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The segmentation of organs and pathologic conditions 
in medical imaging is a required step in many clini-

cal and research pipelines (eg, for radiation treatment 
planning and treatment response assessment). Over the 
last decade, advances in computer vision—enabled by 
deep learning (DL)—have revolutionized automated 
segmentation for medical use cases. Particularly for 
the segmentation of complex target structures such as 
tumors, DL promises to remedy two challenges. First, 
the manual delineation of such complicated and often 
ambiguous structures is time-consuming (1). Second, 
tumor segmentations suffer from a high interrater vari-
ability due to the absence of clearly defined boundaries 
(2–4). DL-assisted segmentation can substantially de-
crease the time requirement and variability among indi-
vidual physicians (5,6).

Multiple factors, including technical difficulties in inte-
grating DL models into clinical workflows, regulatory un-
certainties, and ethical concerns such as a lack of trust, are 
inhibiting the widespread adoption of these algorithms in 
clinical settings (7,8). This distrust stems not only from the 
algorithms’ black-box nature but also from their propensity 
to fail without notice due to often unknown reasons, such 
as imaging artifacts and domain shift (9–11). Therefore, 
DL algorithms are generally intended as a decision-support 
tool rather than autonomous models that make decisions 
of clinical importance without human oversight. Instead of 
spending long hours segmenting highly challenging target 
structures, clinical experts would in the future be tasked 
to determine whether the output of a segmentation model 
requires further manual editing or is of sufficient quality to 
be used (eg, for treatment planning).
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Purpose: To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a 
study on expert quality perception of brain tumor segmentation.

Materials and Methods: A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality 
evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain 
tumor segmentation cases.

Results: Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation 
performance. Notably, only 2.8% of the articles included clinical experts’ evaluation of segmentation quality. The experimental results 
revealed a low interrater agreement (Krippendorff α, 0.34) in experts’ segmentation quality perception. Furthermore, the correlations 
between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; 
Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts.

Conclusion: The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and indi-
vidual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality.

Clinical trial registration nos. NCT 00756106 and NCT 00662506

Supplemental material is available for this article.
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Only articles that described a segmentation algorithm for hu-
man brain tumors on macroscopic images and contained a 
performance evaluation of the segmentations were included in 
the analysis. We recorded the metrics used in the performance 
evaluation of the segmentation models. We also categorized the 
quantitative metrics into seven groups such that metrics that 
measure similar concepts were grouped together. For example, 
both the Dice score and Jaccard index are computed based on 
overlap between the ground truth and the predicted segmenta-
tion and were therefore categorized as overlap-based metrics. 
The seven groups were (a) overlap-based metrics, such as Dice 
score; (b) volume-based metrics, such as relative volume error; 
(c) voxel-level confusion matrix–derived metrics, such as sensi-
tivity; (d) distance-based metrics, such as Hausdorff distance; 
(e) threshold metrics, such as area under the receiver operat-
ing characteristic curve; (f ) information-based metrics, such as 
variation of information; and (g) boundary-based metrics, such 
as the boundary F1 score. Appendix S1 contains a complete list 
of all metrics in each group.

Experimental Study

Dataset.— We performed a secondary analysis of imaging data 
from two clinical trials (ClinicalTrials.gov identifiers, NCT 
00756106 and NCT 00662506). The analysis was approved 
by the institutional review board with a waiver for written con-
sent. The dataset contains a total of 713 postoperative MRI vis-
its from 54 individuals newly diagnosed with glioblastoma (33 
male participants, 21 female participants; mean age, 57 years) 
(15). All individuals had undergone tumor biopsy or partial tu-
mor resection with a remaining contrast-enhancing tumor of at 
least 1 cm in diameter at the time of enrollment. Two experts, 
one neuro-oncologist with 12 years of experience (E.R.G.) 
and one neuroradiologist with 11 years of experience (M.P.), 
performed manual ground truth segmentations of areas of T2-
weighted fluid-attenuated inversion recovery (FLAIR) abnor-
mality corresponding to the total tumor burden. Each case was 
annotated by one expert, resulting in a single set of manual 
segmentations for the full dataset. These segmentations were 
used for the development and evaluation of the segmentation 
algorithm. A third expert from a different institution trained 
in neuroradiology with 5 years of experience provided manual 
annotations for a subset of the dataset. These segmentations 
were used only to provide an estimate of interrater variability. 
All experts were blinded to participant identity, the order of 
scans, and participant treatment status. See Appendix S2 for 
more information.

