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Simple Summary: Malignant gliomas are of the deadliest, most hard-to-treat cancers, given their
various characteristics of aggression and infiltration as well as the location of growth. Photodynamic
therapy (PDT) is a promising avenue for localized cancer therapy. A therapeutic effect is achieved
by systemic drug delivery followed by localized wavelength-specific illumination. This review
extensively explores the use of photosensitizers in gliomas, from their first use to the present, and
details their mechanisms, and pre-clinical and clinical findings. Further discussion is provided on its
limitations and future directions.

Abstract: Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases
in the American population (NIH SEER). Within this, glioblastoma is the most common subtype,
comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high
genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard
of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However,
despite advances in technology and therapeutic modalities, rates of disease recurrence are still high
and survivability remains low. Given the delicate nature of the tumor location, remaining margins
following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic
modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific
anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant
glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here,
we provide a comprehensive review of the three generations of photosensitizers alongside their
mechanisms of action, limitations, and future directions.

Keywords: glioblastoma; photomedicine; photodynamic therapy; photosensitizer

1. Introduction

Glioma is the most common malignant primary central nervous system tumor type
and consists of several subtypes, including glioblastoma (GBM) which make up 57.3%
of all gliomas [1]. An extremely aggressive subtype, GBM is characterized by its high
infiltrative and angiogenic attributes [2]. The current standard of care for gliomas involves
maximal surgical resection followed by radiation therapy with concurrent and adjuvant
temozolomide (TMZ). For GBM, in particular, this regimen is known as the Stupp protocol
and yields a median survival of 14.6 months, a median progression free survival (PFS) of 6.9
months, and a two year overall survival (OS) rate of 26.5% [3–5]. Often, treatment failure
can be attributed to factors including inter- and intratumoral heterogeneity, reacquisition
of stemness in glioblastoma stem cells, the evolution of therapy-resistant clonal subpopula-
tions, the tumor-promoting microenvironment, multiple drug efflux mechanisms, metabolic
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adaptations, and enhanced repair of drug-induced DNA damage [6,7]. As such, disease
recurrence is nearly inevitable in patients with high-grade gliomas. Despite advances
in treatment strategies, there are currently no standard therapeutic options for recurrent
glioma and recurrent GBM (rGBM) management. Over the past two decades, therapeutic
strategies have been explored but with minimal success. Trials using monotherapeutic and
combinatorial drugs have explored the use of nitrosoureas, antiangiogenics, and EGFR
inhibitors to treat rGBM [8,9]. Of these therapies, trials involving the use of bevacizumab
in TMZ-pretreated patients have shown promising results [10]. However, there have been
no significant differences in patient survival across the large host of regimens, with many
trials often resulting in an increased risk of toxicity and adverse events [9,11,12]. With no
standard treatments, patients are treated conditionally according to clinical characteristics
and conventional prognostic factors.

Over the last (almost) 50 years, the utility of photosensitizers (PS) in the context
of fluorescence-guided surgery (FGS) and photodynamic therapy (PDT) in glioma have
advanced with rapidly growing momentum [13–16]. PDT is a two-stage treatment that
combines light energy with a drug (photosensitizer, PS) designed to destroy cancerous
and precancerous cells after light activation (Figure 1). PDT relies on a tumor-selective,
otherwise inert, PS molecule that is administered locally or systemically. Whereas standard
radio- and chemotherapies act non-specifically, PDT selectively targets tumor tissue due to
the preferential accumulation of the drug in malignant tissue. When excited by light of a
particular wavelength, PSs will absorb the energy, convert into an intermediary byproduct,
and undergo intersystem crossing [17]. This phenomenon leads to the buildup of tumorici-
dal molecules, such as reactive oxidative species (ROS), resulting in localized destruction
of the tumor [18–21]. Given the tumor-specific and tumor-targeting nature of PSs, the use
of PDT becomes extremely attractive for treating both GBM and rGBM, given its high cyto-
toxicity, minimal normal tissue toxicity and systemic effects, and minimized risk of local
recurrence [19,22]. Further, in comparison to standard chemo- and radiotherapies, PDT is
performed during surgery and often results in fewer side effects, providing a significant
advantage to patient well-being [23].
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localization, pharmacokinetics, and chosen drug dose; (ii) light dosimetry; (iii) tissue ox-
ygenation status; and (iv) tumor-subtype specific properties [25–28]. PSs that localize in 
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Figure 1. Photodynamic therapy mechanism of action. PDT occurs by light excitation of the tumor-
accumulated photosensitizer, which exists at “ground state” (0PS). Following excitation, 0PS transi-
tions to the singlet, excited state (1PS*). As the energy is released, 1PS* either drops to the ground
state, emitting fluorescence, or drops to the excited triplet state (3PS*) through intersystem crossing.
Electrons are subsequently released as the triplet state returns to 0PS by way of phosphorescence.
PDT is executed via two types of photosensitization: Type I, which converts O2 to reactive oxygen
species (ROS) such as H2O2, O2

−, or OH−; and Type II, which converts 3O2 to 1O2. Downstream bi-
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ological effects on tumor cells include direct tumor cell destruction (apoptosis, necrosis, autophagy,
ferroptosis), tumor vasculature damage (microvascular stasis, increased vascular gaps, vessel prun-
ing), and immune cell recruitment via localized inflammation.

In this review, we explore the key advancements of photosensitizers and photody-
namic therapy, as well as their advantages and pitfalls, focusing on future therapeutic
perspectives for the management of gliomas.

2. Photodynamic-Therapy-Mediated Tumoricidal Effect
2.1. PDT Induces Cell Death following PS Uptake, Accumulation, and Activation

Unlike temozolomide (TMZ) which acts by destabilizing DNA, the tumoricidal effect
of photodynamic therapy (PDT) manifests by causing oxidative damage to cell membranes,
proteins, and organelles. This triggers a combination of necrosis and apoptosis, as well as
immunogenic and autophagy pathways [18–20]. It is well-known that standard radiation
therapy for malignant glioma can cause radiation necrosis of the treated tissue. This may
induce headache, vomiting, loss of consciousness, and hemiplegia in patients, but can be
relieved by surgical removal of necrotic areas [24]. Therefore, apoptosis and autophagy are
considered the preferred cell death mechanisms for glioma treatment modalities. Distinct
types of PDT-induced cell death vary depending on (i) PS subcellular localization, phar-
macokinetics, and chosen drug dose; (ii) light dosimetry; (iii) tissue oxygenation status;
and (iv) tumor-subtype specific properties [25–28]. PSs that localize in the mitochondria
have been shown to induce apoptosis, whereas PSs that localize in lysosomes and plasma
membranes generally demonstrate a necrotic cellular response [29]. However, these dif-
ferent cell death types are not mutually exclusive and have the potential to co-occur or
shift from one survival pathway to another by altering just one variable in the treatment
schema [24,30]. In addition to the above-mentioned modalities, PDT has also been shown
to trigger ferroptosis-like cell death in glioma [31]. In fact, there exists a synergistic effect of
the intrinsically regulated cell death process ferroptosis and PDT, with the two processes
yielding elevated reactive oxygen species (ROS) for increased anti-cancer effect [32].

2.2. PDT Controls Glioma Stem Cell (GSC) Processes

In addition to their effects on the glioma cells, PDT can also curtail the growth of GSCs
and induce their death [33,34]. GSCs are multipotent cells with tumorigenic capability [35],
driving tumor regeneration and disease progression, and are predominantly involved in the
recurrence of GBM [36]. Studies have shown that long-term TMZ exposure increases GSC
subpopulations [35]. Recent evidence also suggests that in vitro GSCs accumulate proto-
porphyrin IX (PpIX), a downstream product of the second-generation PS 5-aminolevulinic
acid (5-ALA), to therapeutic levels in a dose- and time-dependent manner, inducing cell
death [33]. More recently, Fisher et al. described a doubling of median OS in rats bearing
GSC-30 tumors following low-dose ALA-PDT combined with lapatinib, an EGFR inhibitor,
as compared to rats with conventional U87 human glioma cell line tumors [37].

