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Abstract 1 

Genetic and metabolic changes in tissue and blood are reported to occur several years 2 

before glioma diagnosis. As gliomas are currently detected late, a liquid biopsy for early 3 

detection could impact the quality of life and prognosis of patients. Here, we present a 4 

nested case-control study of 550 pre-diagnostic glioma cases and 550 healthy controls, 5 

from the Northern Sweden Health and Disease study (NSHDS) and the European 6 

Prospective Investigation into Cancer and Nutrition (EPIC) study. We identified 93 7 

significantly altered metabolites related to glioma development up to eight years before 8 

diagnosis. Out of these metabolites, a panel of 20 selected metabolites showed strong 9 

disease correlation and consistent progression pattern towards diagnosis in both the 10 

NSHDS and EPIC cohorts, and separated favorably future cases from controls 11 

independently of biological sex. The blood metabolite panel also successfully separated 12 

both lower grade glioma and glioblastoma cases from controls, up to eight years before 13 

diagnosis in NSHDS (glioma AUC=0.85, P=3.1e-12; glioblastoma AUC=0.85, P=6.3e-14 

8), and up to two years before diagnosis in EPIC (glioma AUC=0.81, P=0.005; 15 

glioblastoma AUC=0.89, P=0.04). Pathway enrichment analysis detected metabolites 16 

related to the TCA-cycle, Warburg effect, gluconeogenesis, cysteine-, pyruvate- and 17 

tyrosine metabolism as the most affected.  18 
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Introduction   19 

Gliomas, the most common type of malignant primary brain tumors, are 20 

usually detected late, when patients exhibit severe neurological symptoms such as 21 

seizures (1). Although treatment with surgical resection and concomitant 22 

radiochemotherapy have improved patient survival, prognosis for glioma patients is 23 

still poor. Patients suffering from the most common and most aggressive subtype - 24 

glioblastoma - have a median survival time of only 15 months (2). As treatment options 25 

are limited, earlier detection of high risk individuals could improve prognosis and 26 

impact patient survival (3). 27 

Previous studies have shown that gliomagenesis start several years before 28 

clinical symptoms appear (4, 5). Genetic aberrations causing glioblastoma 29 

tumorigenesis have been estimated to occur up to seven years before diagnosis (4). 30 

Further, a set of fifteen metabolites in blood was associated with glioma progression 31 

up to eight years before diagnosis (5), and a set of nine metabolites were associated 32 

with higher glioblastoma risk even earlier (6). In both studies, the sets of metabolites 33 

indicated an imbalanced redox homeostasis (5, 6). In addition, it is well documented 34 

that elevated levels of the mitochondrial tricarboxylic acid (TCA) cycle metabolites 35 

fumarate, succinate and D-2-hydroxyglutarate promote tumorigenesis (7). 36 

  In this study, we analyzed a large set of pre-diagnostic plasma samples 37 

from two independent cohorts, the Northern Sweden Health and Disease study 38 

(NSHDS) (8) and the European Prospective Investigation into Cancer and Nutrition 39 

(EPIC) study (9), from 18 study centers. The samples were collected 0.2 to 25 years 40 

before glioma diagnosis and analyzed together with matched controls by global 41 

metabolomics analyses for discovery and validation of metabolic changes related to 42 

glioma development. 43 
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Results 44 

Data overview 45 

Study overview and description of study participants in the discovery 46 

(NSHDS) and validation (EPIC) cohorts are presented in Figure 1, A and B, and Table 47 

1, respectively. For case-control pairing, we employed stringent matching based on sex, 48 

BMI, age, time in freezer, fasting status and study center. To obtain an overview of all 49 

1100 analyzed plasma samples from the global mass spectrometry-based metabolomic 50 

analyses, we first performed a Uniform Manifold Approximation and Projection for 51 

Dimension Reduction (UMAP) analysis (Figure 2,  A and B). We included all metabolic 52 

features that were in common for both NSHDS and EPIC, in total 802 metabolites (see 53 

Supplemental Methods for detailed information on data collection and curation). 54 

UMAP plots of all samples, both future glioma cases (n=550) and matched healthy 55 

controls (n=550) from EPIC and NSHDS are shown as independent observations in 56 

Figure 2A, and as dependent case-control pairs in Figure 2B. As anticipated, we 57 

observe cohort- and country specific clusters when analyzing all cases and controls 58 

independently (Figure 2A), indicating systematic differences between and within the 59 

cohorts. This difference between cohorts and sampling countries was expected since 60 

samples were from multiple sampling centers with varying sampling routines and 61 

population differences. The study was therefore designed to reduce the impact of pre-62 

analytical differences, by utilizing the differences in relative metabolite concentration 63 

between tightly matched case-control pairs. The UMAP plot constructed from an effect 64 

matrix of calculated metabolite concentration differences between matched case-65 

control pairs (n=550 pairs) shows that the overlap of samples from the cohorts greatly 66 

improves, and less cohort-specific clusters are observed (Figure 2B). This analysis 67 

shows the benefit of stringent matching of case-control pairs within the same cohorts, 68 
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as a processing step before data analysis, to increase sensitivity for true biomarker 69 

detection and decrease both variation and false discoveries originating from pre-70 

analytical differences and covariates.  71 

Metabolites that indicate early glioma development 72 

We used multivariate statistical analysis by means of Orthogonal 73 

Projections to Latent Structures – Effect Projection (OPLS-EP) to make use of the 74 

effect matrix obtained from matched case-control pairs and to discover metabolites 75 

related to glioma development. Since previous studies indicate that gliomagenesis 76 

starts up to eight years before diagnosis (4, 5), we initially focused our analysis on case-77 

control pairs sampled up to eight years before diagnosis in NSHDS (n=130 pairs). 78 

