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ABSTRACT

TheNCCNGuidelines for Central Nervous System (CNS) Cancers focus onman-
agement of the following adult CNScancers: glioma (WHOgrade1,WHOgrade
2–3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2–4 IDH-
mutant astrocytoma,WHOgrade4glioblastoma), intracranial and spinal ependy-
momas, medulloblastoma, limited and extensive brain metastases, leptomenin-
geal metastases, non–AIDS-related primary CNS lymphomas, metastatic spine
tumors, meningiomas, and primary spinal cord tumors. The information con-
tained in the algorithms and principles of management sections in the NCCN
Guidelines for CNSCancers are designed to help clinicians navigate through the
complexmanagement of patientswith CNS tumors. Several important principles
guide surgical management and treatment with radiotherapy and systemic ther-
apy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least
annually to review comments from reviewerswithin their institutions, examine rel-
evant newdata frompublications and abstracts, and reevaluate and update their
recommendations. TheseNCCNGuidelines Insights summarize thepanel’smost
recent recommendations regardingmolecular profilingof gliomas.

J Natl Compr Canc Netw 2023;21(1):12–20
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NCCN CATEGORIES OF EVIDENCE AND CONSENSUS

Category 1: Based upon high-level evidence, there is uniform
NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform
NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN
consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major
NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise
noted.

Clinical trials: NCCN believes that the best management of
any patient with cancer is in a clinical trial. Participation in
clinical trials is especially encouraged.

PLEASE NOTE

The NCCN Clinical Practice Guidelines in Oncology
(NCCN Guidelines®) are a statement of evidence and consen-
sus of the authors regarding their views of currently accepted
approaches to treatment. The NCCN Guidelines Insights
highlight important changes in the NCCN Guidelines
recommendations from previous versions. Colored
markings in the algorithm show changes and the
discussion aims to further the understanding of these
changes by summarizing salient portions of the panel’s
discussion, including the literature reviewed.

The NCCN Guidelines Insights do not represent the full
NCCN Guidelines; further, the National Comprehensive
Cancer Network® (NCCN®) makes no representations
or warranties of any kind regarding their content, use, or
application of the NCCN Guidelines and NCCN Guidelines
Insights and disclaims any responsibility for their application
or use in any way.

The complete and most recent version of these
NCCN Guidelines is available free of charge at NCCN.org.

© 2023 National Comprehensive Cancer Network® (NCCN®),
All rights reserved. The NCCN Guidelines and the illustra-
tions herein may not be reproduced in any form without the
express written permission of NCCN.
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Overview
Integrated histopathologic andmolecular characterization
of gliomas, as per WHO classification,1 should be an es-
sential part of practice. Molecular/genetic characteriza-
tion complements standard histologic analysis, improves
diagnostic accuracy, provides prognostic information, and
aids in treatment selection and clinical trial enrollment.
Histopathologic and molecular analysis of central nervous
system (CNS) tumors is limited by interobserver discrep-
ancies and surgical sampling that do not always capture
all relevant diagnostic features in morphologically hetero-
geneous tumors. It is important to note, however, that
most of the studies describing molecular patterns and
outcomes were based on large retrospective cohorts, and
many of the seminal brain tumor clinical trials were not
based on those molecular patterns. Without full incorpo-
ration of molecular profiling, precision medicine for brain
tumors will not be fully realized.

Updated Classification of Gliomas Based on
Histology and Molecular Features
In 2016, the WHO classification for grade 2–3 gliomas
was revised as follows: (1) oligodendrogliomas were glio-
mas that had whole-arm 1p/19q codeletion and IDH1 or
IDH2 (together referred to as “IDH”) mutation (unless
molecular data were not available and could not be
obtained, in which case designation was based on histol-
ogy with appropriate caveats); (2) anaplastic gliomas were