2.3. PDT Modulates Neurovasculature: Disruption of the Blood–Brain Barrier (BBB) and
Destruction of Tumor Vasculature

PDT mediates the breakdown of the BBB through several avenues including increasing
gaps between tight junctions, microtubule depolarization, and imbalanced endothelial
regulation of vascular relaxation [38]. Subsequent BBB breakdown facilitates the diffusion
of PSs into the brain and tumoral area. It is little known if PSs, such as 5-ALA, are proxies
for the tumor tissue or just a manifestation of BBB disruption. In a proof-of-concept
report, Madsen et al. showed exogenous macrophage migration into the brain of non-
tumor bearing mice following PDT-induced BBB disruption [39]. Later reports have also
optimized the use of certain PSs (particularly, 5-ALA) and PDT for BBB disruption with
positive results [38]. The breakdown of the BBB can result in increased accumulation of
PS, over nonspecific therapeutic delivery vehicles, in the tumor tissue, compounding the
antitumor effect.
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Similarly, PDT also bears an effect on tumor vasculature. Angiogenesis is an important
hallmark of cancer, contributing to tumor resilience and aggressive growth [40]. Intrigu-
ingly, there is evidence of microvascular constriction, collapse, and thrombus formation
following PDT, ultimately delaying or inhibiting tumor growth [41]. Characterization of
tumor morphology following PDT has revealed lapsed sinusoids, intumescent endothelial
cells within tumor capillaries, luminal occlusion, and thrombosis [42]. Combined, these
two effects on the neurovascular system compound the therapeutic effects of PDT on
malignant gliomas.

2.4. PDT Stimlates Anti-Tumor Immunity

Photodynamic therapy has been implicated in macrophage, immune cell, and T cell
recruitment and enhanced anti-tumor immunity [20,43,44]. Emerging studies have also
described an increased migration of antigen-presenting cells, such as macrophages [39] and
dendritic cells [45], and cytokines [46] to brain tissue treated with PDT. This immunological
effect is mediated by an upregulation of damage-associated molecular patterns (DAMPs),
such as heat shock proteins (HSPs) [47,48], surface calreticulin (CRT), secreted adenosine
triphosphate (ATP), and high-mobility group box 1 protein (HMGB1) [49]. DAMPs are
released by damaged or dying cells to stimulate vascular permeability and production of
proinflammatory cytokines, thereby mediating leukocyte migration to the site of tissue
damage. The subsequent increase in local inflammation further triggers immune cell
recruitment. Through both in vitro and in vivo studies, there is significant evidence of
PDT treatment-induced upregulation of HSP70 surface expression [47,50,51]. In rat models,
accumulation of CD8+ T cells and macrophages/microglia were seen in conjunction with
HSP70 upregulation following nanoparticle-based PDT [48]. Studies employing mixtures
of photosensitizers have also prompted phagocytosis of glioma cells via bone marrow
dendritic cells (BMDCs), via BMDC maturation and production of IL-6 in a cell-ratio-
dependent manner [49]. Genes for immune protein markers IL-6 and IL-6R have also been
found to be upregulated alongside ROS-inducible genes after PDT [52]. Over the last few
years, in vitro studies have moved towards investigating non-porphyrin, third generation
PSs, with many utilizing cross-linked polymers and nanoplatforms for targeted delivery to
enhance PDT-induced immunological tumoricidal effects [53–60].

3. Photosensitizers

Clinically efficacious photosensitizers (PSs) are constrained by several properties,
namely (i) ability to penetrate the BBB, (ii) selective accumulation in malignant tissue,
and (iii) photoactivity at long light wavelengths for deep tissue penetration [61]. PSs
are categorized into three generations based on molecular properties (Table 1 [19,62–72]):
first-generation PSs are naturally occurring porphyrins, second-generation PSs comprise
more chemically pure and tumor-selective compounds, and third-generation PSs broadly
cover engineered nanoplatforms, gene-engineered, and carrier-bound systems that further
enhance tumor-selective cytotoxicity [19,73,74].

3.1. First Generation: Naturally Occurring Porphyrins

First-generation PSs include hematoporphyrin (HP) and the purified derivatives
of porfimer sodium (Photofrin), hematoporphyrin derivative (HpD, Photofrin I), and
dihematoporphyrin ether (HPE, Photofrin II) [29]. The use of hematoporphyrin derivatives
in malignancies was reported as early as 1960–1961 [75,76], with their use as a PS in glioma
PDT ensuing a few decades later. The notable tumor-localizing characteristic of PSs was
identified twenty years later [77] and shown to be attained following alkaline hydrolysis of
the drug. Interestingly, these porphyrin-based PSs bear extreme structural resemblance to
that of heme. Yet, unlike heme, these structures lack Fe ion coordination, thereby preventing
downstream oxidative conversion and catabolism, resulting in cellular accumulation and
subsequent PDT-induced toxicity [78,79].
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Table 1. Clinical properties of selected, relevant first- and second-generation photosensitizers.

Photosensitizer Intracellular
Localization

Excitation
Wavelength (nm)

Treatment
Window a Clearance Time

Tumor: Normal
Fluorescence

Ratio b
Administration Side Effects

Fi
rs

t
G

en
er

at
io

n Porfimer Sodium
Inner

mitochondrial
membrane

630 48–150 h 4–8 weeks
2.5–4:1

Systemic
Skin sensitization,
thrombocytopenia

Hematoporphyrin
derivative [HpD] 408, 510, 630 c 24–48 h 4–6 weeks Systemic

Dihematoporphyrin ether
[DHE] 395, 630 c 24–72 h 4–6 weeks Systemic

Se
co

nd
G

en
er

at
io

n

5-Aminolevulinic Acid
(Levulin® , Gliolan®)

Early:
mitochondria
Late: plasma
membrane,
lysosomes

410, 510, 635 c 4–8 h 2 days 10–20:1 Oral

Skin
sensitization,

nausea,
elevated liver

enzymes,
anemia

Talaporfin sodium
(Laserphyrin,

AptocineTM , LS11, PhotoIon®)
Lysosomes 664 12–26 h 15 days ND Systemic Skin

sensitization

Temoporfin
[m-THPC;

m-tetrahydroxyphenylchlorin]
(Foscan® , liquid

formulation; Foslip® ,
liposomal formulation)

Strong:
Golgi apparatus,

Endoplasmic
reticulum

Weak:
mitochondria,

lysosomes

652 48–110 h 15 days 150:1 Systemic Skin
sensitization

Boronated protoporphyrin
[BOPP] Lysosomes 630 24 h 4–6 weeks 400:1 Systemic

Skin
sensitization,

thrombocytopenia
Benzoporphyrin derivative

[BPD] Lysosomes 680–690 15–30 min. 1–5 days ND Systemic Vascular
damage

a Time frame between drug and light administration; b Tumor tissue: normal tissue fluorescence ratio (T:N);
c Optimal excitation wavelength; ND, not determined.

Since the 1980s, first-generation photosensitizers have been clinically tested in numer-
ous safety and feasibility studies for malignant glioma treatment (Table 2 [13,65,80–98]).
In comparison to the current standard of care and results from other PS studies, HP and
its derivatives have demonstrated modest survival outcomes. From 1980 to 1990, several
groups from Italy [80,99], Australia [81,100], and the United States [13] reported successful
use of PDT with HpD for treatment of glioma in small cohorts of patients. Across these
studies, low doses of HpD (1–5 mg/kg) were administered via intratumoral, intra-arterial,
or intravenous injections prior to photo-illumination via a variety of light delivery and
optical energies [101].
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Table 2. Summary of clinical studies using first-generation photosensitizers (PS) for glioma PDT [13,65,80–98].