From the generated OPLS-EP model (CV-ANOVA P=0.005, R2Y=0.46, Q2=0.08), 93 79 

metabolites with known identity were found to reach statistical significance (Figure 2C 80 

and Supplemental Table 1). Of the 93 significant metabolites found in NSHDS, 87 81 

metabolites were also detected in samples from EPIC. However, in EPIC samples only 82 

one of the 87 metabolites, fumarate, reached statistical significance (P=0.02) when 83 

focusing on samples collected up to eight years to diagnosis, while cystine was 84 

borderline significant (P=0.06). It should be noted that plasma samples from EPIC 85 

were collected using sodium citrate as anticoagulant, which has been reported to 86 

induce matrix effects and quench metabolite signals (10, 11). Also, the majority of the 87 

EPIC samples were collected from non-fasting individuals whereas the majority of the 88 

NSHDS samples were from fasting individuals (Figure 1B and Table 1), which could 89 

impact metabolite levels (12). However, our earlier study shows that the difference in 90 

levels of glioma associated metabolites between cases and controls increases towards 91 

diagnosis (5). Therefore, we analyzed the metabolite levels towards diagnosis for the 92 

87 out of 93 significant metabolites that could be detected in EPIC, to examine if the 93 
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glioma associated metabolites would be similarly altered closer to diagnosis. This 94 

analysis shows that 20 0f 87 metabolites displayed the same direction towards 95 

diagnosis, with a mean difference of >10% closer to diagnosis (within two years and/or 96 

one year to diagnosis), in NSHDS and EPIC (Figure 3 and Table 2). For most 97 

metabolites, the levels were higher in cases compared to controls, with the highest 98 

levels closest to diagnosis (Figure 3). Except the levels of tyramine O-sulfate, PE(P-99 

16:0/18:2) and PE(P-18:0/18:2), that were lower in cases, with even more reduced 100 

levels closer to diagnosis (Figure 3) indicating a reversed molecular function. All 101 

significant metabolites for samples collected more than eight years to diagnosis are 102 

listed in Supplemental Table 2. 103 

To validate our findings of elevated lactate levels (Table 2 and Figure 3), 104 

we used the LC-MS/MS-based Biocrates MxP500 quant platform for targeted 105 

identification and quantification of lactate levels in 354 NSHDS samples. Quantified 106 

μM levels of lactate were compared with the relative amounts from the Metabolon 107 

platform (Supplemental Figure 1, A and B). The methods showed strong correlation  108 

(R2=0.84), with elevated lactate levels in cases within eight years to diagnosis, and even 109 

higher levels closer to diagnosis (Supplemental Figure 1B). Lactate levels in samples 110 

that were not measured quantitatively were predicted using linear regression 111 

(Supplemental Figure 1C). The quantitative targeted measurements of lactate, 112 

including predicted levels, showed the same level of significance in case-control pairs 113 

within eight years to diagnosis as seen for the untargeted measurement (Puntargeted = 114 

0.0004, Ptargeted = 0.0004).      115 

Predicting glioma development 116 

To assess if the panel of 20 selected metabolites with consistent 117 

progression pattern towards diagnosis in both NSHDS and EPIC could predict glioma 118 
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development, we first generated an OPLS-EP model using the metabolites and the 130 119 

case-control pairs in NSHDS sampled within eight years to diagnosis. The predictive 120 

ability of the model was assessed by predicting the samples from NSHDS, used to 121 

generate the model, and samples from EPIC that were not used to generate the model. 122 

The results were evaluated with Receiver Operating Characteristic (ROC) analyses 123 

(Figure 4). Within eight years to diagnosis, the panel of 20 metabolites predicted case-124 

control pairs in NSHDS well, with an AUC of 0.853 and P=3.1e-12 (Figure 4A) whereas 125 

case-control pairs in EPIC showed a poor prediction with an AUC of 0.507 and P=0.88 126 

(Figure 4B). However, prediction limited to case-control pairs within two years to 127 

diagnosis in EPIC displayed an AUC of 0.806 with a significant P-value of 0.005 128 

(Figure 4D). Similar results were observed for case-control pairs within two years to 129 

diagnosis in NSHDS (AUC=0.816, P-value=0.004) (Figure 4C).  130 

The blood metabolome is very dynamic and affected by many exogenous 131 

and biological factors, highlighting the need to minimize confounding variation by 132 

study design. As metabolic differences between males and females are obvious in blood 133 

samples, we wanted to assess our strategy and the predictive ability of the 20-134 

metabolite panel on females and males separately. Also, here the panel predicted both 135 

female and male case-control pairs in NSHDS well, with AUC values for females of 136 

0.870 and P=3.4e-9 (Figure 5A) and AUC values for males of 0.818 and P=2.1e-4 137 

