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Abstract

Purpose
To determine whether recurrent GBMs are metabolically distinct from primary GBM, and whether patient
plasma can be used as a liquid biopsy to re�ect this difference.

Methods
In a single center cohort study, tissue and blood samples from 15 patients with glioblastoma (9
glioblastoma tissues at diagnosis, 3 pairs of tissue, and 6 pairs of plasma specimens at diagnosis and at
recurrence) were analyzed.

Results
Several metabolites had signi�cant alternations in both tumor and plasma specimens. In the tissue, the
following representative metabolites had a signi�cant increase in peak intensity at recurrence compared
to diagnosis: N-alpha-methylhistamine (p = 0.037), glycerol-3-phosphate (p = 0.029), phosphocholine (p = 
0.045), and succinic acid (p = 0.025). In patient plasma, metabolites that signi�cantly increased at
recurrence included: 2,4-di�uorotoluene (p = 0.031), diatrizoic acid (p = 0.032), indole-3-acetate with (p = 
0.029), urea (P = 0.025), pseudouridine (p = 0.042), and maltose (p = 0.035). Metabolites that signi�cantly
decreased in plasma at recurrence were: eicosenoic acid (p = 0.017), glucose-1-phosphate (p = 0.017), FA
18:2 (linoleic acid) (p = 0.017), arginine (p = 0.036), fatty acids 20:3 (homo-gamma-linolenic acid (p = 
0.036), galactosamine (p = 0.007), and FA 18:3 (linolenic acid) (P = 0.012). Principal component analysis
showed that the metabolomic pro�les differ between tumor tissue and patient plasma.

Conclusions
Our data suggest that metabolomic pro�les of human GBM tissue and patient plasma differ at diagnosis
and at recurrence. Many metabolites involved in tumorigenesis and metabolomic �exibility were
identi�ed. A larger study using targeted metabolomic assay is warranted to measure the levels of these
metabolites, which will help identify the metabolomic signatures in both GBM tissue and patient plasma
for risk strati�cation, clinical outcome prediction, and development of new adjuvant metabolomic-
targeting therapy.

Introduction
Glioblastoma (GBM) is a fatal tumor with a median survival of less than 2 years.[1] Most GBMs respond
to initial therapeutic interventions of surgical resection and chemoradiation[2, 3] but eventually, all
patients will relapse. The range of progression free survival is wide, from a few months to more than 2
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years. Understanding the differences in molecular features of GBM and its microenvironment at
diagnosis and at recurrence can help identify biomarkers to monitor for treatment response, understand
pathogenesis of treatment resistance, and predict outcome. It may also help identifying new therapeutic
targets.

Surgical resection and standard chemoradiation improve survival but this initial effect is limited by the
development of resistance.[4] While therapy resistance and the aggressiveness of GBM have been
investigated at the genomic and transcriptomic levels, less is known about the metabolic phenotypes.
Altered metabolism is a hallmark of cancer.[5] Metabolomic changes are critical for tumor cells to
undergo conversion to aggressive and treatment-resistant phenotypes.[6] Recurrent, therapy resistant
tumors develop within the high dose radiation �eld, and the ability of recurrent tumors to resist therapy is,
in part, due to metabolomic alternation within the tumor[7]. Tumor metabolism is in�uenced by both
cancer cell-intrinsic information (genome, epigenome, proteome, post-translational modi�cations) and
cell-extrinsic cues from the tumor microenvironment.

Targeting the metabolome has succeeded in a number of cancers including high-grade gliomas.[7]
Glucose uptake can inform prognosis in a variety of cancers including glioma.[8] Metabolomic pro�ling in
GBM tissue may provide important information on the differences in tumor responses to initial standard
of care therapies and for understanding the differences between tumors at diagnosis and at recurrence.
This may help predict tumor aggressiveness and patient prognosis. Early data from several metabolomic
studies in small cohorts of GBM patients have yielded promising results.[9, 10] GBM is a heterotrophic
tumor but is also known to have highly heterogeneous lipid metabolism[11] and favors heterotrophy[12,
13]. However, the comprehensive metabolomic pro�le including metabolites, biogenic amines, and
lipidomes have not been studied. The comparison between GBM tissue and patient blood specimens has
not been performed. Therefore, it is unclear if patient blood can be used as a surrogate to predict tumor
status in the brain.