Data preprocessing.— Since the dataset originates from lon-
gitudinal clinical studies, it contained images from multiple 
study visits for each participant. We split the dataset into train-
ing, validation, and test subsets at the participant level such that 
all available images of a respective participant were part of only 
one subset. The training, validation, and test datasets consisted 
of images from 34 (study visits, 464), nine (study visits, 128), 
and 11 (study visits, 119) participants, respectively. We used 
T1-weighted pre- and postcontrast sequences and T2-weighted 

However, humans have a more contextual response to seg-
mentation quality, leading to a disagreement between human 
perception and the metrics used to optimize and evaluate seg-
mentation quality, particularly the Dice score (12,13). Addition-
ally, similar to the substantial interrater variability in manual 
tumor delineations, the perception of what constitutes a good 
segmentation differs among human experts, which is reflected in 
high disagreements in peer review for radiation therapy planning 
(14). Consequently, using DL algorithms as an effective clinical 
decision support system will require a detailed understanding of 
the interaction between humans and algorithms.

We hypothesized that the quality perception of experts would 
not correlate well with the popular segmentation quality metrics 
from the literature and that the agreement between the qual-
ity ratings of individual experts would be low. In this study on 
expert-centered evaluation of DL segmentation models, we 
first studied how DL segmentation models are currently being 
evaluated. We reviewed studies on DL segmentation models for 
brain tumors and assessed which quantitative metrics are used 
and whether clinical experts were involved in evaluating the al-
gorithms’ performance. Second, we performed an experimental 
study to assess (a) interrater variability in segmentation quality 
perception and (b) variability in the agreement between quanti-
tative metrics and experts’ quality perception for segmentations 
of postoperative glioblastomas.

Materials and Methods

Literature Review
We searched PubMed for English-language original research 
articles published between August 2017 and September 2022 
reporting on DL segmentation models for macroscopic brain 
tumors using the following search terms: “(‘deep learning’ OR 
‘neural network’) AND ‘segmentation’ AND ‘brain tumor,’” 
explicitly excluding articles categorized as reviews or surveys. 

Abbreviations
DL = deep learning, FLAIR = fluid-attenuated inversion recovery

Summary
Current practices for the evaluation of deep learning models for brain 
tumor segmentation did not reflect the segmentation quality percep-
tion of clinical experts.

Key Points
 ■ Only 2.8% (five of 180 articles) of the evaluated literature on deep 

learning models for brain tumor segmentation included an evalua-
tion of segmentation quality performed by clinical experts.

 ■ The metric most commonly used to evaluate segmentation per-
formance, the Dice score, showed a poor correlation with the 
segmentation quality perception of clinical experts (Kendall tau, 
0.23) in the experimental study.

 ■ Segmentation quality ratings performed by clinical experts were 
prone to high interrater variability (Krippendorff α, 0.34).

Keywords
Brain Tumor Segmentation, Deep Learning Algorithms, Glioblas-
toma, Cancer, Machine Learning
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number of ordinal categories was relatively low, Kendall tau is 
preferable to similar measures like the Spearman rank correla-
tion coefficient (24).

To determine whether specific factors were associated with 
high or low agreement between the experts, we separated all 
cases into two groups according to the difference between their 
lowest and highest rating: a high agreement group (rating differ-
ence, ≤1) consisting of 40 cases and a low agreement group (rat-
ing difference, ≥2) consisting of 20 cases. Comparison between 
the distributions of continuously valued features was determined 
using the Kruskal-Wallis test.