further subdivided according to IDH mutation status; (3)
oligoastrocytoma was no longer a valid designation unless
molecular data (1p/19q codeletion and IDH mutation sta-
tus) were not available and could not be obtained.2 Such
tumors were described as “oligoastrocytoma, not other-
wise specified” to indicate that the characterization of the
tumor was incomplete. Very rare cases of concurrent,
spatially distinct oligodendroglioma (1p/19q codeleted)
and astrocytoma (1p/19q intact) components in the same
tumor could also be labeled oligoastrocytoma.2 Correla-
tions between the molecularly defined 2016 WHO catego-
ries and the histology-based 2007 WHO categories were
limited and varied across studies.3–6 Thus, the change
from 2007 WHO to 2016 WHO reclassified a large propor-
tion of gliomas.

The fifth edition of the WHO classification of CNS tu-
mors was published in 2021.1,7 In this newest classification,
“adult-type diffuse gliomas” are subsumed within a super-
category of gliomas and glioneuronal tumors, and are split
into 3 subtypes: (1) IDH-mutant astrocytoma; (2) oligoden-
droglioma, 1p/19q-codeleted and IDH-mutant; (3) glioblas-
toma, IDH-wild-type. WHO grades are now further specified
for select CNS tumors, including diffuse gliomas. Specifically,
IDH-mutant astrocytoma can be grade 2, 3, or 4. Oligoden-
droglioma, 1p/19q-codeleted and IDH-mutant, can be grade
2 or 3. Glioblastoma, IDH-wild-type, can only be grade 4.
This updated classification further emphasizes the impor-
tance of molecular data for accurately diagnosing CNS
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tumors (see GLIO-1, GLIO-2, GLIO-3, and GLIO-5, pages
14–17).1

Multiple independent studies on gliomas have con-
ducted genome-wide analyses evaluating an array of
molecular features, including DNA copy number, DNA
methylation, and mutations, in large populations of
patients with grade 2–4 tumors.5,8,9 Unsupervised cluster-
ing analyses, an unbiased method for binning molecularly
similar tumors, have been used to identify subgroups of
gliomas with distinct molecular profiles.5,8,9 Further stud-
ies have shown that these molecular subgroups can be
distinguished based on only a handful of molecular fea-
tures, including IDH mutation and 1p/19q codeletion, bi-
omarkers independently verified by numerous studies
as hallmarks for distinguishing molecular subgroups in
grade 2–3 gliomas.3–6,9–15 The unsupervised clustering
analysis published by The Cancer Genome Atlas Research
Network supports the idea that the majority of grade 2–3
tumors can be divided into 3 molecular subtypes: (1) mu-
tation of IDH with 1p/19q codeletion; (2) IDH-mutant
with no 1p/19q codeletion; and (3) no mutation of IDH
(ie, IDH-wild-type).5 Multiple studies have shown that
1p/19q codeletion is strongly associated with IDH muta-
tions, such that true whole-arm 1p/19q codeletion in
IDH-wild-type tumors is extremely rare.3,4,12,16,17 In a tis-
sue biopsy that is equivocal for glioma, the presence of
an IDH mutation indicates at least a grade 2 diffusely in-
filtrative glioma.18 Some IDH-mutant diffusely infiltrative

astrocytomas develop the traditional grade 4 histologic
features of necrosis and/or microvascular proliferation,
which suggest more aggressive behavior and worse prog-
nosis, but are still not as severe as IDH-wild-type glioblas-
toma. Such tumors are now referred to as astrocytoma,
IDH-mutant, WHO grade 4, to distinguish them from
IDH-wild-type glioblastoma.19,20 Grade 1 noninfiltrative
gliomas do not have IDHmutations.18

Other mutations commonly detected in gliomas
can have diagnostic and prognostic value, such as
those involving the histone chaperone protein, ATRX,
which is most often found in grade 2–3 gliomas and
secondary glioblastomas.21,22 ATRX mutation is robustly
associated with IDH mutations, and this combination,
along with TP53 mutations, is diagnostic of astrocy-
toma.23 In contrast, ATRX mutation is nearly always
mutually exclusive with 1p/19q codeletion, and is un-
common in IDH-wild-type glioblastoma. Because loss
of normal nuclear ATRX immunostaining is a fairly reli-
able indicator of an ATRX mutation, an IDH-mutant
glioma that has loss of normal nuclear ATRX immuno-
staining is much more likely to be an astrocytoma than
an oligodendroglioma.