We performed a study to test the hypothesis that recurrent GBMs are metabolically distinct from GBM at
initial diagnosis, and patient plasma can be used as a liquid biopsy to re�ect this difference. Using
untargeted mass spectrometry, we pro�led the metabolomes, lipidomes, and biogenic amines of human
glioblastoma tissue and patient plasma both at diagnosis and at recurrence, and correlated metabolomic
information with clinical data. We identi�ed patterns of metabolomic remodeling in tumor tissue and
patient plasma. These changes can pave the way for metabolomic signature identi�cation for treatment
response monitoring, risk strati�cation, and outcome prediction.

Methods

Glioblastoma tissue specimens
The UC Davis Pathology Biorepository at the Comprehensive Cancer Center provides high quality and
well-characterized human brain tumor tissue specimens. In this centralized biorepository, all samples
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were collected after patients’ informed consents and underwent quality control by a clinical
neuropathologist. From January 2010 to July 2022, a total of 12 fresh frozen GBM specimens were
identi�ed and obtained from the biorepository for metabolomic analysis. Limited deidenti�ed clinical
information was abstracted from the medical records within the scope of the approved IRB protocol of
the biorepository.

Plasma collection
The UC Davis Department of Neurosurgery (Dr. Orin Bloch Laboratory) has an IRB approved protocol to
collect blood samples from GBM patients at diagnosis and throughout treatment, along with access to
clinical information of these patients. All procedures performed in this study were in accordance with the
1964 Helsinki Declaration and its later amendments or comparable ethical standards. From January
2018 to July 2022, a total of 12 plasma specimens were selected for metabolomic analysis.

Untargeted metabolomic, biogenic amine, and lipidomic
analyses for GBM tissue and patient plasma

Sample preparation and extraction
Metabolites and biogenic amines were extracted as previously described.[14] Blood plasma or serum was
extracted following the protocols �rst published by V. Matyash et al.[15] Using this protocol, lipid extracts
in methyl tert-butyl ether phase (MTBA) were separated from proteins and polar hydrophilic small
molecules (in the methanol/water phase) in a way that the lipids were found in the top layer of liquid-
liquid separations, rather than in the bottom layer. Decanting the top layer therefore ensured that the
extracts were not contaminated by proteins or polar compounds. The top layer was used for lipidomics
while the bottom layer (methanol/water phase) was very suitable for the hydrophilic interaction liquid
chromatography-mass spectrometry (HILIC-MS) investigations.

Data Acquisition
Metabolite pro�ling using HILIC-MS was performed on the Agilent 1290 UHPLC/Sciex TripleTOF 6600
mass spectrometer. Metabolites (5 µL) were separated using Waters AcquityUPLC BEH amide column
(1.7µm, 2.1 x 50 mm) and a binary mobile phase (solvent A: 100% LC-MS grade H2O with10 mM
ammonium formate and 0.125% formic acid; solvent B 95:5 (v/v) ACN:H2O with 10 mM ammonium
formate with 0.125% formic acid). Data were acquired in data-dependent acquisition mode with a mass
range 50-1500 m/z for MS1 and 40-1000 m/z for MS2.

Lipidomic data were acquired using the Agilent 1290 UHPLC/Agilent 6530 QTOF (for positive mode) and
6550 QTOF (for negative mode) mass spectrometer. Waters Acquity Premier BEH C18 column (1.7µm, 2.1
x 50 mm) was used for chromatographic separation applying binary mobile phase system (Positive
mode: mobile phase A: 60:40 v/v acetonitrile:water + 10 mM ammonium formate + 0.1% formic acid;
mobile phase B: 90:10 v/v isopropanol:acetonitrile + 10 mM ammonium formate + 0.1% formic acid.
Negative mode: mobile phase A: 60:40 v/v acetonitrile:water + 10 mM ammonium acetate; mobile phase
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B: 90:10 v/v isopropanol:acetonitrile + 10 mM ammonium acetate). MS scan range and mass resolution
for positive mode were 120–1200 m/z and 10,000, respectively, and 60–1200 m/z and 20,000 for
negative mode.