Statistical significance was defined as a P value less than .05. 
Data analysis was performed in Python (version 3.6) and R (ver-
sion 4.0.2; R Foundation for Statistical Computing).

Results

Literature Review
We searched PubMed full-text articles that covered DL seg-
mentation algorithms of brain tumors. The search identified 
248 articles. We excluded 53 articles after screening titles and 
abstracts, and 15 more were excluded after a review of the full-
text articles. Thus, 180 studies were included in the final analy-
sis. Figure 1 illustrates the literature selection process.

Quantitative evaluation of segmentation model perfor-
mance.— Among the 180 articles reviewed, the three most 
popular strategies to evaluate segmentation quality were the 
Dice score as the only evaluation metric (42 of 180 articles; 
23.3%); a combination of Dice score, Hausdorff distance, sen-
sitivity, and specificity (26 of 180 articles; 14.4%); or a com-
bination of Dice score and Hausdorff distance (21 of 180 ar-
ticles; 11.7%). Overall, the Dice score was used in 170 of the 
180 articles (94.4%) either exclusively or in combination with 
other metrics. Sensitivity and Hausdorff distance were used in 
combination with other metrics in 86 (47.8%) and 69 (38.3%) 
of the 180 articles, respectively (Fig 2A).

The most widely used metric groups were overlap-, confu-
sion matrix–, and distance-based metrics (Fig 2B). From the 180 
articles, 28.3% (51 of 180) used metrics from only one metric 
group, 38.3% (69 of 180) used two metric groups, and 31.1% 
(56 of 180) used three metric groups (Fig 2C). We found that 
overlap-based metrics were most frequently combined with 
confusion matrix–based metrics. Distance-based metrics were 
always associated with overlap-based metrics, as illustrated in 
Figure 2D. Forty-two of 180 studies (23.3%) combined metrics 
from all three most common metric groups.

Segmentation model performance evaluation by clinical ex-
perts.— In addition to the purely quantitative evaluation of 
segmentation performance described above, five of the 180 
studies (2.8%) included an assessment by clinical experts 
(Table). The diverse evaluation approaches involved measuring 
the time it took clinical experts to manually correct an auto-
matically generated segmentation, assessing the consensus be-
tween automatic segmentations edited by experts, and rating 
the segmentation quality. While a few articles included quali-

FLAIR sequences as the three input channels for model devel-
opment. All images were registered to the T2-weighted FLAIR 
image of the respective study visit. Preprocessing consisted of 
brain extraction, N4 bias correction, and z score normalization 
of the brain region of each scan (16,17).

Segmentation model.— Monte Carlo dropout networks ap-
proximate Bayesian neural networks by dropping out full ac-
tivation maps after each convolutional layer at training and 
inference time (18). At inference time, slightly varying segmen-
tations can be sampled from an approximate posterior distribu-
tion and used to quantify model uncertainty.

We trained a Monte Carlo dropout three-dimensional U-
Net, with a dropout probability of 0.2 for each activation map, 
on patches of size 64 × 64 × 16 voxels to segment areas of T2-
weighted FLAIR abnormality using weighted cross-entropy 
loss. The simultaneous truth and performance level estimation, 
or STAPLE, algorithm created the final segmentation from 10 
Monte Carlo dropout samples (19). The segmentation model 
was implemented in DeepNeuro (20). Details on model devel-
opment, hyperparameters, and the calculation of model uncer-
tainty are provided in Appendix S3. Quantitative segmentation 
quality metrics were computed using the Python (Python Soft-
ware Foundation) package, pymia (21).

Expert ratings of segmentation quality.— Eight experts (fel-
lows and attending physicians from the neuro-oncology, 
neuroradiology, and radiation oncology departments at three 
academic centers in the United States) graded the quality of 
segmentations that the DL model generated. We split 60 ran-
domly selected cases from the test set into two datasets with 30 
cases each and assigned four experts to each set. Experts were 
stratified by specialty and experience (see Appendix S4 for de-
tails on each experts’ specialty and level of experience).