Mutations in the promoter region of the telomerase
reverse transcription (TERT) gene occur frequently in IDH-
wild-type glioblastomas and IDH-mutant, 1p/19q codeleted
oligodendrogliomas.24,25 Absence of TERT promoter muta-
tion, coupled with IDH mutation and lack of 1p/19q
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codeletion, is indicative of astrocytoma. Some IDH–wild-
type diffusely infiltrative astrocytomas lack the histologic
features of glioblastoma (necrosis and/or microvascular
proliferation) but have $1 molecular hallmarks of glioblas-
toma, including the following: EGFR amplification; gain of
chromosome 7 and loss of chromosome 10; and TERT pro-
moter mutation. In such cases, the tumor can still be diag-
nosed as glioblastoma, IDH-wild-type, WHO grade 4. These
tumors have similar clinical outcomes as typical histologic
grade 4 IDH-wild-type glioblastomas, so they may be man-
aged accordingly.18,20 The 2021 updated WHO classification
of CNS tumors also now includes CDKN2A/B homozygous
deletion as evidence of grade 4 status in IDH-mutant astro-
cytomas, even if such astrocytomas lack necrosis and/or
microvascular proliferation.1,19,26–29

H3K27M mutations in the histone-encoding H3-3A
gene are mostly found in diffuse midline gliomas in
both children and adults.30 Patients with these H3K27M-
mutated gliomas tend to have a very poor prognosis re-
gardless of histologic appearance, so they are classified
as WHO grade 4; however, some patients seem to fare
better than a grade 4 diagnosis would imply, so there re-
mains some controversy regarding this issue.30–32 Another
variant in H3-3A, resulting in a G34V (or R) mutation in
histone 3.3, is characteristic of some diffusely infiltrative
gliomas arising not in themidline, but in the cerebral hemi-
spheres. These gliomas tend to occur in children and youn-
ger adults and are IDH-wild-type, but still have mutations

in ATRX and TP53. Thus, the fifth edition of the WHO clas-
sification calls these tumors “diffuse hemispheric glioma,
H3.3 G34-mutant, WHO grade 4.”1 H3K27M immunoposi-
tivity is associated with loss of histone trimethylation
immunostaining in diffuse midline gliomas.33–37 The pres-
ence of a histone mutation can be considered solid evi-
dence of an infiltrative glioma, which is often helpful in
small biopsies of midline lesions that may not be fully di-
agnostic with light microscopy and/or do not clearly look
like infiltrative gliomas.30,38 Both kinds of H3-3A–mutant
gliomas are now subsumed by the 2021WHO classification
under “pediatric-type diffuse high grade gliomas,” even if
such tumors arise in adults.1,7 None of the histone-driven
gliomas are called glioblastomas anymore, because that
term is now reserved exclusively for IDH-wild-type gliomas
meeting the criteria discussed earlier.

Prognostic Relevance of Molecular Subgroups
in Glioma
Numerous large studies of patients with brain tumors have
determined that, among WHO grade 2–3 gliomas, 1p/19q
codeletion correlates with greatly improved progression-
free survival (PFS) and overall survival (OS).4,9,10,39–41 Like-
wise, the presence of an IDHmutation is a strong favorable
prognostic marker for OS in grade 2–3 gliomas.5,12 Analyses
within single-treatment arms showed that the IDH status is
prognostic for outcome across a variety of postoperative
adjuvant options. For example, in the NOA-04 phase III
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randomized trial, IDH mutation was associated with
improved PFS, longer time to treatment failure, and ex-
tended OS in each of the 3 treatment arms: standard ra-
diotherapy (RT; n5160); combination therapy with
procarbazine/lomustine/vincristine (RT upon progres-
sion; n578); and temozolomide (RT upon progression;
n580).40