Study Group a

(n, Number of GBM Patients in
Study)

Mean Age PS b Dose c Route d Time Prior to
Photoillumination

Photoillumination
Method e

Laser/Light
Wavelength f

(nm)

Photoillumination
Energy

(ED unless
Otherwise
Specified)

Reported Survival
g Survival Statistics Adverse Events

Perria et al. (1980) GBM 2 n/a HpD 5 mg/kg IV n/a n/a 628 720–2400 J/cm2 MS GBM 6.9 mo n/a

Laws et al.
(1981) rMG 5 14–75 HpD 5 mg/kg IV 48–72 h Interstitial 630 30–60 mW/cm2 § TTP rMG 1–6 mo Increased skin

photosenstivity

McCulloch et al.
(1984) GBM 9 n/a HpD 5 mg/kg IV n/a n/a 627.8

(>1 laser) n/a OS GBM (n = 3) 17–42 mo Increase in P/O
cerebral edema

Muller and Wilson
(1985) h

GBM
rGBM

1
2

53
32, 44 HpD 2.5 mg/kg

2 mg/kg
IV 24 h Cavitary (balloon) 630 8–68 J/cm2 n/a None

Kaye et al.
(1987) i

GBM
rGBM

13
6

45 ***
40 *** HpD 5 mg/kg IV 24 h Interstitial AI (9)

GMVL (14)
70–120 J/cm2

120–230 J/cm2 PFS GBM
rGBM

3–13 mo
12–16 wk No AEs

Kostron et al.
(1987) j

GBM 6 63.3
HpD 1.0 mg/cm3

IV
IA

Direct tumor
3 d LED (n = 9)

Cavitary (n = 5)
620–640

632
422 J/cm2 §

<1600 J/cm2 § MS/OS
GBM 12 mo IA/Direct tolerated

without skin
phototoxicity

rGBM (1x) 5 50.8 rGBM (1x) 2–7 mo
rGBM (mult) 3 57.0 rGBM (mult) 5 mo

Muller and Wilson
(1987) h

[HpD]
GBM 1 52 HpD (8)

DHE (24)
2.14 mg/kg
2.08 mg/kg IV 18–24 h Cavitary 630

HpD: 32 J/cm2

DHE: 23 J/cm2 MS

[HpD]
GBM 2.9 mo Skin

photosensitivity
(n = 3)

[HpD]
rGBM 1 32 [HpD]

rGBM 5.8 mo

[DHE]
GBM 7 58.3 Total dose 150 mg

[DHE]
GBM 1.1–13.6 mo

[DHE]
rGBM 7 39.4 [DHE]

rGBM 0.2–10.7 mo

Kostron et al.
(1988) j

GBM 8
55 ** HpD 1 mg/cm3 IV, IA and/or

Direct 3 d LED
Cavitary

590–750
632

422 J/cm2 §

60–200 J/cm2 OS
GBM

rGBM (1x)
rGBM (mult)

0.5–19 m
3–14 mo
1–6 mo

Skin phototoxicity
(IA/IV only)rGBM (1x) 9

rGBM (mult) 3

HPD only (n = 9), [HPD+single dose radiation of 4 Gy fast electrons] (n=10), [HPD+single dose radiation+conventional radiotherapy] (n = 4); 3 cases of recurrence and subsequent re-treatment.

Kostron et al.
(1990) j

GBM
rGBM

9
18 n/a HpD n/a IV, IA and/or

Direct n/a Interstitial 630 40–220 J/cm2 OS GBM
rGBM

0.5–29 mo
4–13 mo

Increased
phototoxicity of

the skin

Muller and Wilson
(1990) h

GBM
rGBM

9
14 48 HpD

DHE
5 mg/kg
2 mg/kg

IV 18–24 h Cavitary 630 24 J/cm2 MS GBM + rGBM 6.3 mo Increased skin
photosensitivity

Powers et al. (1991) rGBM
rMG

1
5 42–61 HPE 2.0 mg/kg IV 24 h Interstitial 630 1000 J §§ TTP rGBM

rMG
2–27 wk
6–45 wk

Edema, increased
intracranial

pressure and skin
photosensitivity

Origitano et al.
(1993)

rGBM 8 42.2 PNa 2.0 mg/kg IV 48–72 h

Cavitary
Interstitial +

post-resection
cavitary

630
630

50 J/cm2

100 J/cm per fiber TTP rGBM 5–22 mo Increased skin
photosensitivity

Muller and Wilson
(1995) h rGBM 32 41 **

HpD
PNa
HPE

5 mg/kg
2 mg/kg
2 mg/kg

IV
IV
IV

12–36 h Cavitary 630 38 J/cm2 MS

[Stratify by
light dose]

Energy:
>1700 J
<1700 J

28 wk
29 wk

Edema, increased
skin

photosensitivity

Popovic et al.
(1995) i

GBM
rGBM

38
40 n/a HpD 2.0–2.5 mg/kg IV 24 h Cavitary AI: 1986–1987

GMVL: 1987–1994
240–260 J/cm2

(initial pts: 70) MS GBM
rGBM

24 mo
9 mo n/a

Muller and Wilson
(1997) h

GBM
rGBM

11
32

40
58 PNa 2 mg/kg IV 12–36 h Cavitary 630 GBM: 30 J/cm2 *

rGBM: 43 J/cm2 *
MS GBM

rGBM
37 wk
30 wk

Increased P/O
cerebral edema

Muller et al.
(2001) [Phase II] h

rGBM
(ED ≤ 50)
(ED ≥ 50)

37
(22)
(15)

41 ** PNa 2 mg/kg IV 12–36 h Cavitary 630 8–110 J/cm2 MS
rGBM

(ED ≤ 50)
(ED ≥ 50)

avg 29 wk
(29 wk)
(34 wk)

Increased P/O
cerebral edema

Muller et al. (2001)
[Phase III] h

GBM
High light 20 54 PNa 2 mg/kg IV 12–36 h Cavitary 630 30–50 J/cm2 (low)

110–130 J/cm2

(high)

MS
GBM
High 92 wk n/a

rGBM
Low light
High light

26
26

48
52

rGBM
Low
High

29 wk
51 wk

Schmidt et al.
(2004)

Recurrent brain
tumors

(include GBM)
NS n/a PNa

0.75 mg/kg
1.20 mg/kg
1.60 mg/kg
2.00 mg/kg

IV 18–24 h Laser/LED +
Cavitary balloon

Laser: 630
LED: 20–25 100 J/cm2 Not specified No neurotoxicity
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Table 2. Cont.

Study Group a
(n, Number of GBM Patients in

Study)
Mean Age PS b Dose c Route d Time Prior to

Photoillumin-ation
Photoillumi-

nation Method
e

Laser/Light
Wavelength f

(nm)

Photoillumination
Energy

(ED unless
Otherwise
Specified)

Reported
survival g Survival Statistics Adverse Events

Stylli et al.

(2004) i
GBM
rGBM

31
27 44 *** HpD 5 mg/kg IV 24 h Cavitary

AI: 1986–1987
GMVL:

1987–1994
KTP: 1994–2000

240 J/cm2 §§ MS GBM/rGBM 24 mo n/a

Stylli et al.

(2005) i
GBM
rGBM

31
55

47 *
42 * HpD 5 mg/kg IV 24 h Cavitary

AI: 1986–1987
GMVL:

1987–1994
KTP: 1994–2000

240 J/cm2 §§ MS GBM
rGBM

14.3 mo
13.5 mo

Increased
cerebral edema

(n = 3)

Muller et al.
(2006) h

GBM
rGBM

12
37

59
41 PNa 2 mg/kg IV 12–36 h

Cavitary
(balloon/cont.

filling with
Intralipid)

+/− interstitial

AI
KTP 58 J/cm2 §§§ MS GBM

rGBM
33 wk
29 wk

Skin
photosensitivity

Kaneko (2008) GBM 26 n/a HPE 3 mg/kg IV 2 d Interstitial 640 180 J/cm n/a n/a

a Study group: GBM, newly diagnosed GBM; rGBM, recurrent GBM; rGBM (1x), first recurrence of GBM; rGBM (mult), multiple recurrences of GBM; MG, malignant glioma; rMG,
recurrent malignant glioma; ED, energy density. b Photosensitizer: HpD, Hematoporphyrin derivative; DHE, dihematoporphyrin ether; PNa, porfimer sodium; HPE, Hematoporphyrin
ether; NS, not specified. c Dosage units: mg/kg of body weight, mg/cm3 of tumor. d PS administration route: IV, intravenous administration; IA, intra-arterial administration; Direct,
direct tumor injection. e Photo-illumination Method: I/O, intra-operative; P/O, post-operative. f Laser/Light wavelength: AI, Argon Ion Dye pumped laser (630 nm); GMVL, Gold
Metal Vapour laser (627.8 nm); KTP, Potassium titanyl phosphate pumped dye laser (532 nm transduced to 628 nm via dye module). g Reported survival: MS, median overall survival;
OS, overall survival; TTP, time to progression; mo, months; wk, weeks. h Longitudinal reporting of St. Michael’s Hospital patient series. i Longitudinal reporting of the Royal Melbourne
Hospital patient series. j Longitudinal reporting of the University of Innsbruck patient series. n/a: not available, AEs: adverse events. § Power density. §§ Median total dose. §§§ Mean
total dose. * median. ** mean age of entire study. *** median age of entire study.
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To further improve patient survival, studies combining PDT with standard therapeutic
modalities such as radiation were implemented [85]. In 1988, a Phase I/II clinical trial
combined PDT with single-shot ionizing radiation and/or conventional radiotherapy to
assess combined treatment efficacy across three populations of patients: primary glioma,
single-recurrence GBM, and multiple rGBM [86]. HPD was administered either through
the internal carotid artery or directly into the tumor bed. Using low-to-moderate light
doses (60–200 J/cm2), subsequent PDT was performed. In general, outcomes for recurrent
disease patients were unimpressive, with patient progression free survival (PFS) ranging
from 2–15 months. Furthermore, patients who had previously failed conventional radio- or
chemotherapy did not benefit from the PDT–RT combination. In a larger follow-up study
with 50 GBM patients, the authors increased the light dose (200 J/cm2 to 250 J/cm2) and
PS concentration (1 mg/kg to 2.5 mg/kg), noting improved PFS for both primary GBM
(n = 11) and rGBM (n = 39) at 13 months and 7 months, respectively [102,103].