(Figure 5D). Prediction limited to case-control pairs within two years to diagnosis in 138 

NSHDS and EPIC displayed also solid AUC values for both females and males (Figure 139 

5, B-F), with the best prediction of males in EPIC within two years of diagnosis 140 

(AUC=0.964, P=6.1e-4). To further assess the predictive ability of the panel on 141 

different glioma subtypes, ROC analyses were performed on glioblastoma and all other 142 

gliomas (non-glioblastoma) separately. Case-control pairs within eight and two years 143 

to diagnosis from NSHDS and within two years from EPIC were predicted (Figure 6). 144 
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The panel performed well and gave slightly better predictions for glioblastoma, with 145 

AUCs of 0.851 and 0.813 in NSHDS within eight and two years, respectively, and AUC 146 

of 0.890 in EPIC within two years to diagnosis (Figure 6, A-C). Predictions of non-147 

glioblastoma were also good with AUCs of 0.832 and 0.785 in NSHDS within eight and 148 

two years, respectively, and AUC of 0.702 in EPIC within two years to diagnosis (Figure 149 

6, D-F). However, the predictions of non-glioblastoma within two years in NSHDS and 150 

EPIC did not reach statistical significance, likely due to small sample sizes.  151 

Due to coherent results of detecting glioma development within two years 152 

to diagnosis in NSHDS and EPIC, we calculated the significance for metabolites within 153 

two years to diagnosis in case-control pairs from both cohorts. 17 of the 93 significant 154 

metabolites within eight years to diagnosis were still significant within two years to 155 

diagnosis in NSHDS (Supplemental Figure 2A and Supplemental Table 3), whereas 156 

three were found significant within two years to diagnosis in EPIC (Supplemental 157 

Figure 2B and Supplemental Table 4).  158 

Altered metabolic pathways 159 

We performed a metabolite enrichment analysis to put the panel of 20 160 

metabolites in common, and the 93 significant metabolites discovered in NSHDS into 161 

biological context. For the 93 significant metabolites, the most significant 162 

overrepresented metabolic pathways were the TCA cycle (P=0.002) and the Warburg 163 

effect (P=0.01) (Figure 7A). Other significantly overrepresented pathways (P<0.05) 164 

were pyruvate- and cysteine metabolism, gluconeogenesis, and tyrosine metabolism. 165 

In the panel of 20 metabolites with consistent metabolite level differences in NSHDS 166 

and in EPIC closer to diagnosis, were the Warburg effect (P=0.02), pyruvate 167 

metabolism (P=0.03) and the TCA cycle (P=0.07) still the most overrepresented 168 

pathways (Figure 7B). The metabolites within the significant pathways are however 169 



10 

tightly connected. The significant metabolites and pathways, together with 170 

neighboring pathway of amino acid metabolism, are presented in Table 3 and Figure 171 

7C. In this analysis, the levels of all significant metabolites within the presented 172 

pathways were higher in cases compared to controls. In addition, the levels were even 173 

higher towards diagnosis for all metabolites (Supplemental Figure 3). 174 

Finally, we examined the plasma levels of 2-hydroxyglutarate as several 175 

endogenously expressed TCA cycle related metabolites were found to be significantly 176 

altered. Plasma levels of 2-hydroxyglutarate, the oncometabolite produced by a 177 

mutation in isocitrate dehydrogenase, showed elevated levels closer to diagnosis in 178 

both NSHDS and EPIC samples (Supplemental Figure 4), but did not reach statistical 179 

significance. As isocitrate dehydrogenase mutation is uncommon in glioblastoma, we 180 

examined glioblastoma and non-glioblastoma cases separately (Supplemental Figure 181 

4, see Supplemental Methods for classification). Here the plasma levels of 2-182 

hydroxyglutarate followed the same trend as observed for all glioma combined, except 183 

for non-glioblastoma in EPIC samples that showed reduced levels towards diagnosis.  184 
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Discussion 185 

In this study, we found 93 metabolites in NSHDS with significantly 186 

different plasma levels within eight years of glioma diagnosis compared to healthy 187 

controls. In addition, 20 of these metabolites displayed consistent metabolite level 188 

differences closer to diagnosis in samples from the NSHDS cohort and the multi-center 189 

EPIC cohort, with a mean difference of >10% between cases and controls. This panel 190 

of 20 metabolites showed good ability to separate future glioma cases from matched 191 

controls within eight years to diagnosis in NSHDS, and within two years to diagnosis 192 

in EPIC, independent of biological sex or glioma subtype. Our results are in line with 193 

previous studies that have detected metabolic alterations in pre-diagnostic plasma 194 

samples up to eight years before glioma diagnosis (5), and longitudinal whole-genome 195 

profiling of gliomas showing that mutated founder cells with common genetic 196 

aberrations emerge up to seven years before diagnosis (4). Metabolites in our panel 197 

have previously been linked to tumor metabolism, which in our view strengthens their 198 

validity. Our metabolite enrichment analysis particularly highlighted metabolites 199 

linked to the TCA cycle pathway and the Warburg effect, as the most affected. Elevated 200 

plasma levels of fumarate and cystine were particularly robust in pre-diagnostic cases 201 

from both NSHDS and EPIC within eight years to diagnosis. 202 

The TCA cycle was found significantly overrepresented in the enrichment 203 

analyses. Elevated levels of TCA cycle-related metabolites; fumarate, succinate and D-204 