Multiple independent studies, covering multiple
grades and histology-based subtypes of gliomas,5,9,39 as
well as smaller studies limited to 1 to 2 grades or histo-
logic subtypes,4,42–44 have consistently supported the sub-
division of gliomas by molecular subtype (eg, by IDH and
1p/19q status) as recommended by the WHO 2021 CNS
tumor classification, because this yields greater prognos-
tic separation than subdivision by histology alone. Multi-
ple studies have shown that, among patients with grade
2–3 gliomas, the IDH-mutant plus 1p/19q-codeletion
group (ie, oligodendroglioma) has the best prognosis,
followed by IDH-mutant without 1p/19q codeletion (ie,
astrocytoma), and the IDH-wild-type group (ie, glioblas-
toma) has the worst prognosis.4–6,39–41 Analyses within
single-treatment arms have confirmed this trend in
prognosis across a variety of postoperative adjuvant
treatment options.4,40,41,44 TERT promoter mutations in
patients with high-grade IDH-wild-type glioma are as-
sociated with shorter OS, compared with IDH-wild-type
tumors without a TERT promoter mutation.6,25,45 How-
ever, a multivariable analysis of data from 291 patients

with IDH-mutant, 1p/19q-codeleted oligodendroglio-
mas showed that absence of a TERT promoter muta-
tion was associated with worse OS, compared with
those with TERT promoter–mutant oligodendroglio-
mas (hazard ratio, 2.72; 95% CI, 1.05–7.04; P5.04).46 An
analysis of an older database, which included 271 pa-
tients with WHO grade 2 gliomas that were diagnosed
according to the 2007 WHO classification, showed that
IDH-mutant gliomas were associated with increased
OS and better response to temozolomide than IDH-
wild-type gliomas.4

MGMT (O-6-methylguanine-DNA methyltransferase)
is a DNA repair enzyme that can confer resistance to DNA-
alkylating drugs.47 Gene suppression via MGMT promoter
methylation is associated with better survival outcomes in
patients with high-grade glioma, and is a predictive factor
for response to treatment with alkylating chemotherapy,
such as temozolomide or lomustine,31,48–50 even in older
adults.51,52 IDH mutations are commonly associated with
MGMT promoter methylation.6 Tumors with H3K27Mmu-
tations are far less likely to be MGMT promoter methyl-
ated.30 and are associated with even worse prognosis than
IDH-wild-type glioblastomas.38,53 Patients whose hemi-
spheric high-grade gliomas contain H3-3A G34 mutations,
however, have relatively higher rates of MGMT promoter
methylation than H3K27M diffuse midline gliomas, and do
not have a worse prognosis than patients with other IDH-
wild-type glioblastomas.38,54
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BRAF fusion and/or mutation testing are clini-
cally indicated in patients with low-grade glioma.
Most WHO grade 1 pilocytic astrocytomas in pediat-
ric patients contain BRAF fusions or, less commonly,
BRAF V600E mutations, especially those arising in
the posterior fossa; such tumors are rarely high-
grade.55 BRAF fusion is associated with better prog-
nosis in pediatric low-grade astrocytoma.55–57 The
likelihood of a BRAF fusion in a pilocytic astrocy-
toma decreases with age.55 BRAF V600E is present in
60% to 80% of pleomorphic xanthoastrocytomas, though
it has also been found in many other low-grade gliomas,
such as gangliogliomas and dysembryoplastic neuroepi-
thelial tumors,31,55,58 as well as ,5% of glioblastomas (es-
pecially epithelioid glioblastoma).59 Pediatric low-grade
gliomas with BRAF fusions tend to be indolent with occa-
sional recurrence, but only rarely do they progress to
cause death.56,57,60 Retrospective studies have shown that
BRAF V600E may be associated with increased risk of
progression in pediatric low-grade gliomas,61 but one
study found that this association did not meet the
threshold for statistical significance (n5198; P5.07).57

Some studies have shown that tumors with a BRAF
V600E mutation may respond to BRAF inhibitors such
as vemurafenib,62–64 but ongoing trials will further clar-
ify targeted treatment options in the presence of a
BRAF fusion or V600E mutation (eg, ClinicalTrials.gov
identifiers: NCT03224767, NCT03430947).