Primary metabolism data were acquired by gas chromatography (GC)-MS using an Agilent 7890A GC
coupled to a Leco Pegasus HT TOF mass spectrometer as previously described. [14] Brie�y, extracts were
dried down, derivatized by methoxyamination and trimethylsilylation, and injected in splitless mode with
a temperature gradient from 50-330oC. Mass spectra were acquired at 17 Hz from 85–500 Da.[14]

Raw data processing and metabolite annotation
Acquired raw LC–MS and LC-MS//MS data were processed as previously described.[14] Raw CSH-C18-
TOF (for lipidomics) and HILIC-TTOF (for polar metabolites pro�ling) MS data were processed using MS-
Dial 4.9, data-independent MS/MS deconvolution for comprehensive metabolome analysis, for
untargeted peak-picking, peak alignment and annotation of related peaks.[14] Raw GC-TOF MS data �les
were processed using ChromaTOF and metabolomics BinBase database.[14]

Statistical analysis
Descriptive statistics were used to characterize baseline patient and treatment characteristics. Individual
metabolite abundance comparisons at diagnosis and at relapse were performed using GraphPad Prism 9
(version 9.5, San Diego, CA). MetaboAnalyst 5.0 MetaboAnalyst 5.0 (McGill University, Montreal, QC,
Canada) (http://www.metaboanalyst.ca) [16] was used to generate principal component analysis (PCA),
score plots, heat maps and volcano plots. The processed peak heights with their annotation were
imported to MetaboAnalyst, normalized to the total sample median and auto scaled. Paired or unpaired
Student’s t-Test was used to identify signi�cantly altered metabolites between the compared groups (p-
value of less than 0.05 was considered signi�cant). ChemRICH (Chemrich.�ehnlab.ucdavis.edu), a
statistical enrichment approach based on chemical similarity rather than sparse biochemical knowledge
annotations was used to group the metabolites. ChemRICH sets have a self-contained size where p-
values do not rely on the size of a background database.

Results

Cohort description
Patient demographics are described in Table 1. In the tissue cohort, a total of 12 specimens from 9
patients were analyzed (9 specimens at diagnosis, 3 of which had paired specimens at recurrence). The
mean age at diagnosis was 49 years. There was a male predominance of 67%. Most of this cohort was
non-Hispanic White in race/ethnicity.
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Table 1
Patient characteristics

Total cohort n = 15    

GBM tissue, n = 9    

Age at diagnosis (years, range) 49 (31–60)  

Sex Male 6 (67%)

  Female 3 (33%)

Race/Ethnicity Non-Hispanic White 6 (67%)

  Hispanic/Latino 2 (22%)

  Not reported 1 (11%)

Plasma, n = 6    

Age at diagnosis (years) 54 (43–60)  

Sex Male 4 (67%)

  Female 2 (33%)

Race/Ethnicity Non-Hispanic White 4 (67%)

  Hispanic/Latino 1 (17%)

  Black 1 (17%)

IDH Wild type 6 (100%)

  Mutant 0

EGFR Ampli�cation 3 (50%)

  Negative 3 (50%)

MGMT Methylated 3 (50%)

  Unmethylated 3 (50%)

ATRX Retained 6 (100%)

PFS (months, range) 14 (6–24)  

OS (months, range) 17 (9–25)  

In the plasma cohort, a total of 12 paired specimens (diagnosis and at recurrence) from 6 GBM patients
were analyzed. The mean age was 54 years. There was a male predominance of 67%. The original GBM
tissue pathology all showed IDH wild type. Additional pathology features including EGFR, MGMT, and
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ATRX status are shown in Table 1. The mean progression free survival of this cohort was 14 months. The
mean overall survival was 17 months.

Unsupervised exploratory analysis on GBM tissue
metabolomic, biogenic amine, and lipidomic pro�ling
The GBM tissue cohort included 9 tumor tissue specimens at diagnosis, 3 of which had paired tissue
specimens at recurrence. A complete list of signi�cantly altered metabolites is available in Supplemental
Table 1. A summary of these changes is shown in Fig. 1. Principal component analysis (PCA) showed
two grouped clustering trends with signi�cant overlap (Fig. 1, A). A heat map of the top 50 signi�cantly
altered metabolites, lipids, and biogenic amines, showed differences in cluster trends between tissue
samples at diagnosis and at recurrence (Fig. 1, B). There were several signi�cantly upregulated
compounds (Fig. 1, C) in the lipidomic and biogenic amine analysis. Also included in Fig. 1 are scattered
column plots for compounds with signi�cant change in abundance at diagnosis and at recurrence (Fig. 1,
D), which included N-alpha-methylhistamine (P = 0.037), 2,3-dihydroxypropyl dihydrogen phosphate with
(P = 0.029), CE22:6 (P = 0.021), LPE 20:4 (P = 0.004), LPE 22:6 (P = 0.011), LPE 22:4 (P = 0.041), CE 20:3
(P = 0.031), CE 16:1 (P = 0.003), phosphocholine with a (P = 0.045), and succinic acid (P = 0.025).