2-hydroxyglutarate have previously been linked to oncometabolite-driven 205 

tumorigenesis (7). TCA cycle-related metabolites play a central role in the Warburg 206 

effect. The Warburg effect is characterized by a metabolic reprogramming, causing an 207 

increased rate of glycolysis and production of lactate under aerobic conditions with 208 

functioning mitochondria, which is seen in glioma cells and other cancers (13, 14). 209 
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Accumulated lactate is released from the cell and acidifies the tumor 210 

microenvironment, favoring tumor progression. Here, we report significantly elevated 211 

levels of lactate in pre-diagnostic glioma cases within eight years to diagnosis. In 212 

addition, we found significantly elevated levels of N-lactoyl valine, N-lactoyl leucine 213 

and N-lactoyl phenylalanine within eight years to diagnosis. N-lactoyl amino acid 214 

production is catalyzed by reverse proteolysis of lactate and amino acids by carnosine 215 

dipeptidase 2 (15). N-lactoyl amino acids are poorly studied, and their role in glioma 216 

development and cancer is unknown. Interestingly, seven of the 20 metabolites in our 217 

panel (lactate, fumarate, malate, hypoxanthine, N-lactoyl valine, N-lactoyl leucine and 218 

N-lactoyl phenylalanine), are some of the most elevated metabolites in blood during 219 

physical activity (16, 17). Moreover, exercise-induced N-lactoyl phenylalanine has 220 

recently been hypothesized to function as a molecular signal to regulate energy balance 221 

(17). Hypothetically, the shared set of metabolites related to glioma development and 222 

physical activity may be linked to inflammatory mediators, as elevated levels of 223 

inflammatory cytokines have also been reported in pre-diagnostic glioma blood (18). 224 

Elevated levels of lactate and hypoxanthine have also been reported in blood of people 225 

with immune-mediated inflammatory disease (19). These metabolites may reflect a 226 

state of increased energy demand and energy turnover caused by inflammation. 227 

In our analysis, products of the tyrosine metabolism were also found 228 

significant, with higher levels of homovanillate and S-adenosylhomocysteine and lower 229 

levels of tyramine O-sulfate in pre-diagnostic glioma cases. In the brain, tyrosine is the 230 

starting material for synthesis of catecholamines (20). Homovanillate is the end-231 

product of dopamine catabolism, and is elevated in urine of patients with 232 

catecholamine-secreting tumors such as neuroblastoma (21). Altered tyrosine 233 

metabolism has previously also been found to be related to glioma development, where 234 
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elevated plasma levels of 4-hydroxyphenylacetic acid was detected in pre-diagnostic 235 

glioma cases (5). 236 

Our findings are also consistent with previous reports of imbalanced redox 237 

homeostasis for pre-diagnostic glioma cases, highlighting elevated levels of 238 

metabolites such as cystine, cysteine, eryhtritol, erythronate and hypoxanthine (5, 6). 239 

However, a complete overlap and replication of significant metabolites between 240 

current and the previous studies are not to be expected, as the analyses were performed 241 

on different analytical platforms with different metabolite coverages.  242 

As stated, NSHDS and EPIC samples were collected using different blood-243 

anticoagulants and the majority of the participants have different fasting status 244 

between the cohorts, which together with the multi-center structure of EPIC 245 

introduced variation unrelated to the research question and complicated the validation 246 

of discovered metabolites in NSHDS. However, these differences also imply some 247 

degree of robustness to our findings, as they were consistent in two largely diverse 248 

cohorts.    249 

Our results show that glioma development is detectable in blood up to two 250 

years before diagnosis, and even up to eight years before diagnosis in a homogenous 251 

sample population such as NSHDS. Other disease studies have shown that blood tests 252 

have the potential to detect neurological disorders, such as Parkinson's and 253 

Alzheimer's disease, in their early stages (22, 23). Clinically, a blood test for glioma 254 

diagnostics could be used for early detection in patients with non-specific symptoms 255 

or to discriminate unclear lesions at brain imaging. The panel of 20 metabolites 256 

presented here shows potential to serve as a diagnostic tool, and future studies should 257 

target these metabolites in a clinical setting, in patients with non-specific symptoms 258 

and those with other cancer types, to evaluate their specificity towards glioma. 259 

Furthermore, the altered plasma metabolite levels are not proven here to be result of 260 
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glioma cancer cells, as the altered metabolite levels can equally be a result of cells in 261 

the microenvironment, or just an altered metabolism throughout the body as a 262 

consequence of disease progression. We recently showed that WHO classified subtypes 263 

of glioma tumors have different metabolic phenotypes that reaches beyond IDH-264 

mutation status (24). A question that remains to be answered is if blood-based 265 

metabolomics can differentiate various molecular subtypes. Although we anticipate 266 

that our findings will greatly help to understand the mechanism of gliomagenesis and 267 

to find therapeutic targets, affected metabolic and biochemical pathways are still to be 268 

fully characterized before clinical applications can be developed.   269 
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Methods 270 