NCCN Molecular Testing Recommendations
for Glioma
Recommendations for molecular testing of glioma tu-
mors are provided in “Principles of Brain Tumor Patho-
logy” (see BRAIN-F 6 of 10, above). Based on studies
showing that IDH status is associated with better progno-
sis in patients with grade 2–3 glioma,16,39,40,65 the panel
recommends IDH mutation testing in patients with gli-
oma. Immunohistochemistry can detect the most com-
mon (canonical) IDH mutation, IDH1 R132H. However,
sequencing must be performed to detect noncanonical
IDH1 mutations (eg, IDH1 R132C) and IDH2 mutations.
Because ATRX and IDH mutations frequently co-occur,
a lack of ATRX immunostaining, coupled with negative
R132H immunostaining for IDH1 in a glioma, should
trigger screening for such noncanonical IDH muta-
tions.23 Loss of nuclear ATRX via immunostaining should
trigger reflex sequencing to confirm an ATRX mutation.
Sequencing is also recommended in patients aged ,55
years with negative immunohistochemistry for IDH1
R132H, regardless of ATRX immunostaining.

Testing for 1p/19q codeletion is essential for the di-
agnosis of oligodendroglioma. A very common method to
do this is by fluorescence in situ hybridization (FISH), but
FISH only targets regions near the telomeric ends of 1p
and 19q. Thus, FISH is vulnerable to misinterpreting
short segmental deletions as whole-arm codeletion.66–68

When possible, whole genomic copy number scanning,
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either by genomic copy number variation assay or DNA
methylation profiling, is preferred for assessing 1p/19q
status. Furthermore, because true whole-arm 1p/19q
codeletion is essentially nonexistent in the absence of
an IDH mutation,16,17,69 1p/19q testing is not necessary
in tumors that are definitely IDH-wild-type, and tumors
without an IDH mutation should not be regarded as
truly 1p/19q-codeleted, even when results suggest oth-
erwise. Mutation testing for ATRX and TERT promoter
are also recommended, given the diagnostic value of
these mutations.21,23–25 IDH-mutated gliomas that do
not show loss of nuclear ATRX immunostaining should
be strongly considered for 1p/19q testing, even if not
clearly oligodendroglial by histology. H3A and HIST1H3B
sequencing and BRAF fusion and/or mutation testing
may be performed as clinically indicated. A K27M
histone-specific antibody is available, but it can be
difficult to interpret.70

Grade 3–4 gliomas should undergo testing for
MGMT promoter methylation, because MGMT pro-
moter methylated tumors typically respond better to

alkylating chemotherapy compared with unmethylated tu-
mors.48,51,52,71 There are several accepted methods for test-
ing MGMT promoter methylation. Methylation-specific
PCR has had the most validation in clinical trials,72 but
a 2012 study including 100 patients with glioblastoma
treated with temozolomide suggested that pyrosequencing
may be the best prognostic stratifier.73 Molecular testing of
glioblastomas is encouraged by the panel, because patients
with a detected driver mutation (eg, BRAF V600E mutation
or NTRK fusion) may be treated with a targeted therapy,
and these tests improve diagnostic accuracy and prognos-
tic stratification. Detection of genetic or epigenetic altera-
tions could also expand clinical trial options for a patient
with a CNS tumor.

In summary, in order for patients to receive appro-
priate care and prognostic information, molecular and
genetic testing of gliomas is warranted.

To participate in this journal CE activity, go to
https://education.nccn.org/node/92887
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