Interestingly, a positive association has been shown between increased light doses
and improved outcomes across several groups ranging from initial to current studies. A
retrospective study on HpD-treated patients (n = 136) treated from 1986 to 2000 noted
significantly improved prognosis (hazard ratio = 0.502) in primary tumor cases treated
with doses of 230 J/cm2 or higher [96]. In recurrent tumor cases, however, increased light
doses effectuated only a slight improvement in the hazard ratio (HR = 0.747). While it may
be argued that these improvements are confounded by advances in technology, namely
increased laser light stability across different laser sources, other concurrent studies on simi-
lar patient populations (age, baseline Karnofsky score) [93] identified similar improvements
in median OS as laser light dosage increased (<1200 J: 39 weeks, >1200 J: 52 weeks).

As with first- and second-generation PDT in other systemic cancers [104], other light
sources such as LEDs have also been explored. A study comparing laser- and LED-based
PDT demonstrated similar levels of tissue toxicity at equivalent light doses across several
types of tumors, including GBM [65]. Given the broader emission spectrum and increased
major emission wavelength of LED light, however, the study concluded that PSs with
higher absorption peaks, such as benzoporphyrin derivatives (BPD, a second-generation
PS), were more suitable for LED-based PDT.

While first-generation PSs have demonstrated successful PDT effects in glioma [105,106],
the chemical properties of these compounds limit their efficacy as ideal PDT candidates.
Firstly, this generation of PSs is limited, not only by their low therapeutic efficacy, but these
drugs bear a low singlet oxygen quantum yield [107]. Furthermore, the PDT response using
first-generation PSs has been inconsistent across different glioma cell lines [108]. When
compared to second-generation PSs, there are notable differences in efficacy, as described
by relatively higher non-specific PS accumulation in normal brain tissue, longer extended
illumination times, and increased elimination half-life. While porfimer sodium has a higher
absorption spectrum than HpD, both HpD and porfimer sodium have extended half-lives
and renal clearance time [109], with porfimer sodium persisting in circulation over 2 months,
increasing the risk of unwanted photo-related toxicities [19,73,110]. The structural nature
and size of these naturally occurring porphyrins, large tetrapyrrole macrocycles connected
via methine bridges, respectively, exhibit aggregation in water and, additionally, complicate
delivery across the blood–brain barrier. Combined, first-generation PSs exhibited several
limiting characteristics that hindered their utility for glioma care. As such, the development
of second-generation photosensitizers was warranted to expand the efficacy of glioma
photodynamic therapy.

3.2. Second Generation: Increased Singlet Oxygen Potency

In contrast to first-generation PSs, second-generation therapeutics showed improved
purity, more efficient ROS production, and enhanced tumor selectivity with limited
adverse effects. Second-generation PSs mostly consist of porphyrin or chlorin-based
structures and precursors. Those include 5-aminolevulinic acid (5-ALA; Gliolan), Tala-
porfin sodium (mono-L-aspartyl chlorin e6, NPe6, TS; Laserphyrin), boronated porphyrins
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(BOPP), Temoporfin (m-THPC, Foscan and Foslip), and benzoporphyrin derivatives (BPD;
Verteporfin) [63,73]. These newer second-generation PSs bear phototoxic properties at a
longer light wavelength than first-generation PSs and can be excited at lower energies
(down to 20 J/cm2), yielding a greater potential to target deeper tumor tissue [111].
Over the last three decades, clinical trials have assessed second-generation PSs for their
treatment of gliomas (Table 3 [22,62,65,72,111–128]). Below, we discuss two of the most
common second-generation photosensitizers studied under in vitro, in vivo, and clinical
conditions. However, extensive evaluation of other second-generation PSs such as
metallo-phthalocyanines have also ensued in parallel for both pediatric and adult brain
tumors [129–132].
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Table 3. Summary of clinical studies using second-generation photosensitizers (PS) for glioma PDT [22,62,65,72,111–128].

Study Group a
(n, Number of Patients with

Disease and Treatment)
Mean Age PS b Dose c Route d Time Prior to

Photoillumination
Photoillumination

Method e
Laser/Light

Wavelength f
(nm)

Photoillumination
Energy g

(ED unless
otherwise
specified)

Reported
Survival h

Survival
Statistics Adverse Events

Kostron et al.
(1998)

GBM
rGBM

2
8

61–72
34–72 mTHPC x 0.15 mg/kg IV 4 d Interstitial

I/O cavitary
KTP
652

300 mW/cm2 §

20 J/cm2
TTP
MS

rGBM
rGBM

4 mo
6 mo Phototoxicity

Rosenthall et al.
(2001/2003) i

GBM
rGBM

7
9 51 * BOPP 0.25–8.0 mg/kg IV 24 h

I/O fiber diffuser
for focused

surface
irradiation

630 25 J/cm2 MS GBM
rGBM

5 mo
11 mo n/a

Schmidt et al.
(2004)

Recurrent brain
tumors

(including GBM)
NS n/a BPD 0.25 mg/kg IV 3–6 h

Laser fiber optic
catheter/balloon

LED balloon
680 1,800 J §§

(at 100 J/cm2)
Not specified

No cytotoxic
effects

Kostron et al.
(2006) GBM 26 n/a mTHPC x 0.15 mg/kg IV 4 d I/O cavitary

I/O fiber diffuser
KTP
652

300 mW/cm2 §

20 J/cm2 MS GBM 15 mo Increased skin
sensitivity

Beck et al.
(2007) rGBM 10 51.7 5-ALA 20 mg/kg Oral 1 h

I/O fiber diffuser
for focused

surface
irradiation

633 100 J/cm2 MS 15 m n/a

Elijamel et al.
(2007)

GBM, PDT(+)
GBM, PDT(−)

13
14

59.6
60.1

5-ALA
--

20 mg/kg
--

Oral
--

3 h
--

P/O cavitary
balloon

630 100 J/cm2 PFS
MS GBM 8.6 mo

52.8 wk

Deep venous
thrombosis

(n = 2)

Stepp et al.
(2005)

GBM 5 n/a 5-ALA 20 mg/kg Oral 3 h
I/O fiber diffuser

for focused
surface

irradiation
633 100–200 J/cm2 n/a n/a

Stepp et al.
(2007)

GBM (a)
GBM (b)
GBM (c)

5
8
7

n/a 5-ALA 20 mg/kg Oral 3 h
I/O fiber diffuser

for focused
surface

irradiation
633

(a) 100 J/cm2

(b) 150 J/cm2

(c) 200 J/cm2
n/a No AEs

Akimoto et al.
(2012)

GBM
rGBM

6
8

49–82
41–61 TS 40 mg/m2 IV 24 h

I/O fiber diffuser
for focused

surface
irradiation

(1.0 cm diameter)

664 27 J/cm2 PFS GBM 24.8 mo Increased
photosensivity

Lyons et al.
(2012)

Total (GBM)
PDT(+)
PDT(−)

PDT(+): [a], [b]
PDT(-): [c], [d]

73
30
43

17, 13
18, 25

59 ** 5-ALA 20 mg/kg Oral 3 h

[a] IORT, I/O
cavitary, MSR

[b] I/O cavitary,
MSR

[c] IORT, MSR
[d] MSR only

630 100 J/cm2 PFS
MS

[a]
[b]

PDT+
PDT-

79 wk
39.7 wk
62.9 wk
20.6 wk

n/a

Johansson et al.
(2013)

GBM
rGBM

1
4

42
56 5-ALA 20–30 mg/kg Oral 5–8 h Interstitial 635 720 J/cm2 TTP 3–36 mo n/a

Muragaki et al.
(2013)