Study Population and Nested Case-Control Design  271 

We conducted a nested case-control study within two population-based 272 

prospective cohorts, NSHDS and EPIC. Detailed information about the cohorts is given 273 

in Supplemental Methods. Incident glioma cases in NHSDS (ICD-7, topography: 193, 274 

histology: 475-476) and EPIC (ICD-O-2, topography: C71, histology: 93800-94800) 275 

were identified via cancer registries or through active follow up. Each case was 276 

randomly paired with a matching control that at the time of diagnosis of the index case 277 

was alive and free of cancer (except non-melanoma skin cancer). Matching was based 278 

on sex, BMI, age (± six months), fasting status, time of sampling (± three months in 279 

NSHDS and ± one month in EPIC) and study center. In total, 1102 blood samples were 280 

included: 528 EDTA-plasma samples (264 pre-diagnostic glioma case samples and 264 281 

control samples) from NSHDS and 574 sodium citrate plasma samples (287 pre-282 

diagnostic glioma cases and 287 controls) from EPIC. The EPIC samples were from 283 

Spain, Italy, United Kingdom, the Netherlands, Germany and Norway. Additional 284 

information regarding the blood samples is given in Supplemental Methods. In this 285 

study, we used samples from the single-center NSHDS cohort for discovery and the 286 

multi-center EPIC cohort for validation.  287 

Metabolomics Analyses 288 

Metabolite analysis and data curation are described in detail in 289 

Supplemental Methods. We designed a constrained randomized run order (25), i.e. 290 

each case-control pair was run directly adjacent to each other in randomized order. All 291 

samples were analyzed using Metabolon Inc. global metabolomics platform, consisting 292 
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of four untargeted Ultrahigh Performance Liquid Chromatography-Tandem Mass 293 

Spectrometry (UHPLC-MS/MS) methods.  294 

For targeted quantitative measurements of lactate, we used the LC-295 

MS/MS-based Biocrates MxP500 quant platform and analyzed 354 NSHDS samples. 296 

This analysis is described in detail in Supplemental Methods.   297 

Statistics 298 

We analyzed matched case-control pairs as dependent samples 299 

throughout the study. For this purpose, an effect matrix with differences of relative 300 

concentrations for each metabolite of a case and its matched control was constructed. 301 

All statistical tests were two-sided, except for the one-sided hypergeometric test used 302 

in the metabolite enrichment analysis (Figure 7A-B and Table 3). P<0.05 was 303 

considered significant for all tests.   304 

To get an overview of the samples, we performed Principal Component 305 

Analysis (PCA) (26), on case-control pairs from NSHDS and EPIC separately. One 306 

extreme outlier sample pair was observed in the PCA of NSHDS that indicated an 307 

abnormal plasma concentration difference within the pair, and was excluded from 308 

further data analysis, resulting in a final number of 550 cases and 550 controls. 309 

Furthermore, to get an overview of samples from both cohorts simultaneously, UMAP 310 

analysis was performed. UMAP plots were constructed for all samples, as individual 311 

observations, and for sample pairs using the effect matrix with calculated differences 312 

of matched case-control pairs.  313 

To discover metabolites indicating glioma development, we performed 314 

multivariate modeling using OPLS-EP (25) with the effect matrix of case-control pairs 315 

from NSHDS and the curated metabolomics data of 1061 molecular features 316 
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(Supplemental Methods). Significance of OPLS-EP model was calculated using CV-317 

ANOVA (two-sided) (27). Only metabolites in NSHDS that were multivariate 318 

significant (two-sided) (5, 28) were selected for validation in EPIC. For validation, the 319 

difference between cases and controls in metabolite levels towards diagnosis of the 320 

significant metabolites were examined in both NSHDS and EPIC. Metabolites that 321 

displayed the same direction towards diagnosis, with a mean difference of >10% closer 322 

to diagnosis (within 2 years and/or 1 year to diagnosis), were identified and examined 323 

on their ability to detect glioma development. The results were evaluated with ROC 324 

analyses. We calculated the AUC and the significance of the ROC curves using the 325 

Wilcoxon signed-rank test (two-sided). To assess if predictions were deviating 326 

depending on biological sex or glioma subtype, ROC analyses were done for females 327 

and males separately, and besides for all glioma also for glioblastoma and non-328 

glioblastoma, separately (Supplemental Methods).  329 

To put metabolites into biological context and to find altered metabolic 330 

pathways, we performed metabolite enrichment analysis using Metaboanalyst 5.0 331 

(www.metaboanalyst.ca). For this analysis, we included metabolites within the curated 332 

NSHDS data set with known HMDB ID that were coherent with the Metaboanalyst 333 

database, in total 736 identified metabolites, as reference library. Hypergeometric test 334 

was used to calculate significance (one-sided). 335 

Study approval  336 

The Institutional Review Board of the International Agency for Research 337 

on Cancer and the local ethics committees approved the study. All participants 338 

provided written informed consent. All samples were pseudonymized and included in 339 

the study in accordance with the ethical standards of the Helsinki Declaration. This 340 
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project was approved by the ethical review board at Umeå University (Dnr 2017-295-341 

