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Abstract 
Background: Central nervous system tumors are the most common solid tumors in childhood. Treatment paradigms 
for pediatric central nervous system malignancies depend on elements including tumor histology, age of patient, and 
stage of disease. Radiotherapy is an important modality of treatment for many pediatric central nervous system 
malignancies. 
Summary: While radiation contributes to excellent overall survival rates for many patients, radiation also carries 
significant risks of long-term side effects including neurocognitive decline, hearing loss, growth impairment, 
neuroendocrine dysfunction, strokes, and secondary malignancies. In recent decades, clinical trials have 
demonstrated that with better imaging and staging along with more sophisticated radiation planning and treatment 
set-up verification, smaller treatment volumes can be utilized without decrement in survival. Furthermore, the 
development of intensity-modulated radiotherapy and proton-beam radiotherapy has greatly improved conformality 
of radiation.  
Key Messages: Recent changes in radiation treatment paradigms have decreased risks of short- and long-term 
toxicity for common histologies and in different age groups. Future studies will continue to develop novel radiation 
regimens to improve outcomes in aggressive central nervous system tumors, integrate molecular subtypes to tailor 
radiation treatment, and decrease radiation-associated toxicity for long-term survivors. 
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Introduction 
With over 2,750 cases per year in the United States, central nervous system (CNS) tumors comprise a heterogeneous 
group of tumors with diverse histologies [1]. For many pediatric CNS tumors, such as ependymoma and 
medulloblastoma, progress in multimodal therapy has led to dramatic improvements in survival over the last five 
decades [1, 2, 3]. On the other hand, there remain pediatric CNS malignancies, such as pediatric high-grade gliomas 
(pHGGs) or diffuse midline gliomas (DMGs), for which survival remains poor despite intensive multimodal therapy [4]. 
 
Radiation therapy is a critical component of multimodality treatment of many pediatric CNS tumors [2, 3, 4, 5, 6, 7, 8]. 
The radiation field and dose are defined primarily based on histology and staging for curative intent [9, 10]. In the 
setting of recurrence, radiation can also play an important role in prolonging survival and palliating symptoms. CNS 
radiation carries acute or short-term side effects; most of them will resolve after completion of radiation, but some, 
such as brain or brainstem necrosis, can carry significant morbidity [11, 12]. Moreover, radiation increases the risk of 
significant long-term toxicities, including neurocognitive decline, hearing loss, endocrine dysfunction, growth effects, 
vascular complications, and secondary malignancies [11, 13, 14, 15, 16, 17].  
 
Thus, delivering optimal radiation doses while limiting doses to organs at risk is a priority for pediatric patients with 
CNS malignancies. In the last three decades, there have been considerable advancements in radiation treatment 
delivery and planning, including intensity-modulated radiotherapy (IMRT), volumetric-modulated arc therapy (VMAT), 
and proton-beam radiotherapy, that may achieve better therapeutic ratios (i.e., difference between tumor control 
and normal tissue toxicity) when compared to 3-dimentional conformal radiotherapy (3DCRT) [18]. We herein review 
modern radiotherapy considerations for CNS tumors in pediatric patients and discuss the latest evidence-based 
treatment paradigms for the most common pediatric CNS tumors. 
 
Modalities of radiation treatment 
Photon radiotherapy 
For many decades, pediatric patients were treated with conventional planning or 2D radiotherapy, where x-ray films 
were used to define radiation fields, leading to significant dose to normal structures. With the introduction of CT-
based radiation planning, 3D conformal techniques allowed for improved planning target volume (PTV) delineation. 
By using shaped radiation fields from different directions, organs at risk were better spared compared to 2D 
radiotherapy without loss of tumor control [19]. In recent decades, intensity-modulated radiotherapy (IMRT) and 
volumetric-modulated arc therapy (VMAT) have been increasingly used. IMRT and VMAT deliver radiation that is 
modulated using multi-leaf collimators (MLC) in static or dynamic arrangements [18]. These plans are generated using 
inverse planning, in which radiation prescription dose, PTV coverage, and dose constraints for organs at risk are 
specified upfront, and these treatment objectives are optimized. IMRT and VMAT allow for a more conformal dose 
distribution to the PTV and lower doses to adjacent organs at risk; however, treatment planning requires more time 
and more normal tissue will receive lower doses of radiation [20, 21]. Retrospective studies have found less hearing 
loss after IMRT/VMAT compared to conventional or 3D conformal radiotherapy [22], while other side effects, such as 
hematologic toxicity or neurocognitive decline, do not appear significantly different between IMRT/VMAT and 3D 
conformal radiotherapy [23, 24].  
 