The experts viewed the automatically generated tumor out-
line overlayed on the T2-weighted FLAIR image as a stack of 
axial two-dimensional sections. They then graded the quality 
of each segmentation with a score between 1 and 4. The rating 
categories were as follows: 1, not acceptable; 2, acceptable with 
moderate changes; 3, acceptable with minor changes; and 4, ac-
ceptable without changes. All experts were blinded toward par-
ticipant identity and treatment status and viewed the cases in a 
randomized order. Each expert was provided 15 cases to practice, 
and six experts rated four cases twice during different sessions 
to assess intrarater variability. Appendix S4 contains a detailed 
description of the study setup and example cases.

Statistical analysis.— Agreement between ratings was assessed 
using Krippendorff α (type ordinal) for more than two ratings 
per case and Gwet AC2 with linear weights for two ratings 
per case for pairwise expert comparisons. We chose Gwet AC2 
instead of Cohen κ for pairwise comparisons and the assess-
ment of intrarater reliability because Gwet AC is not affected 
by the frequency distribution of the ratings (22). Kendall rank 
correlation coefficient (Kendall tau) was used to measure the 
correlations between the continuous quantitative segmenta-
tion quality metrics and ordinal quality ratings (23). Since the 
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showed statistically significant associations with a lower agree-
ment between experts: higher segmentation volume of the au-
tomatic segmentation (P = .04), lower Dice score (P < .001), 
higher 95th percentile Hausdorff distance (P = .046) between 
the automatic and the manual ground truth segmentation, and a 
higher segmentation uncertainty of the segmentation model (P < 
.001). The different distributions of these metrics in the low and 
high agreement groups are illustrated in Figure 4B. We found 
no evidence of differences between the low and high agreement 
groups’ surface area (P = .12), sphericity (P = .62), and volume 
similarity (P = .51).

Differences between commonly used metrics and expert 
quality perception.— Last, we compared the correlation be-
tween the ratings of each expert and the most used quan-
titative segmentation quality metrics. Figure 5 presents the 
Kendall tau correlation coefficients between seven selected 
segmentation metrics and the ratings of all eight raters. 
Overall, we observed a high variability between the metrics 
and among the experts.

The highest correlations and lowest variability among rat-
ers were found with the 95th percentile Hausdorff distance. 

tative evaluation performed by clinical experts, 
none linked quantitative and qualitative segmen-
tation quality measurements.

User Study on Segmentation Quality 
Perception of Clinical Experts
Our brain tumor segmentation model achieved a 
mean Dice score of 0.72 on the held-out test da-
taset. The previously reported Dice score for this 
dataset was 0.70 (25), and the average Dice score 
for the interreader agreement was 0.64 (Fig S2). 
The sensitivity, relative volume error, and 95th 
percentile Hausdorff distance were 77%, 0.33, 
and 6.5 mm, respectively. We obtained 264 seg-
mentation quality ratings for 60 cases, including 
24 double reads from six domain experts, to de-
termine intrarater variability. Given the longitu-
dinal nature of the imaging, segmentation qual-
ity measurements (ie, quantitative segmentation 
metrics or ratings) from repeated imaging of an 
individual cannot be assumed to be indepen-
dent. While the intraclass correlation coefficient 
of the Dice score of segmentations for repeated 
MRI from the same individual was high (0.82), 
segmentation quality ratings were not influenced 
by this relationship (intraclass correlation coef-
ficient, 0.29).

Differences among experts.— The intrarater 
agreement based on double reads ranged from 
0.24 to 1 with a median of 0.88 (Gwet AC2). 
The interrater agreement was low among all 
quality ratings with a Krippendorff α value of 
.34. For pairwise comparisons (panels A1 and 
A2 of Fig 3), we found that the agreement be-
tween the ratings of individual experts showed wide variability, 
ranging between 0.37 and 0.79 (median, 0.59; Gwet AC2).