31M). 342 

Data availability 343 

  Data values associated with the manuscript and supplemental material 344 

shown in graphs are presented in the Supporting Data Values XLS file. The complete 345 

datasets generated for these analyses will be shared upon reasonable request to the 346 

corresponding authors: benny.bjorkblom@umu.se and beatrice.melin@umu.se. Data 347 

access requires ethical approval as existing informed consent will not permit personal 348 

data to be shared publicly. Requests will be reviewed by representatives of the 349 

NSHDS/EPIC steering committee.  350 
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Figure 1. Study overview. (A) Overview of study design and workflow. Illustrations were created 
with BioRender.com. (B) Overview of cohort characteristics for NSHDS and EPIC samples. 
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Figure 2. Data overview. (A and B) UMAP plots of plasma samples from NSHDS and EPIC. A. 
Cases and controls (n=1100) colored by cohort (left) and sampling country (right). B. Matched 
case-control pairs (n=550) colored by cohort (left) and sampling country (right). SWE = Sweden; 
ITA = Italy; ESP = Spain; GBR = United Kingdom; NLD = Netherlands; DEU = Germany; NOR = 
Norway. (C) Volcano plot of detected molecular features in NSHDS within eight years to 
diagnosis (n=130 case-control pairs), with effect sizes and significance levels for each of the 
1061 molecular features as log-ratios. Significance was calculated by multivariate significance 
(two-sided, P-valuew plotted). Sig = Significant molecular features; non-sig = non-significant 
molecular features. 
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Figure 3. Metabolite levels for case-control pairs towards diagnosis. Boxplots with average 

(dot) and median (line) fold change in case-control pairs for NSHDS (blue) and EPIC (orange) 

samples, subgrouped according to time to diagnosis (>8 years: NSHDS, n=133 and EPIC, n=148. 

<8 years: NSHDS, n=130 and EPIC, n=139. <2 years: NSHDS, n=28 and EPIC, n=28. <1 year: 

NSHDS, n=9 and EPIC, n=11). Dashed horizontal lines display a 10% difference. The Y-axis is non-

linearly transformed. All metabolite identifications were validated using synthetic standards, except 

putative identifications denoted * or **.  
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Figure 4. ROC analysis using a panel of 20 metabolites. Glioma 
case-control pairs sampled less than eight years before diagnosis 
in (A) NSHDS and (B) EPIC, and less than two years before 
diagnosis in (C) NSHDS and (D) EPIC. Wilcoxon signed-rank test 
(two-sided) was used to calculate the significance of the ROC 
curves. n = number of pairs available for each analysis. 
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Figure 5. ROC analysis using a panel of 20 metabolites for females and 
males. (A and B) NSHDS female case-control pairs sampled less than 
eight years (A) or less than two years (B) before diagnosis. (C) EPIC 
female case-control pairs sampled less than two years before diagnosis. 
(D and E) NSHDS male case-control pairs sampled less than eight years 
(D) or less than two years (E) before diagnosis. (F) EPIC male case-
control pairs sampled less than two years before diagnosis. Wilcoxon 
signed-rank test (two-sided) was used to calculate the significance of the 
ROC curves. n = number of pairs available for each analysis.  
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Figure 6. ROC analysis using a panel of 20 metabolites on glioma 
subtypes. (A and B) NSHDS glioblastoma case-control pairs sampled 
less than eight years (A) or less than two years (B) before diagnosis. 
(C) EPIC glioblastoma case-control pairs sampled less than two 
years before diagnosis. (D and E) NSHDS non-glioblastoma case-
control pairs sampled less than eight years (D) or less than two years 
(E) before diagnosis. (F) EPIC non-glioblastoma case-control pairs 
sampled less than two years before diagnosis. Wilcoxon signed-rank 
test (two-sided) was used to calculate the significance of the ROC 
curves. n = number of pairs available for each analysis.
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Figure 7. Overview of significant metabolic pathways. (A and B) Pathway enrichment analysis 
using (A) the 93 metabolites significant within eight years to diagnosis in NSHDS (B) the panel 
of 20 metabolites in common for NSHDS and EPIC. Hypergeometric test was used to calculate 
significance (one-sided). (C) Scheme of detected metabolites present in the TCA cycle, the 
Warburg effect, gluconeogenesis, pyruvate-, cysteine- and tyrosine metabolism, and 
neighboring amino acid metabolism. Boxplots with average (dot) and median (line) log2 fold 
change are presented from case-control pairs within eight years to diagnosis from NSHDS 
(n=130). Dashed horizontal lines display a 10% difference. Significant metabolites, calculated by 
multivariate significance (two-sided), are denoted with *. Undetected pathway metabolites are 
included with name without boxplot. 
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Table 1. Demographics for NSHDS and EPIC cohort participants. All participants, and subgrouped 

according to time to diagnosis. 