GBM 13 47.1 ** TS 40 mg/m2 IV 22–27 h

I/O fiber diffuser
for focused

surface
irradiation

(1.5 cm diameter)

664 27 J/cm2 PFS
MS

12 mo
27.9 mo

Increased
photosensitivity

Schwartz et al.
(2015) GBM 15 n/a 5-ALA 20 mg/kg

30 mg/kg Oral n/a Interstitial 633 12.96 J §§ PFS
MS

16 m
34 m

Transient aphasia,
pulmonary
embolism

Vanaclocha et al.
(2015) GBM 20 49 *** DHE

mTHPC x
2 mg/kg

0.15 mg/kg
IV 48 h

96 h I/O cavitary 630
652

75 J/cm2

20 J/cm2

PFS
MS
MS

(from 1st
diagnosis)

10 mo
9 mo

17 mo Skin
photosensitivity

dermatitis

Nitta et al. (2018) GBM 11 54 TS 40 mg/m2 IV 22–26 h

I/O fiber diffuser
for focused

surface
irradiation (1.5
cm diameter)

664 27 J/cm2 PFS
MS 19.6 mo27.5 mo

Asymptomatic
transient

peripheral edema
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Table 3. Cont.

Study Group a
(n, Number of Patients with

Disease and Treatment)
Mean Age PS b Dose c Route d Time Prior to

Photoillumination
Photoillumination

Method e
Laser/Light

Wavelength f
(nm)

Photoillumination
Energy g

(ED unless
otherwise
specified)

Reported
survival h

Survival
Statistics Adverse Events

Shimizu et al.
(2018)

GBM
rGBM

7
7

45–74
40–69 TS 40 mg/m2 IV 22–26 h

I/O fiber diffuser
for focused

surface
irradiation (1.5
cm diameter)

664 100 J/cm2 n/a

Pulmonary
embolism

(if vessels are not
shielded)

Lietke et al.
(2021) rGBM 37 49.4 * 5-ALA 20 mg/kg Oral 3–5 h Interstitial 635 8883 J §§

TTP
MS

(from 1st
diagnosis)

Study combines
GBM and AA

7.1 mo
39.7 mo

Transient
worsening of
pre-existing
neurological

deficits

Vermandel et al.
(2021) GBM 10 57.1 * 5-ALA 20 mg/kg Oral 6 h I/O cavitary 635 200 J/cm2 PFS

MS
17.1 mo
23.1 mo No AEs

Kobayashi et al.
(2022)

GBM 43 46.7 ** TS 40 mg/m2 IV 22–26 h
I/O fiber diffuser

for surface
irradiation

(1.5 cm diameter)
664 27 J/cm2 PFS

MS
6.3 mo

15.4 mo No AEs

Kozlikina et al.
(2022) GBM CR 29 5-ALA + Ce6 20 mg/kg

1 mg/kg
Oral
IV

4–4.5 h
3–3.5 h I/O fiber 660 60 J/cm2 §§§ n/a n/a

a Study group: GBM, newly diagnosed GBM; rGBM, recurrent GBM; rGBM (1x), first recurrence of GBM; rGBM (mult), multiple recurrences of GBM; NS, not specified. b Photosensitizer:
DHE, porfimer sodium; 5-ALA, 5-aminolevulinic acid; TS, Talaporfin sodium; mTHPC, Temoporfin, BOPP, boronated porphyrin; BPD, benzoporphyrin derivative; Ce6, chlorin e6.
Approval: unless otherwise noted (x), approved for worldwide use, x EU approval only. c Dosage units: mg/kg of body weight, µg/g of tumor, mg/cm3 of tumor, mg/m2 of body
surface area. d PS administration route: IV, intravenous administration; IA, intra-arterial administration; Direct, direct tumor injection. e Photoillumination Method: iPDT, interstitial
PDT; I/O, intra-operative; P/O, post-operative; IORT, intraoperative radiotherapy; MSR, maximum safe resection. f Laser/Light wavelength: KTP, Potassium titanyl phosphate pumped
dye laser. g ED, energy density. h Reported Survival: MS, median overall survival; PFS, progression free survival (median); TTP, time to progression (median). i Survival data reported in
2003. n/a: not available, AEs: adverse events, CR: case report. § Power density. §§ Median dose. §§§ Total dose. * median. ** mean age of entire study. *** median age of entire study. In
contrast to phasic and single-shot (25 mW/cm2) photoirradiation, repeated illumination over long durations (weeks) at low fluence rates (≤5 mW/cm2) has seen reduced glioma growth
[133]. This finding has initiated a new type of PDT called metronomic photodynamic therapy (mPDT), which involves administering light at subthreshold fluences over extended
periods of time. mPDT using LED-coupled fiber light delivered continuously over 24 h has increased survival and inhibited tumor re-growth in astrocytoma-bearing rats [134]. Other
studies have also shown, under both in vitro and in vivo conditions, that low fluence, long duration organic LED-based PDT bears a significant anti-tumor effect [133,135]. Currently, the
only Phase III PDT clinical trial for brain tumors has implemented mPDT, combining 5-day repetitive 5-ALA/Photofrin mPDT with FGS, yielding outcomes that are comparable to
current standards of care [115].
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To this day, 5-ALA is one of the most heavily explored and utilized PSs, and has been
established as a valuable tool for both real-time intraoperative visualization (fluorescence
guided surgery, FGS) for malignant glioma resection and as a tumor-selective PS for PDT.
Administered orally, 5-ALA is an endogenous compound that is metabolized via the heme
pathway. Unlike first-generation photosensitizers, 5-ALA is a molecular precursor for heme,
therefore relying on a different mechanism of action for therapeutic activation. In tumor
cells, suppression of membrane transport proteins and dysregulation of the Ras/MEK
and FECH/heme oxygenase pathways result in the buildup of protoporphyrin IX (PpIX),
particularly following exogenous dosage [136–139]. The subsequent buildup of PpIX exerts
fluorescent and phototoxic properties on the tumor cell upon excitation with blue (405 nm,
FGS) or red (635 nm, PDT) light [140]. 5-ALA offers advantageous clinical benefits due to
its high tumor selectivity, rapid renal clearance, and limited adverse effect on normal brain
tissue [61]. Several clinical studies have demonstrated high drug efficacy and improved
survival in malignant glioma patients. Particularly, a study comparing the effects of 5-ALA
PDT on median survival in patients with GBM distinguished an improvement of over
2-fold (62.9 weeks vs. 20.6 weeks) following intraoperative cavitary therapy [119].

Compared to 5-ALA, talaporfin sodium (TS) is delivered intravenously and does
not exert tumor selectivity through metabolic pathways. Rather, it circulates in the blood,
conjugated to albumin, and accumulates selectively in tumor cells via lysosome endocytosis,
relying on increased vascular permeability at the blood–tumor barrier. Consequently,
blood vessel endothelium, blood that has accumulated in the resection cavity, and non-
glioma vascularized CNS neoplasms have been observed to exhibit marked fluorescence,
a characteristic that negatively impacts its performance as a tumor-selective PS [72,141].
Schimizu et al. have demonstrated the feasibility of TS-based FGS for GBM, demonstrating
a specificity of 80% and sensitivity of 71% with strong fluorescence, was noted in both
newly diagnosed and rGBM. Recent studies have reported the feasibility of TS-based
PDT, via mitochondrial-mediated apoptosis and necroptosis at low TS doses and low
laser irradiation [24,142,143]. However, as TS doses increased, evidence suggests that the
dominant modality of cell death shifts from apoptosis to necrosis [30]. The mechanisms
underlying these variations in mechanisms and the extent of cell death in different glioma
cells require further exploration to optimize clinical application [142].

Current PDT clinical trials around the world continue to assess the efficacy of second-
generation photosensitizers for malignant gliomas (Table 4). In recent years, in particular,
studies have begun investigating the utility of both TS and 5-ALA in pediatric brain tumor
patients, with age enrollment criteria ranging from 3 to 20 years old (UMIN000030883:
6 years to 20 years; NCT04738162: 3 years to 17 years). While the listed studies have yet to
report findings, study outcomes will encompass drug safety and tolerability, OS, and PFS.

Table 4. Ongoing PDT clinical trials recruiting for malignant glioma patients.

