Case Reports Pathol Res Pract. 2023 Jul 24;248:154712. doi: 10.1016/j.prp.2023.154712.

Online ahead of print.

A case of glioblastoma harboring non-amplified epidermal growth factor receptor variant III: Critical molecular detection using RNA-based panel analysis

Mari Kirishima ¹, Toshiaki Akahane ², Tomoko Takajo ³, Nayuta Higa ³, Hajime Yonezawa ³, Hiroyuki Uchida ³, Kiyohisa Kamimura ⁴, Ryosuke Hanaya ³, Koji Yoshimoto ⁵, Michiyo Higashi ⁶, Takashi Yoshiura ⁷, Akihide Tanimoto ⁸

Affiliations

PMID: 37499520 DOI: 10.1016/j.prp.2023.154712

Abstract

Amplification of the epidermal growth factor receptor gene (EGFR) and its variants are the most commonly detected pathogenic gene alterations in glioblastoma. Herein, we report a case of molecularly defined glioblastoma harboring an EGFR variant III (EGFRvIII) without EGFR amplification. The initial histological diagnosis was isocitrate dehydrogenase (IDH)-wildtype low-grade glioma, due to an absence of anaplasia, necrosis, and microvascular proliferation, and a low Ki-67 labeling index. DNA-based next-generation sequencing (NGS) panel analysis revealed a TERTp promoter mutation but no EGFR mutation or amplification, supporting the diagnosis of "molecular glioblastoma." However, RNA-based NGS panel analysis revealed mRNA expression of EGFRvIII. Therefore, the final integrative diagnosis was glioblastoma with non-amplified EGFRvIII. Our report suggests that non-amplified EGFRvIII might be an early molecular event in glioblastoma tumorigenesis. In addition to the usual DNA-based analysis, RNA-based analysis is required to identify exon-skipping EGFR variants without EGFR amplification.

Keywords: Bimodal DNA- and RNA-based NGS; Glioblastoma; Non-amplified EGFR variant III.

Copyright $\ensuremath{\mathbb{C}}$ 2023 Elsevier GmbH. All rights reserved.

1 di 1 02/08/2023, 09:52