When analyzing the three paired tissue specimens at diagnosis and at recurrence, again the PCA plot
demonstrated two overlapping clusters (Fig. 2, A). The heat map showed more visible separation between
tissue samples at diagnosis and at relapse (Fig. 2, B). We found 19 compounds that were signi�cantly
altered. Volcano plot (using p-value < 0.05 and Fold Change cutoff 1.5) revealed that 3 metabolites were
upregulated, and 6 metabolites were down regulated (Fig. 2, C). A complete list of signi�cantly altered
metabolites is available in Supplemental Table 2. Among these metabolites, we found that the level the 2-
methylbutyryl-L-carnitine (P = 0.02) and an unknown compound with eluting at 1.84 minutes with
accurate mass 186.1075 Da (P = 0.04) were signi�cantly higher in primary tumors than recurrent GBM
(Fig. 2, D).

Unsupervised exploratory analysis on plasma metabolomic,
biogenic amine, and lipidomic characteristics
All 6 patients enrolled in this cohort had paired plasma specimens at diagnosis and at recurrence.
However, these were not the same patients whose GBM tissue were studied in the cohort above. PCA
analysis showed evident separation between the metabolomic pro�les at diagnosis and at recurrence,
except for patient 1, whose metabolomic pro�les were similar at diagnosis and at recurrence (Fig. 3, A).
The heatmap of the top 50 altered metabolites showed visible differences between plasma at diagnosis
and at recurrence (Fig. 3, B). Again, the metabolite pro�le of patient #1 at recurrence was similar to its
status at diagnosis, while the other patients’ pro�les demonstrated differences.

There were 61 compounds that were altered signi�cantly between diagnosis and recurrence in the patient
plasma. The representatives were shown in Fig. 3, C. A complete list of signi�cantly altered metabolites is
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available in Supplemental Table 3. The progression free survival of these 6 patients was shown in Fig. 3,
D. Using ChemRich, we were able to identify that based on chemical structural similarity, amino acids and
unsaturated phosphatidylcholines were signi�cantly up-regulated and unsaturated fatty acids and
phosphatidylethanolamines were down-regulated (Fig. 4, E). The compounds with signi�cantly increased
abundance at recurrence included 2,4-di�uorotoluene (P = 0.031), diatrizoic acid (P = 0.032), indole-3-
acetate with (P = 0.029), urea (P = 0.025), pseudo uridine (P = 0.042), and maltose (P = 0.035). The
compounds with signi�cantly decreased abundance included FA 20:1 (eicosenoic acid) (P = 0.017),
glucose-1-phosphate (P = 0.017), FA 18:2 (linoleic acid) (P = 0.017), arginine (P = 0.036), FA 20:3 (homo-
gamma-linolenic acid) (P = 0.036), galactosamine (P = 0.007), and FA 18:3 (linolenic acid) (P = 0.012)
(Fig. 3, F).

Combined analyses on glioblastoma tissue and patient
plasma at diagnosis and at recurrence
Both the PCA and heatmap analyses showed separate metabolic pro�les from tissues at diagnosis and
plasma at diagnosis (Fig. 4, A and B). Similarly, the metabolomic pro�le from tissue at recurrence
separated from plasma at recurrence (Fig. 4, C and D). When placing all four groups of data in one plot
(Fig. 4, C and D), we again saw inter-specimen differences between the metabolomic pro�les in tissue
and plasma, but there were no intra-specimen differences at diagnosis and at recurrence.

Discussion
In this study, we investigated the comprehensive untargeted metabolomic, lipidomic, and biogenic amine
pro�les of GBM tissue and patient plasma specimens at diagnosis and at recurrence. Despite a small
overall cohort size, our result showed that many metabolites were altered in GBM tissue and patient
plasma at recurrence when compared to diagnosis. Our study demonstrated the feasibility of studying
GBM tissue and patient blood specimen longitudinally using metabolomic methodology.