After sorting the cases in each subset according to their mean 
rating, it became apparent that the low agreement between raters 
was possibly caused by different internal quality class thresholds 
(panels A1 and A2 in Fig 4). The threshold between what con-
stitutes an acceptable segmentation and one that requires minor 
changes varied between the experts.

However, as indicated by the variability in the pairwise cor-
relations between experts’ ratings (panels B1 and B2 in Fig 
3), these individual thresholds did not account for the total 
variability we observed in the quality ratings. Therefore, we 
assessed whether there were additional factors that influenced 
these differences. A qualitative analysis comparing cases with a 
low and high disagreement between experts revealed that the 
ratings disagreed for cases with diffuse tumor boundaries, het-
erogeneous tumor intensity, and multiple lesions. We found 
high agreement in the quality ratings for cases with clear tumor 
boundaries and false-positive segmented areas that were clearly 
not connected to the primary lesions (see Figs S3 and S4).

Upon quantitative comparison between cases with a low and 
high disagreement between the experts, the following factors 

Figure 1: Consort diagram of the literature review process. The process to identify suitable articles 
for review consisted of an initial screening of PubMed (blue), a first screening of the titles (red), a sec-
ond screening of the abstracts (green), and final screening of the full texts (yellow).
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Figure 2: Use of quantitative segmentation quality metrics in the reviewed literature. (A) Graph shows the count of how often the 10 most 
popular segmentation quality metrics were used to evaluate the performance of the segmentation models. (B) Graph shows the count of how 
often metrics belonging to one of the seven defined metric groups were used to evaluate the performance of the segmentation models. (C) Pie 
chart shows the percentage of studies that used metrics from one, two, three, or four or more metric groups. (D) Venn diagram illustrates the fre-
quency of metric group combinations for segmentation model evaluation between the three most popular groups of segmentation quality metrics. 
acc = accuracy, ASSD = average symmetric surface distance, AUC = area under the receiver operating characteristic curve, bound = boundary-
based metrics, CM = confusion matrix–based metrics, dist = distance-based metrics, inf = information-based metrics, HD = Hausdorff distance, 
Jacc = Jaccard index, overl = overlap-based metrics, prec = precision, sens = sensitivity, spec = specificity, thres = threshold-based metrics, vol = 
volume-based metrics.

Studies including Segmentation Model Performance Evaluation by Quantitative Metrics and Clinical Experts

Study Segmentation Target Expert Evaluation Metric No. of Experts Expert Background (No. of Experts)

Lu et al, 2021 (34) Brain metastases, me-
ningioma, vestibular 
schwannoma

Time to correct
Agreement between corrected 

segmentations

8 Neuroradiology (n = 1)
Radiation oncology (n = 5)
Neurosurgery (n = 2)

Conte et al, 2021 (35) Preoperative glioma Time to correct 2 Neuroradiology (n = 2)
Di Ieva et al, 2021 (36) Preoperative glioma Binary quality classification 

(acceptable or not accept-
able)

4 Neuroradiology (n = 1)
Radiation oncology (n = 1)
Neurosurgery (n = 2)

Mitchell et al, 2020 (37) Preoperative glioma Comparison between manual 
ground truth and auto-
matic segmentation

Segmentation quality on a 
scale from 0 (poor) to 10 
(perfect)

20 Neuroradiology (n = 20)

Wang et al, 2018 (38) Preoperative glioma, 
fetal organs

User interaction time to refine 
the segmentation

2 Radiology (n = 1)
Obstetrics (n = 1)
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The sensitivity and surface Dice score (26) showed accept-
able correlation values with limited variability among the rat-
ers. However, similarly to most other quantitative metrics, we 
found one outlier in the correlations between experts’ ratings 
and the surface Dice score; the ratings provided by expert 4 
showed no correlation (Kendall tau, -0.01). The most popular 
overlap-based metric, the Dice score, showed a surprisingly low 
correlation with experts’ ratings with a median Kendall tau of 
0.185. We found no meaningful relationship between volume 
similarity and relative volume error with median Kendall tau 
values of 0.11 (range, -0.22–0.3) and -0.1 (range, -0.22–0.24), 
respectively. Similarly, low correlations were found for speci-
ficity with a median Kendall tau value of 0.11 (range, -0.19–
0.21). However, due to the high background-to-foreground 
ratio, specificity values, which convey little information about 
segmentation quality, were very high.