Study Name Trial Phase
(Study ID) Type of Cancer Drug Principal Investigator

Photodynamic Therapy (PDT) for malignant
brain tumor in

children

Phase I/II
(UMIN000030883)

Brain Tumor
(Pediatric)

TS
(Leserphyrin)

Kawamata Takakazu
(Tokyo Women’s

Medical University)
Clinical Safety Study on 5-Aminolevulinic Acid

(5-ALA) in Children and Adolescents With
Supratentorial Brain Tumors

Phase II
(NCT04738162)

Brain Tumor
(Pediatric)

5-ALA
(Gliolan)

Walter Stummer
(Univ. Hospital, Münster)

Stereotactical Photodynamic Therapy With
5-aminolevulinic Acid (Gliolan®) in Recurrent

Glioblastoma

Phase II
(NCT04469699) GBM 5-ALA

(Gliolan)
Walter Stummer

(Univ. Hospital, Münster)

PD L 506 for Stereotactic Interstitial Photodynamic
Therapy of Newly Diagnosed Supratentorial IDH

Wild-type Glioblastoma

Phase II
(NCT03897491) GBM 5-ALA

(PD L 506)
Niklas Thon

(Univ. Hospital, Munich)

Dose Finding for Intraoperative Photodynamic
Therapy of Glioblastoma

Phase II
(NCT04391062) GBM 5-ALA

(Gliolan)
Nicholas Reyns

(Univ. Hospital, Lille)
Study to Evaluate 5-ALA Combined With CV01

Delivery of Ultrasound in Recurrent
High Grade Glioma

Phase I
(NCT05362409) High Grade Glioma 5-ALA

(Gliolan)

Alpheus Medical
(Wash. Univ. St. Louis, Dent
Institute, Northwell Health)

Note: The above table (Table 4) includes information on clinical trials as of 10 January 2023. Data were gathered by
searching the National Institutes of Health’s (NIH) clinical trials database (https://clinicaltrials.gov/, accessed on
10 January 2023) as well as the World Health Organization’s (WHO) International Clinical Trials Registry Platform
(ICTRP; https://trialsearch.who.int/, accessed on 10 January 2023). Search criteria included “photodynamic
therapy” for “glioma” and/or “brain tumor” patients.

https://clinicaltrials.gov/
https://trialsearch.who.int/
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Combining Second-Generation PDT with Standard Therapies

In addition to single-drug PDT, studies have investigated the synergistic effect of
second-generation PSs with standard care modalities. A notable study, performed in 2012,
investigated the efficacy of 5-ALA PDT alone, against standard maximum safe resection
(MSR) and alongside intraoperative radiotherapy (IORT) to assess patient PFS across four
different cohorts: (i) MSR only, (ii) MSR + IORT, (iii) MSR + PDT, (iv) MSR + PDT + IORT
(Table 3, Lyons et al. (2012)) [119]. Aside from the significant effect of PDT on median
survival, adding IORT to the treatment regimen (iii vs. iv) increased PFS from 39.7 weeks
to 79 weeks.

Studies combining PDT with standard chemotherapies have been performed as well.
Two separate groups utilizing different PS-based PDT protocols found that TMZ con-
comitant therapy potentiates PDT-induced apoptotic cell death in vitro [144,145]. The
combination of TS and TMZ delivery increased intracellular concentrations of PS and
upregulation of ROS production following cotreatment [145]. Additionally, in vitro study
has shown that second-generation guided PDT and TMZ act synergistically to decrease
glioma migration and invasiveness in glioma cells by downregulating the protein NHE1,
preventing escape from TMZ-mediated toxicity [144,146]. Further building on this com-
bined efficacy, in vivo rat models have found that PDT increases TMZ tissue concentrations
and combinatorial treatment decreases tumor volume and prolongs survival [147]. In
addition to co-delivery with the standard TMZ, studies have investigated the use of PDT
with anti-angiogenic drugs. A combination of PDT with bevacizumab has demonstrated
increased median survival time in glioma-bearing rats, as compared to PDT or bevacizumab
alone [148].

Additional studies have demonstrated positive effects of PDT as a standalone me-
diator of cancer immunotherapy [149], and have also identified the synergistic effects of
PDT in combination with immunotherapies, such as PD-L1 checkpoint blockade therapy.
In a study investigating chlorin e6-mediated PDT in combination with PD-L1 checkpoint
blockade therapy, glioma orthotopic mice were found to have significantly improved sur-
vival as compared to both naive and monotherapy conditions (anti-PD-L1 checkpoint
blockade or PDT alone) [150]. In several other types of orthotopic cancer models, includ-
ing lung [151–153], colorectal [153,154] and breast cancers [153,155], melanoma [153,156],
and renal adenocarcinoma [157], combination of photodynamic therapy with anti-PD-L1
therapies have enhanced antitumor immunity and subsequent survival. The immuno-
suppressive tumor microenvironment common to gliomas combined with enhanced local
inflammatory response, as a result of PDT, may affect subsequent immune cell localization
and infiltration into the tumor. This, in turn, may result in some level of immune resistance
following PDT. While detailed mechanisms of action continue to be clarified, studies have
found evidence of PDT-induced reduction of PD-L1 expression on glioblastoma tumor cells,
which will serve to magnify the anti-PD-L1 therapeutic effect [158]. Further study on the
co-effects of PDT and chemo- or immune-therapies have been additionally investigated
with the development of third-generation photosensitizers.

3.3. Third-Generation PS: Increased Tumor Selectivity

Beginning in the early 2000s, in vitro PDT studies for GBM shifted towards de-
veloping and optimizing nanomedicine delivery systems [159]. Compared to first-
and second-generation PSs, third-generation PSs tend to have increased local speci-
ficity [159], enhanced cellular PS internalization, and improved PS retention. Broadly,
third-generation PSs are composed of a broad spectrum of delivery vehicles that have
been expounded on, including polymer- or lipid-based carriers such as liposomes [48,160],
organometallic complexes [161–164], albumin- or antibody-conjugated nanospheres
and nanocapsules [150,165,166], micelles [167,168], dendrimers, nanocrystals, and
nanogold [169]. Most commonly, many groups have attempted to encapsulate a clinically-
approved PS, such as BPD [170,171], m-THPC [172], chloro-aluminum phthalocyanine
(AlClPc) [173,174], or indocyanine green [48], within biocompatible nanoparticles and
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nanoemulsions for more controlled drug delivery and release. In recent years, studies
inducing PDT via other anti-tumor drugs [161], chemotherapy combination [175], and
upconversion [176] modalities have developed as well.

Upconversion nanoparticles (UCNP) are nanoparticles (NP) that are doped with heavy
metals which, when excited, upconvert wavelengths (such as near-infrared) to produce
shorter emission wavelengths on the visible or UV scale [177]. Functionalized UCNPs,
produced following conjugation with PSs, have been found to induce photodynamic thera-
peutic effects in GBM via near-infrared triggering [176,178]. Groups have also focused on
developing synthetic chlorin derivatives [179]. For instance, synthetic carbonyl-containing
chlorin and boron-based PSs have shown dual applications in PDT and boron neutron
capture therapy, a tumor specific radiotherapy, in F98 rat glioma-bearing models [180]. In-
triguingly, several studies have designed PS-loaded nanocarriers with the ability to deliver
exogenous oxygen to tumor tissue to overcome tumor hypoxic conditions. Among these are
perfluorocarbon-loaded NPs, oxygen-encapsulating nanobubbles, and nanosystems with
the ability to convert hydrogen peroxide to oxygen [167,181,182]. In another vein, studies
have compounded on PDT-induced hypoxia by co-loading PSs with hypoxia-activated
prodrugs into NPs to simultaneously induce photodynamic therapy and deliver chemother-
apy [183]. Numerous other groups are working towards designing nanoplatforms that
can encapsulate multiple cargos to deliver concomitant PDT/chemotherapy [165,170] or
immune-photodynamic therapies targeting gliomas [184]. While preliminary results are
promising, studies have shown that nanosystem-mediated PDT still exhibits poor drug
targeting, premature release into circulation, and lack of real-time drug monitoring [169].
Further work is required before advancing to Phase 0 studies.