GBM display marked metabolic heterogeneity in their microenvironments.[17] Both glucose and lipid
metabolisms are abnormally regulated in GBM tissues.[18, 19] In our study, we observed several
metabolites that had changed in abundance at recurrence when compared to diagnosis. Many of these
metabolites were also identi�ed in a recently published study on the metabolic hallmarks of gliomas.[20]
Speci�cally, we identi�ed 2-methylbutyryl-L-carnitine and ecgonine that were known to re�ect tumor
metabolic �exibility in brain tumor tissues at diagnosis and at recurrence. Carnitine serves as a “shuttle-
molecule” that allows fatty acid acyl moieties to enter the mitochondrial matrix for oxidization via the
beta-oxidation pathway[21]. We found that the 2-methylbutyryl-L-carnitine level was signi�cantly reduced
in recurrent tumors compared to initial GBM tissue. Carnitine transporter modulation has been thought to
be a potential target for cancer treatment.[21] In addition, we also found many altered levels of lipids in
GBM tissue at recurrence when compared to initial diagnosis. Our �ndings are in line with previously
published data suggesting lipid metabolic alterations in GBM.[22] In addition, mannitol was upregulated
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in recurrent tissue compared to the original tumor, suggesting BBB permeability changes after surgical
resection and chemoradiation. This may suggest mannitol as a vehicle to guide targeted treatment.

The list of metabolites with signi�cantly altered abundance and fold changes differ when comparing the
unpaired samples (9 tissue samples at diagnosis vs 3 tissue samples at recurrence) and the paired
samples (3 tissue samples from the same patients at diagnosis and at recurrence). Also, despite a small
sample size, the paired tissues samples at diagnosis and at recurrence demonstrate a clearer trend in the
differences in compound abundance. Therefore, paired samples are recommended in future studies given
their better capacity as an internal control.

In both the PCA plot from patient plasma and the heatmap generated from the top 50 altered metabolites,
we found that the metabolomic pro�les differed between specimens at diagnosis and at recurrence,
except for one patient with early recurrence. The metabolomic pro�le of this patient’s plasma at diagnosis
was different from the rest of the plasma specimens at diagnosis and was similar to the group pattern at
recurrence. This interesting �nding needs to be validated in a larger cohort of patients with treatment
refractory tumors and early recurrence. This metabolomic signature may indicate a high risk and poor
prognosis.

In the plasma cohort, we found several signi�cantly altered metabolites with large fold changes. For
example, 2,4-di�uorotoluene increased in patient plasma at recurrence; this metabolite is incorporated
into DNA and undergoes replication by DNA polymerase enzymes.[23] The change suggests rapid growth
of recurrent tumors. Diatrizoic acid also increased at recurrence. However, this is a contrast agent used
during imaging. Indole-3-acetate is an indol-3-yl carboxylic acid anion and has a role as a human
metabolite. We again found several other compounds involved in glucose and lipid metabolism. The
overall pattern changes of these compounds need to be validated in targeted metabolomics for their
potential candidacy as biomarkers for treatment response and tumor recurrence. The enrichment of these
metabolites in recurrent GBM tissue may suggest that targeting metabolic activity can be a potential
adjuvant targeted treatment for GBM patients.

Interestingly, when plotting all four groups in the same PCA plot, the brain tissue and plasma specimens
separated distinctly from each other regardless of disease status (Fig. 4). There was no overlap between
specimen types and, the intra-specimen comparison at diagnosis and at recurrence became smaller. This
suggested that plasma metabolite patterns are not re�ective of brain tumor tissue, and therefore, two sets
of biomarker panels are necessary for tissue and plasma. The pattern of tumor microenvironment can be
further altered through end organ metabolism in the plasma. Also, plasma is affected by systemically
administered medication for peri-operative care.

Our study has limitations. First, we must acknowledge that the sample size in this pilot study is small.
Second, although we have paired data within the brain tissue and plasma cohorts at diagnosis and at
recurrence, we were unable to identify if the tissue and plasma specimens were from the same patients
due to the restrictions of the UC Davis biorepository consents for GBM tissue. In addition, we did not have
normal brain tissue or plasma for comparison. These limitations prevented us from identifying small
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changes in metabolite abundance. Therefore, only signi�cant, and large fold changes were analyzed. A
bigger cohort with paired specimens will be emphasized in future studies. The current study paved the
way for the next targeted metabolomics, lipidomic, and biogenic amine studies validating and further
investigating these pro�les.

