GBM is known to be associated with a more aggressive, invasive,
and recurrent course of the disease [20]. This suggestion is reinforced by the mesenchymal
expression profile being frequently found in both GBM metastases as well as in circulating
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tumor cells [20,21]. Mutations in the NF1 gene were described to be mutually exclusive of
BRAF mutations in GBM [22], similar to what was detected in our case. BRAF mutation
occurred in the primary tumor but was not detected in the metastasis, in which NF1 gene
mutations were found, suggesting that a subset of tumor cells lacking BRAF mutation
gained the metastatic potential. Furthermore, the BRAF mutation detected in primary GBM
leads to its loss of function. Loss of neurofibromin, a tumor suppressor protein encoded
by NF1, results in the constitutive activation of the RAS cascade and its downstream
effectors, including the MAPK, PI3K/AKT, and mTOR signaling pathways (Figure 9) [23,24].
Moreover, a mutation in the MTOR gene was also detected in the GBM metastasis. Apart
from other effects, the mTOR signaling pathway induces epithelial–mesenchymal transition
through the activation of transcription factors ZEB1/ZEB2, Twist, and Snail/Slug, the
process in which tumor cells lose cell–cell adhesion molecules and obtain an augmented
migratory phenotype [25]. The term glial–mesenchymal transition was coined, and it
describes a similar process in GBM cells. Furthermore, its regulatory mechanism has
been linked with transcription factors Snail, Slug, and Twist, with Snail being the master
regulator [26]. The glial–mesenchymal transition process, along with cancer stem cells, has
been associated with the expression of SOX2 as well as nestin and was detected in another
metastatic GBM case [27], similar to the described case (Figures 3G and 8G).

Furthermore, we found one likely pathogenic and one predicted-to-be-pathogenic
variant of NOTCH3 exclusively in the metastatic GBM sample. NOTCH3 has a close re-
lationship with metastatic spread in various cancers [28], including medulloblastoma, in
which the activation of the NOTCH pathway was linked with distant metastatic disease
and poor prognosis [29]. NOTCH3 signaling results in the upregulation of matrix metal-
loproteinases that promote motility and invasion and is known to be one of the marker
genes of the mesenchymal state and epithelial–mesenchymal transition [28,30] supporting
the overall mesenchymal molecular phenotype and metastatic potential of the presented
tumor. NOTCH3 gene alterations have not been described in metastatic GBM yet; however,
an altered NOTCH1 gene was identified in lung GBM metastasis [13].

Although mutations in ARID1A, observed in our metastasis sample, are rare in GBM,
with 0.7% in newly diagnosed cases, they are associated with an aggressive and mainly
metastatic phenotype, as described in two other recent case reports [14,16]. The majority
of recent data indicate that mutations in the ARID1A gene cause its loss of function,
and its effect on tumorigenesis is context-dependent [31]. ARID1A, a subunit of the
chromatin remodeling complex SWI/SNF, recruits mismatch repair protein, MSH2, to
chromatin during DNA replication and thus promotes mismatch repair [32]. The metastatic
localization of the mutated ARID1A gene in our case, along with the alteration in MSH6,
thus signals the increased mutagenesis of metastatic cells, which supports the detected
two-times-higher number of SNVs observed in the metastatic sample than in the primary
GBM. Furthermore, ARID1A loss in established tumors accelerates tumor progression and
metastasis, as was shown in the liver cancer model [32].

As mentioned above, the primary tumor was retrospectively sequenced by NGS and
reclassified as GBM PNC based on the genetic alterations detected. In case the NGS testing
was performed prior to the adjuvant oncological treatment, the oncological management
would differ. MRI of the whole craniospinal axis would be performed, which is not routine
in GBM patients. The detection of metastatic seeding would necessitate consideration of
the whole craniospinal axis irradiation, which would not be considered otherwise.
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4. Conclusions

Metastasis in GBM is a multistep process to which numerous genes collectively con-
tribute and which is far from being fully understood yet. In this GBM PNC case, the
alteration of NF1, NOTCH3, and ARID1A could explain, at least in part, the acquired
invasiveness and metastatic potential, owing to the current knowledge. This work aims to
highlight genetic alterations in one GBM PNC and its extracranial metastasis along with its
likely contributions to tumor progression, highlighting the importance of tumor genetic
testing and its impact on patient oncological management.
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