 NSHDS All years >8 years to diagnosis <8 years to diagnosis <2 years to diagnosis 

Cases Controls Cases Controls Cases Controls Cases Controls 

Subjects, n  263 263 133 133 130 130 28 28 

Sex, n (%) 

    Male  103 

(39.2) 

103 

(39.2) 

58 

(43.6) 

58 

(43.6) 

45 

(34.6) 

45 

(34.6) 

10 

(35.7) 

10 

(35.7) 

    Female  160 

(60.8) 

160 

(60.8) 

75 

(56.4) 

75 

(56.4) 

85 

(65.4) 

85 

(65.4) 

18 

(64.3) 

18 

(64.3) 

Age at diagnosis (years),  

mean (range) 

62.5 

(32.5-80.0) 

n/a 66.8 

(41.5-80.0) 

n/a 58.2 

(32.5-77.3) 

n/a 54.6 

(32.5-67.6) 

n/a 

Age at sample collection (years), 

mean (range) 

53.7 

(28.6-73.6) 

53.7 

(27.8-73.0) 

53.2 

(29.4-68.8) 

53.2 

(30.1-68.5) 

54.2 

(28.6-73.6) 

54.2 

(27.8-73.0) 

53.4 

(30.5-66.4) 

53.3 

(30.4-66.6) 

Time to diagnosis (years), 

 mean (range) 

8.8 

(0.15-25.1) 

n/a 13.6 

(8.02-25.1) 

n/a 3.9 

(0.15-7.98) 

n/a 1.2 

(0.15-1.97) 

n/a 

Sampling date (year),  

median (range) 

1998 

(1986-2014) 

1998 

(1986-2014) 

1996 

(1986-2008) 

1996 

(1986-2008) 

1999 

(1988-2014) 

1999 

(1988-2014) 

2001 

(1991-2014) 

2001 

(1991-2014) 

Time in freezer (years),  

mean (range) 

21.4 

(5.8-33.3) 

21.5 

(5.9-33.2) 

23.4 

(11.7-33.3) 

23.4 

(11.9-33.2) 

19.5 

(5.8-31.3) 

19.5 

(5.9-31.3) 

18.0 

(5.9-28.2) 

18.0 

(5.9-28.2) 

BMI (kg/m2),  

mean (range) 

25.8 

(18.3-39.8) 

25.4 

(18.1-35.0) 

26.0 

(18.8-37.3) 

25.5 

(18.7-33.5) 

25.7 

(18.3-39.8) 

25.3 

(18.1-35.0) 

25.7 

(18.3-35.1) 

25.9 

(18.1-31.9) 

Fasting status, n 

0-4 h 74 75 32 30 42 45 13 13 

4-8 h 27 26 16 18 11 8 2 2 

>8 h 162 162 85 85 77 77 13 13 

Glioma subtype, n 

    Glioblastoma: 9440/3 184 n/a 105 n/a 79 n/a 15 n/a 

    Gliosarcoma: 9442/3 1 n/a 0 n/a 1 n/a 0 n/a 

    Astrocytoma: 9400/3, 9401/3 46 n/a 19 n/a 27 n/a 7 n/a 

    Oligodendroglioma: 9450/3, 9451/3 24 n/a 8 n/a 16 n/a 4 n/a 

    Glioma NOS: 9380/3 8 n/a 1 n/a 7 n/a 2 n/a 
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Continuation of Table 1.         

 EPIC All years >8 years to diagnosis <8 years to diagnosis <2 years to diagnosis 

 Cases Controls Cases Controls Cases Controls Cases Controls 

Subjects, n 287 287 148 148 139 139 28 28 

Sex, n (%) 
        

      Male  129 

(44.9) 

129 

(44.9) 

63 

(42.6) 

63 

(42.6) 

66 

(47.5) 

66 

(47.5) 

15 

(53.6) 

15 

(53.6) 

      Female  158 

(55.1) 

158 

(55.1) 

85 

(57.4) 

85 

(57.4) 

73 

(52.5) 

73 

(52.5) 

13 

(46.4) 

13 

(46.4) 

Country 
        

    Italy 57 57 33 33 24 24 5 5 

    Spain 71 71 48 48 23 23 3 3 

    United Kingdom 52 52 28 28 24 24 4 4 

    The Netherlands 41 41 19 19 22 22 7 7 

    Germany 56 56 18 18 38 38 7 7 

    Norway 10 10 2 2 8 8 2 2 

Age at diagnosis (years),  

mean (range) 

62.5 

(26.8-85.0) 

n/a 66.1 

(41.1-85.0) 

n/a 58.9 

(26.8-80.6) 

n/a 54.2 

(33.3-70.8) 

n/a 

Age at sample collection (years), 

mean (range) 

54.4 

(24.3-74.6) 

54.4 

(23.5-73.8) 

54.2 

(33.0-71.4) 

54.2 

(32.8-71.0) 

54.7 

(24.3-74.6) 

54.6 

(23.5-73.8) 

53.0 

(32.7-70.4) 

53.0 

(32.5-69.9) 

Time to diagnosis (years),  

mean (range) 

8.1 

(0.22-18.6) 

n/a 11.8 

(8.1-18.6) 

n/a 4.3 

(0.22-7.95) 

n/a 1.2 

(0.22-1.96) 

n/a 

Sampling date (year),  

median (range) 

1995 

(1992-2002) 

1995 

(1992-2002) 

1995 

(1992-2001) 

1995 

(1992-2001) 

1995 

(1993-2002) 

1995 

(1993-2002) 

1995 

(1994-2001) 

1995 

(1993-2001) 

Time in freezer (years),  

mean (range) 

24.2 

(17.7-27.1) 

24.2 

(17.8-27.2) 

24.7 

(18.1-27.1) 

24.7 

(18.2-27.2) 

23.8 

(17.7-26.8) 

23.8 

(17.8-26.9) 