Discussion
We present a study on expert-centered segmentation quality 
evaluation. First, we identified how articles reporting on DL 
brain tumor segmentation evaluate those models. Second, we 
performed an experimental study on clinical experts’ percep-
tion of brain tumor segmentation and showed how current 
evaluation practices identified in the literature review relate to 
clinical experts’ segmentation quality assessment.

The Dice score was the most popular metric, and 23.3% of 
the analyzed articles relied on the Dice score as the only metric 
for segmentation performance evaluation. However, for segmen-
tation of preoperative gliomas, overlap metrics correlate poorly 
with the human quality perception (12). The experimental data 
on the quality perception of postoperative brain tumor segmen-
tation confirm this finding, indicating that certain metrics ex-
hibit better agreement with expert quality perception while also 
revealing differences in the agreement between experts.

Distance-based metrics that showed the highest agreement 
and lowest variability among experts were never used as the pri-
mary performance metric for segmentation quality. Unlike over-
lap- and confusion matrix–based metrics, most distance metrics, 
such as the Hausdorff distance, are not bounded between 0 and 
1. Therefore, they are harder to interpret and compare between 
studies that are using different datasets. Our findings suggest 
that the surface Dice score (26) can be a promising alternative, 
as it had a higher agreement with experts’ ratings than the Dice 
score and is constrained to values between 0 and 1.

Even though DL-assisted segmentation algorithms can in-
crease interrater agreement of segmentations and other down-
stream measurements, like time to progression (5,27), the inter-
rater reliability in segmentation quality perception has not been 
studied to date. Given the known low interrater agreement in 
the manual segmentations for challenging targets such as tumors 

Figure 3: Pairwise agreement and correlation between experts. Heat maps show pairwise agreement and correlation that were com-
puted between all pairs of experts on the two sets of cases. Each panel (A1 and A2 and B1 and B2) represents one set of 30 cases that 
were rated by the same group of experts without overlap between the sets. A1 and A2 maps show pairwise agreement between experts’ 
ratings using Gwet AC2, and B1 and B2 maps show pairwise correlation between experts’ ratings using Kendall tau.
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(2,3,4), we expected variability in the segmentation quality per-
ception of the participating experts.

The intrarater reliability in our experiments was high, 
with a median of 0.88 (Gwet AC2) for the six experts. This 
finding contrasts the low interrater agreement between all 
raters (Krippendorff  α, .39). In part, individually varying 
thresholds between adjacent segmentation quality grades can 
account for the observed variability. Similar variability in 

individual thresholds between ordinal rating categories has 
been observed in disease severity classification (28,29). In 
contrast, experts are more consistent in their assessment of 
disease severity when comparing images rather than assigning 
absolute ratings (30). Therefore, alternative evaluation tech-
niques based on comparisons between segmentations and a 
defined segmentation quality standard may warrant higher 
agreement between raters.