Conclusions
Our data suggest that metabolomic pro�les of human GBM tissue and patient plasma differ at diagnosis
and at recurrence. Many metabolites involved in tumorigenesis and metabolomic �exibility were
identi�ed. A larger study using target metabolomic assay is warranted to measure the levels of these
metabolites, which will help identify the metabolomic signatures in both GBM tissue and patient plasma
for risk strati�cation, clinical outcome prediction, and development of new adjuvant metabolomic-
targeting therapy.
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Figure 1

Comparison of metabolomic pro�les of 9 glioblastoma tumor tissue specimens at diagnosis and 3 tissue
specimens at recurrence. (A) Principal component analysis (PCA) plot showing different trends of
metabolomic characteristics between tissues at diagnosis (purple) and tissue at recurrence (light blue).
(B) Heatmap of the top 50 altered metabolites at diagnosis and at recurrence. Blue indicates decreased
peak value and maroon indicates increased peak value of each compound listed. (C) Volcano plot of up
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regulated metabolites in red and down regulated metabolites in blue in glioblastoma tumor tissue
specimens at recurrence comparing to at diagnosis using p-value of <0.05 and fold change cutoffs of
1.5. (D) Plots of individual values for each metabolite demonstrating peak value changes at diagnosis
and at recurrence in brain tumor tissue. Values were determined as peak heights from LC/MS analysis.
Single asterisk indicates a p value of <0.05. Double asterisks indicate a p value of <0.01.

Figure 2
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Comparison of metabolomic pro�les of 3-paired fresh frozen brain tumor tissue specimens at diagnosis
and at recurrence. (A) Principal component analysis (PCA) plot showing different trends of metabolomic
characteristics between tissues at diagnosis (purple) at tissue at recurrence (light blue). (B) Heatmap of
the top 50 altered metabolites. Blue indicates decreased peak value and red indicates increased peak
value of each compound listed. (C) Volcano plot of up regulated metabolites in red and down regulated
metabolites in blue in glioblastoma tumor tissue specimens at recurrence comparing to at diagnosis
using p-value of <0.05 and fold change cutoffs of 1.5. (D) Plots of individual values for each metabolite
demonstrating peak value changes at diagnosis and at recurrence in brain tumor tissue. Values were
determined as peak heights from LC/MS analysis. Single asterisk indicates a p value of <0.05. Double
asterisks indicate a p value of <0.01.
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Figure 3

Comparison of metabolomic pro�les in plasma of glioblastoma patients at diagnosis and at recurrence.
(A) Principal component analysis (PCA) plot showing different trends of metabolomic characteristics
between tissues at diagnosis (purple) at tissue at recurrence (light blue). (B) Heatmap of the top 50
altered metabolites. Blue indicates decreased peak value and red indicates increased peak value of each
compound listed. (C) Volcano plot of up regulated metabolites in red and down regulated metabolites in
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blue in glioblastoma tumor tissue specimens at recurrence comparing to at diagnosis using p-value of
<0.05 and fold change cutoffs of 1.5. Single asterisk indicates a p value of <0.05. Double asterisks
indicate a p value of <0.01. (D) Progression free survival of 6 patients whose plasma samples were
analyzed.

(E) Signi�cantly altered metabolite clusters by ChemRich, a statistical enrichment approach based on
chemical similarity. The size of the dots is in proportion with the level of alteration in each cluster of
metabolites. Red indicates increased peak value and blue indicates decreased peak value. (F) Box plots
demonstrating metabolite peak value changes at diagnosis and at recurrence in brain tumor tissues.
Values were determined as peak height from LC/MC analysis. Single asterisk indicates a p value of <0.05.
Double asterisks indicate a p value of <0.01.
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Figure 4

Comparison of metabolomic pro�les in glioblastoma tumor tissue and patient plasma. (A, C, E) Principal
component analysis plots comparing tissue vs plasma specimens at diagnosis, tissue vs plasma at
recurrence, and all four specimen groups. (B, D, F) Heatmaps of the top 50 signi�cantly altered
metabolites in the comparisons correlating with A, C, and E, respectively.
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