23.8 

(18.3-26.0) 

23.8 

(18.3-26.1) 

Fasting status, n 
        

    0-3 h 145 149 67 69 78 80 16 17 

    3-6 h 38 37 19 18 19 19 5 5 

    >6 h  95 95 57 57 38 38 6 6 

    Unknown 9 6 5 4 4 2 1 0 

Glioma subtype, n  
        

    Glioblastoma: 9440/3 170 n/a 100 n/a 70 n/a 10 n/a 

    Giant cell glioblastoma: 9441/3 2 n/a 1 n/a 1 n/a 0 n/a 

    Gliosarcoma: 9442/3 5 n/a 3 n/a 2 n/a 1 n/a 

    Astrocytoma: 9400/3, 9401/3, 

9411/3, 9420/3 

63 n/a 25 n/a 38 n/a 11 n/a 

    Oligodendroglioma: 9450/3, 9451/3 20 n/a 10 n/a 10 n/a 4 n/a 

    Glioma NOS: 9380/3 26 n/a 9 n/a 17 n/a 2 n/a 

    Gliomatosis cerebri: 9381/3  1 n/a 0 n/a 1 n/a 0 n/a 

 

.
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Table 2. List of 20 significant metabolites discovered in NSHDS with the same progression pattern towards diagnosis in the EPIC validation cohort. 

Metabolites P-value Mean % difference HMDB ID Sub-pathway Super pathway 

Higher in cases      

lactate 0.0004 14 HMDB0000190 Glycolysis, Gluconeogenesis, and Pyruvate Metabolism Carbohydrate 

acetylcarnitine (C2) 0.0016 9 HMDB0000201 Fatty Acid Metabolism (Acyl Carnitine, Short Chain) Lipid 

hypoxanthine 0.0017 16 HMDB0000157 Purine Metabolism, (Hypo)Xanthine/Inosine containing Nucleotide 

malate 0.0028 8 HMDB0000156 TCA Cycle Energy 

fumarate 0.0054 9 HMDB0000134 TCA Cycle Energy 

bilirubin degradation product, C17H18N2O4 (1)** 0.0062 16  Partially Characterized Molecules Partially Characterized Molecules 

3-aminoisobutyrate 0.0069 16 HMDB0002166 Pyrimidine Metabolism, Thymine containing Nucleotide 

homovanillate (HVA) 0.014 12 HMDB0000118 Tyrosine Metabolism Amino Acid 

3-methyladipate 0.015 20 HMDB0000555 Fatty Acid, Dicarboxylate Lipid 

bilirubin (Z,Z) 0.016 13 HMDB0000054 Hemoglobin and Porphyrin Metabolism Cofactors and Vitamins 

isobutyrylcarnitine (C4) 0.019 17 HMDB0000736 Leucine, Isoleucine and Valine Metabolism Amino Acid 

N-lactoyl phenylalanine 0.026 6 HMDB0062175 Phenylalanine Metabolism Amino Acid 

cysteine 0.027 5 HMDB0000574 Methionine, Cysteine, SAM and Taurine Metabolism Amino Acid 

N-lactoyl leucine 0.03 8 HMDB0062176 Leucine, Isoleucine and Valine Metabolism Amino Acid 

N-acetyltaurine 0.041 9 HMDB0240253 Methionine, Cysteine, SAM and Taurine Metabolism Amino Acid 

bilirubin (E,Z or Z,E)* 0.042 11 HMDB0000488 Hemoglobin and Porphyrin Metabolism Cofactors and Vitamins 

N-lactoyl valine 0.043 7 HMDB0062181 Leucine, Isoleucine and Valine Metabolism Amino Acid 

Lower in cases      

PE(P-16:0/18:2)* 0.0019 -13 HMDB0011343 Plasmalogen Lipid 

tyramine O-sulfate 0.0083 -23 HMDB0006409 Tyrosine Metabolism Amino Acid 

PE(P-18:0/18:2)* 0.0095 -12 HMDB0011376 Plasmalogen Lipid 

P-values and mean percentage difference were calculated from case-control pairs within eight years to diagnosis in NSHDS (n=130). Significance levels were calculated by multivariate significance using loadings w and p (two-

sided, P-value w presented) (5, 28). * and ** denotes metabolites with putative identifications.  
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Table 3. List of overrepresented significant metabolites and the metabolic pathways they are 

predominantly related to. 

Pathway TCA cycle Warburg effect 
Cysteine 

metabolism 

Pyruvate 

metabolism 
Gluconeogenesis 

Tyrosine 

metabolism 

Significant 

metabolites 

aconitate 

α-ketoglutarate 

fumarate 

malate 

pyruvate 

α-ketoglutarate 

fumarate 

lactate  

malate 

pyruvate 

α-ketoglutarate 

cysteine 

pyruvate 

 

 

lactate 

malate 

pyruvate 

 

 

α-ketoglutarate 

lactate 

pyruvate 

 

 

α-ketoglutarate 

fumarate 

homovanillate 

S-adenosylhomo-

cysteine 

Number of 

metabolites 

detected for 

each pathway 

 

10 14 7 7 7 13 

P-value 0.002 0.01 0.03 0.03 0.03 0.04 

Hypergeometric test was used to calculate significance (one-sided). 
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