Figure 4: Factors influencing disagreement between experts. (A) Heat maps show agreement between raters for single cases. Each column represents the ratings for 
one case, and each row represents one expert. The cases within both subsets of data were ranked based on their average rating. Experts were ordered based on the aver-
age rating assigned to all cases from lowest (top) to highest (bottom) average rating. Each panel (A1 and A2) represents one set of 30 cases that were rated by the same 
group of experts without overlap. (B) Box and whisker plots show distributions of rater-independent metrics for the group with low (blue) and high agreement between ex-
perts (red). Statistically significant differences between the distributions are indicated by brackets above the box plots. Boxes represent the IQR (25th–75th percentile), and 
the horizontal line inside the boxes represents the median value of each parameter. Whiskers represent the minimum and maximum values. ♦ = outliers. * = P ≤ .05, ** = P ≤ 
.01, *** = P ≤ .001, HD95 = 95th percentile Hausdorff distance.
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Furthermore, we identified several factors significantly as-
sociated with a lower agreement between raters. Among these 
factors were smaller volumes of the automated segmentation, 
indicating that the experts saw aberrations in these cases as 
of different importance. Additionally, cases with a high dis-
agreement in the ratings were associated with higher model 
uncertainty. Epistemic uncertainty is expected to be higher 
for cases dissimilar to those seen during model training (31). 
Model uncertainty, which can be computed independently 
of any manual ground truth, is highly correlated with the 
segmentation Dice score (25,32). Our finding that epistemic 
uncertainty is higher for samples with a lower agreement be-
tween raters indicates that some cases may be more challeng-
ing for experts and DL algorithms alike. Consequently, cases 
with a high uncertainty could be automatically routed for 
review by multiple experts (eg, during a peer review session).

In the surveyed articles, expert-centered evaluation, if per-
formed, played a supplementary role to a primary quantitative 
assessment of the test data using established quantitative metrics. 
Furthermore, we observed a high variability in the evaluation 
processes that may reflect the diversity of use cases for segmenta-
tion (eg, treatment monitoring or planning). Solely relying on 
quantitative evaluation is insufficient to assess the readiness of 
DL segmentation models for downstream clinical tasks (33). As 
a solution, Jha et al (32) advocated that artificial intelligence al-
gorithms should be evaluated with the involvement of clinical 
experts and their clinical context in mind.

Most research on brain tumor segmentation is performed us-
ing the imaging of patients who have not undergone surgery. In 
the representative sample of the literature on DL-based brain tu-
mor segmentation, only 1.7% (three of 180) of articles explicitly 
state the inclusion of postoperative imaging.

While segmentation of the preoperative tumor has value for 
neurosurgical purposes, neuro-oncologic response assessment 
and the planning of radiation therapy are based on imaging 
following surgery or biopsy. However, due to the presence of 
treatment-related changes in addition to the naturally blurry 
tumor outlines, the manual and automatic segmentation of 

postoperative gliomas is more challenging than the segmentation 
on preoperative images. For this reason, we have chosen to focus 
on assessing the quality of postoperative tumor segmentations. 
However, our findings may not generalize to preoperative seg-
mentations. Furthermore, it would be valuable to study whether 
experts’ perception of segmentation quality for the segmentation 
of other structures, such as stroke lesions or lung tumors, shows 
similar variability as described here.

There were some limitations to this study. The assess-
ment of T2-weighted FLAIR abnormality segmentations was 
based only on T2-weighted FLAIR images and no additional 
sequences. In clinical settings, radiologists may use other se-
quences such as T2-weighted and T1-weighted sequences 
with and without contrast agent administration for addi-
tional information. Therefore, the simplified study setup did 
not fully mimic segmentation quality assessment as it would 
be performed in a clinical workflow. Furthermore, the experi-
ments were limited to the segmentation quality perception of 
postoperative brain tumors on T2-weighted FLAIR images, a 
highly complex and ambiguous segmentation target. Our find-
ings may not generalize to other segmentation targets. Future 
studies should evaluate whether the observed disagreement be-
tween segmentation quality metrics and the quality perception 
of experts can be observed for other segmentation targets as 
well. Based on our findings, we suggest that the performance 
of segmentation models should include a use-case–focused as-
sessment performed by clinical experts. If this is not feasible, 
a purely quantitative analysis should use selected segmentation 
quality metrics that correlate with their usefulness for the de-
sired clinical application.

In conclusion, a better understanding of the requirement for 
high-quality segmentation and the quality perception of clini-
cal experts is required. This knowledge will catalyze the develop-
ment of tailored quantitative metrics to develop clinically helpful 
segmentation models.
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