4. Optimizing Light Delivery

The extent of the PDT therapeutic effect is dependent on the delivery of light. At the
optimal excitation wavelength of first-generation PSs (630 nm), light can penetrate tissue
to a depth of between 0.8–1.0 cm, with subsequent necrosis expanding 2–7 mm from the
point of maximum intensity. While dependent on tissue type and protocol, light dosimetry
can be improved by altering light delivery geometry (planar, spherical, cylindrical), light
wavelength (longer wavelengths penetrate deeper tissue), light localization (spot delivery
vs. interstitial delivery), and light delivery timing (continuous vs. fractionated illumi-
nation) [102]. In earlier studies, light was superficially administered by illuminating the
margins of the resection cavity or directly onto the tumor tissue surface using laser sources
or conventional lamps. To penetrate deeper tissue, later studies have moved toward inter-
stitial (iPDT) or cavitary photoirradiation methods. Interstitial photo-illumination includes
the insertion of single or multiple optical fibers into the resection cavity [94]. This type
of photoirradiation can be completed following tumor de-bulking or as adjuvant therapy
alone. Cavitary photo-illumination occurs following maximum safe tumor resection and
includes using a light-diffusing medium or inflatable balloon to evenly disperse the light
dose. Geometrically, cavitary photoirradiation covers a larger surface area than interstitially
inserted fibers [97]. Several novel devices for cavitary PDT have been developed, including
a balloon-based device that is currently being tested in the INDYGO trial, a phase I trial in
recruitment in Lille, France [185]. One of the most interesting devices, however, has been
an inflatable indwelling balloon catheter developed by Madsen et al. that allows for post-
operative photo illumination. The device consists of a balloon applicator and a two-lumen
catheter with a self-sealing penetrable membrane. Following surgical insertion and wound
healing, the skin can be punctured with a needle mandrill, the balloon expanded with a
diffusion medium, and threaded with an optical fiber through the lumen to photo-irradiate
the resection cavity. The balloon can later be deflated and removed after the completion of
treatment [186].

In general, conventional laser sources are expensive and carry the risk of unwanted
tissue heating. As such, more recent studies have moved toward utilizing light-emitting
diode (LED) technologies. LEDs have a broad emission spectrum (630–940 nm) and,
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therefore, have the potential to penetrate deeper brain tissue at lower light energies [65].
LED equipment is smaller, easier to use, inexpensive, and provides a wider irradiation
area, in comparison to lasers. In addition to the aforementioned clinical trial combining
LEDs with both HpD and BPD [65], 5-ALA PDT studies have shown that blue LEDs more
effectively decrease human glioma cell line viability when compared to conventional red
LEDs [187].

Delivering a therapeutic light dose to the targeted tissue remains one of the main
clinical challenges of PDT. In 1993, Origitano and colleagues were the first to develop an
image-based, computer-assisted treatment planning protocol that individualized light dose
volume and geometry with promising results [90]. Since then, many other groups have
used mathematical modeling, most commonly Monte Carlo simulations, to predict light
propagation and absorption within tissue. This helps to ensure adequate light delivery
while limiting off-target heating effects [188]. In fact, a pilot trial utilizing theoretical models
and 3-D treatment planning to establish patient-specific irradiation schemes has exhibited
one of the highest median OS out of all 5-ALA-based clinical trials [114].

For 5-ALA-based PDT in particular, fractionated light delivery, rather than contin-
uous illumination, has proven to be more efficacious at inducing a phototoxic response.
Fractionation is induced when light irradiation alternates between incremental “light”
and “dark” periods, rather than continuous illumination of the treatment field. These
transient periods of light interruption allow for tissue re-oxygenation, which enhances PDT
efficacy by (i) maximizing the phototoxic effect of the subsequent light period, (ii) allow-
ing re-localization of the PS to tumor areas following PDT-induced PS photobleaching,
and (iii) promoting reperfusion injury, a tissue-damaging mechanism that results from
re-vascularization of ischemic tissue [189,190]. Since HpD has been shown to accumulate
in cutaneous tissues, often for long periods of time, a fractionated treatment schema is
not compatible with HpD or Photofrin-mediated PDT due to toxicity [186]. Over the last
decade, a series of in vitro and in vivo pre-clinical studies have been performed comparing
2-fraction, 5-fraction, and continuous light at high and low power for 5-ALA-based PDT.
A 5-fraction treatment schema delivered at low power (5 mW) was shown to induce de-
grees of apoptosis and a peripheral pro-vascular effect with limited necrosis higher than
those produced by other schemas [190–193]. The authors also noted that rats with larger
tumor volumes and were treated at higher fluence rates more frequently exhibited fatal
intracranial pressures. This condition may be a contraindication of PDT in future studies.
While the reported effects of fractionated light delivery show promise, further studies
are needed to account for the low diversity in single cell-line-derived xenograft models.
Single cell-line-derived tumor models create homogeneous and hypervascularized tumors
that do not exhibit spontaneous tumor necrosis and infiltrative patterns characteristic of
GBM.Automation of mPDT has also been explored via telemetric device development in
rat GBM models. This implant is placed subcutaneously and contains dual functionality for
light delivery and light fluence rate monitoring via a tetherless inductive link. While further
work is needed to improve device design and therapeutic administration, the reported
model demonstrated successful functionality during a 2-week implantation period without
serious biological complications [194].

5. PDT in Other CNS Tumors

The use of PDT has also been explored in several other common CNS tumors as
well, including meningiomas, pituitary adenomas, and pediatric brain tumors. While
these studies have surpassed pre-clinical testing to include clinical application, the bulk of
reported results are from in vitro testing.

The utility of PDT in meningioma has been explored using both first-
[86,87,97,103,195–199] and second-generation [200–208] PSs under both in vitro and
clinical conditions. The majority of clinical studies in malignant meningioma (MM) have
been conducted using first-generation PSs. However, clinical cohort sizes are not large
enough to determine conclusive outcomes of therapeutic efficacy. Similar to malignant
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glioma studies, PS use quickly shifted to second-generation drugs following their
development due to their reduced phototoxicity and improved selectivity. Studies using
5-ALA-induced PDT have found that meningiomas demonstrate irregular fluorescent
distribution across the tumor, which implicates higher variability in PS metabolism, as
compared to malignant glioma. In addition to variable PpIX fluorescence, meningioma cells
show lower fluorescence intensity, and therefore PDT efficacy; an attribute that has been
remedied by the co-delivery of drugs such as gefitinib (anti-cancer) [204] and ciprofloxacin
(antibiotic) [205]. In TS PDT, pre-clinical studies demonstrated two PDT-induced
morphologies, both of which mediate tumoricidal effects: apoptotic presentation as
characterized by cell body shrinkage and cell necrosis via swelling of the cell body.
Additional evidence of cell necrosis was identified at high TS dosages by increased
levels of lactate dehydrogenase leakage, a biochemical marker for cell necrosis [206]. Yet,
like 5-ALA, TS PDT efficacy in MM is still below that of malignant glioma, warranting
further investigation to improve the anti-tumor effect [206]. Continued development of
third-generation PSs may also further improve PDT utility in malignant meningiomas.

The merit of PDT is particularly notable in cases of highly invasive or diffuse tumors
with ambiguous margins. The potential use of PDT for the treatment of native pituitary
adenomas (PAs) presents a very intriguing option as complete resection of these tumors is
often unachievable. Pre-clinical studies of first-generation PS-guided PDT in PAs reported
successful cytotoxicity and anti-tumor effect in both in vitro and mouse models [209,210].
Currently, clinical studies on PDT use for PAs have used first-generation PSs for therapy.
These reports demonstrated high feasibility for PDT use, yielding an approximately 50%
increase in tumor tissue retention than gliomas [211]. Additionally, longitudinal monitoring
of this cohort found that the majority of patients recovered partial/full acuity of their
visual fields [212]. In vitro studies have also probed 5-ALA PDT efficacy across various
dosages using immortalized rat pituitary adenoma cells (GH3), AtT-20 cell lines, and human
pituitary adenoma cells, quantifying PpIX fluorescence and probing cytotoxicity within
surviving cells. These two studies yielded conflicting results which may be attributed to
different culture conditions and inconsistent protocols. However, it can be said that all cell
lines displayed a 5-ALA-induced, cell line-dependent endogenous fluorescence, suggesting
varying PS uptake and metabolism [213], and that dose-dependent toxicity unique to each
cell line was evident as well [214]. Further work will be required to better understand
the feasibility and efficacy of second-generation PSs before proceeding to in vivo and
clinical studies.

Another class of CNS tumors that are generally restrained to subtotal surgical resection
and adjuvant treatment are chordomas: a rare, aggressive sarcoma of the skull base and
sacrum. Not only do post-resection margins facilitate high rates of infiltrative recurrence,
but these tumors are also typically both chemo- and radiotherapy resistant, stipulating alter-
native anti-tumor treatment modalities. While PDT for chordomas has not been very well
studied, two consecutive in vitro cytotoxicity studies have demonstrated an tumoricidal
effect following 5-ALA PDT [215], with elevated efficacy following the administration of
the antibiotic ciprofloxacin [216]. Given the similar pattern of antibiotic-elevated PDT per-
formance as is found in gliomas, it is likely that, through further study, PDT may be highly
efficacious for chondromas, holding promise for future clinical chondroma management.

Although all of the aforementioned studies on PDT efficacy have been performed on
adult CNS tumors, pre-clinical and clinical studies have also been performed evaluating
the performance of PDT in pediatric brain tumors via second-generation PSs such as
5-ALA and TS [217–219]. One of the most recent reports evaluating PDT feasibility for
malignant pediatric brain tumors has reported on treatment using TS in children and young
adolescents with brain tumors, including diffuse midline glioma (DMG), glioblastoma, and
high-grade glioma. Not only was TS PDT found to be safe for use at dosages comparable
to those used in adults, but adverse events commonly identified in adult patients were also
not found in children following therapy [220]. These results are incredibly encouraging
for PDT usage for pediatric CNS tumors. Further reports, such as those from current
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clinical trials (UMIN000030883 and NCT04738162), however, are required to better define
the efficacy of PDT in this application.

6. Limitations
6.1. Limitations of PDT and Its Synergistic Agents

The application of PDT for the treatment of gliomas is not without limitations. Tech-
nical limitations include relatively high costs, the requirement of specialized equipment,
multiport lasers, and medical device class III approved light applicators, which are limited
to few neurosurgical centers [221]. Biological limitations include variable PS accumu-
lation in tissues, inadequate penetration of light into deeper regions, heterogeneity of
response from variant light penetration depth, reduced efficacy in hypoxic regions, and
photobleaching [110]. Furthermore, PS uptake is highly dependent on the cell metabolic
state. For example, in vitro studies have demonstrated an enhanced PpIX accumulation
in the tumor tissues and a complementary increase in the efficacy of PDT following the
upregulation or presence of ATP-binding cascade (ABC) transporters inhibitors [222], iron
chelators [223], calcitriol [224], arsenic trioxide [225], or NF-kappaB inhibitors [226]. Despite
this high relevance to malignant glioma states, further investigation, as is currently being
conducted in third-generation PS testing, to improve tumor specificity through alternative
avenues, such as protein markers, is warranted.

6.2. PDT Efficacy Negatively Influenced by the Harsh Glioma Microenvironment

Largely, there are two limitations to PDT efficacy that occur as a function of the
tumor microenvironment (TME). The highly hypoxic nature of the TME reduces oxygen
availability for subsequent singlet oxygen production, thereby reducing the success of
PDT [167,181]. This limitation must be taken into account during the literature review, as
most reports investigating PDT do so in cell lines at atmospheric oxygen concentrations
(~20%) as compared to the hypoxic concentrations typical of glioma (~5–15%) [167,227].
This is especially relevant for 5-ALA-driven PDT, which requires approximately 20% more
irradiation under hypoxic conditions to invoke equitable rates of therapeutic success as
seen under normoxic environments [227].

The second limitation is the competitive uptake of PS by surrounding glial cells and
neurons. Competitive uptake reduces PS availability, thereby decreasing photosensitizer
accumulation in tumor cells. Successful efforts, however, have modulated local temperature
and demonstrated increased PS uptake solely in cancer cells. Studies from as early as 1995
have shown that induction of moderate hyperthermia or hypothermia increases the efficacy
of PDT in normal brain [228] and cancer cells. Moderate hypothermia (32–34 ◦C) has
been shown to increase PpIX concentrations in glioma cell lines, in addition to conferring
neuroprotection and increasing the PDT therapeutic index [229]. Interestingly, moderate hy-
pothermia has also been demonstrated to increase synergism between PDT and concurrent
adjuvant therapies such as conventional chemotherapy [230] or targeted inhibitors [231].

Other studies have also utilized innovative strategies to combat these limitations in a
joint fashion. Micro-optical devices and nanoparticle lipid emulsions have been designed
to co-deliver photosensitizer and exogenous oxygen to increase local oxygen concentra-
tions [167,232]. These lipid emulsions and nanoparticles also improve the cellular uptake
of various photosensitizers, including Ce6 and 5-ALA, and have been shown to lead to
significant increases in PDT efficacy and survival rates in glioma-bearing mice [167,181,182].

6.3. Innate PDT Resistance

While one of the main advantages of PDT is its ability to circumvent chemotherapeutic
resistance, there are certain pathways of resistance to PDT that are either found in or acquired
by glioma. This is primarily facilitated by nitric oxide synthase (NOS) and its inducible
counterpart (iNOS), which produce intracellular nitric oxide [233,234]. In fact, exposure to
5-ALA PDT leads to an increase in cytoprotective iNOS expression, resulting in a change in
phenotype to iNOS/NO-dependent proliferation, migration, and invasion rate [235]. Further
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study of this pathway revealed that iNOS expression is regulated by acetylation of NF-κB by
bromodomain and extra-terminal (BET) protein. However, NO scavengers, iNOS inhibitors,
and BET inhibitors can be used to inhibit iNOS/NO-dependent tumor progression while also
increasing the rate of apoptosis and PDT therapeutic efficacy [235,236].

While nitric oxide synthesis is one of the more well-studied mechanisms of PDT
resistance, there is another mechanism of PDT resistance that has been characterized in
gliomas. Studies in U87 cells show that TP53 upregulates ALKBH2 in cells that survive
PDT by binding to its promoter, contributing to the reversal of DNA damage, thereby
promoting tumor proliferation [237].

6.4. Peri-Tumor Edema Limits PDT Efficacy

While PDT can act synergistically with chemo- and immunotherapies, it also increases
the extent of peritumoral edema, which, in turn, decreases the therapeutic efficacy of
PDT. To address this, researchers have investigated using different loop diuretics, such as
torasemide [238] and bumetanide [239], to relieve peritumoral edema. In rats and xenograft
models, this has been shown to supplement PDT efficacy, inhibiting tumor growth and
prolonging survival.

6.5. PDT Drug Interactions and Synergistic Agents

Other limitations of PDT include dose-dependence and unwanted drug reactions.
Studies have shown that the effects of PDT can be dose-dependent in a non-linear fashion
for certain photosensitizers, and that exceeding a certain dosage may decrease photody-
namic toxicity due to changes in intracellular localization [240]. PDT efficacy can be limited
by drugs such as phenytoin, an anti-seizure medication, which reduces the accumulation of
5-ALA in glioma cell lines [241]. As such, there is an imminent need for synergistic agents
that increase PDT efficacy. While few in number, there are several FDA-approved drugs
found on the market that show promise in this arena. Reports have shown that polyphenol
PKCδ regulators, such as hypericin and rottlerin, enhance PDT-induced apoptosis of GBM
cells. Further, drugs such as atorvastatin have shown reduced PDT-induced functional
deficits in rats [242,243]. The need for synergistic agents has also resulted in the devel-
opment of novel technologies and the identification of targets for gene therapy. Recent
reports show that the delivery of micelles with peptide irDG-conjugated photosensitizers
results in greater BBB penetration and that upregulation of Cx43, affiliated with poor GBM
prognosis [244], improves the efficacy of PDT [168,245].

7. Conclusions and Future Directions

While the literature depicts a series of PDT advancements in glioma care beginning in
the 1980s, the majority of notable studies have been conducted out of a limited number of
institutions. These clinical trials have consisted of small, non-randomized, and histologically
diverse patient cohorts, and lack “alternative therapeutic” control cohorts, complicating robust
assessment. Furthermore, many photosensitizers (PSs) and light delivery methods each
produce different phototoxic outcomes, which are further convoluted by the cell-dependent
response. This variability is reflected in the diversity of preclinical glioma PDT studies.

Photodynamic therapy is a promising avenue for malignant glioma management,
addressing several current challenges in treatment, such as targeted tumor treatment.
However, it is unlikely that single-drug PDT will be sufficient to treat the genetically
and phenotypically diverse landscape of glioma. While further studies are required, a
multimodal regimen of PDT, in combination with standard radiotherapy and targeted
immunotherapies, or engineered delivery modalities, bears promising effects and may
elevate the current efficacy of PDT to a higher level.
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