In addition, further improved patient immobilization techniques (either frame-based or frameless) have allowed for 
the development of stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) for pediatric CNS tumors. Using 
either a linear accelerator (LINAC) or GammaKnife (a radiosurgical system using multiple cobalt-60 gamma radiation 
sources), SRS or SRT allows for accurate delivery of high radiation dose (≥5 Gy) per fraction that is extremely 
conformal, thus leading to decreased dose to normal brain tissue. In addition to treating brain metastases from 
extracranial solid tumors, these techniques have been used for low-grade gliomas and various benign histologies as 
well as in the setting of boosting gross residual disease or treatment of recurrent tumors [25, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 35].  
 
Electron radiotherapy 
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Electron radiotherapy is a form of external beam radiotherapy that can be used to treat superficial tumors. Electrons 
are negatively-charged particles and electron radiotherapy leads to rapid dose fall-off distally and thus spares deeper 
organs at risk. Although uncommonly used for treatment of pediatric CNS tumors, electron spinal fields can be 
considered for craniospinal irradiation (CSI) to limit dose to anterior organs at risk, such as esophagus, heart, and 
lungs [36, 37]. 
 
Proton radiotherapy 
Another form of external beam radiotherapy, proton-beam radiotherapy takes advantage of physical and biological 
properties of the positively charged particle to allow for favorable dose distributions by having no exit dose, leading 
to reduced radiation doses to normal organs [18]. Proton radiotherapy conformality and delivery can be modulated 
by passive scatter and pencil 
beam scanning (PBS) techniques with PBS providing more conformal doses by controlling dose delivery to proximal 
and distal edges [20]. While there are circumstances in which passive scatter may be beneficial, most centers are now 
using PBS [20]. Pediatric CNS tumors are frequently treated using proton-beam radiotherapy given these dosimetric 
advantages and studies suggest that proton-beam radiotherapy improves acute- and long-term toxicities, from 
neurocognitive decline to hearing loss, compared to photon radiotherapy [38, 39, 40, 41, 42]. While there is a 
theoretical benefit of proton-beam radiotherapy in decreasing the risk of secondary malignancies, real-world data 
have not yet found a significant difference albeit with relatively short follow-up [43, 44]. There is a small amount of 
neutron contamination from proton-beam radiotherapy [45, 46]. While it remains unclear whether this leads to 
clinically meaningful toxicities, some studies suggest that the neutron contamination from proton-beam radiotherapy 
may contribute to earlier onset of secondary malignant neoplasms or vasculopathy [45, 46]. In addition, there are 
studies that characterize the risk of brainstem injury after proton-beam radiotherapy, which in recent years, appears 
to be small with appropriate dose constraints [10, 12, 47, 48, 49]. It has been hypothesized that the physical 
properties of protons and in particular, the increased linear energy transfer and relative biological effectiveness at 
the end of range, may contribute to brainstem toxicity [12]. Thus, the most recent COG ependymoma protocol, 
ANCS0831, ultimately recommended two different dose constraints: 50% of the brainstem receiving ≤61 Gy or 52.4 
Gy when using photons or protons, respectively (NCT01096368). Further research remains important to more fully 
characterize the benefits and potential of proton-beam radiotherapy compared with photon radiotherapy. 
 
Because protons need to be generated by cyclotrons or synchrotrons, there are significant costs to building proton 
treatment centers, thus leading to a limited number of facilities within the United States and around the world [20, 
50]. A recent study found that there are racial disparities in the use of proton radiotherapy for patients enrolled on 
Children’s Oncology Group trials with black patients being less likely to receive proton-beam radiotherapy compared 
to non-Hispanic white patients [51]. Thus, future work remains important to improve access to proton-beam 
radiotherapy, particularly given the potential benefits for long-term survivors. 
 
Brachytherapy 
Brachytherapy is characterized by the use of sealed radiation sources to provide localized radiotherapy that often has 
favorable dosimetric profiles to neighboring normal tissues. Brachytherapy for pediatric CNS tumors remain 
uncommon, with the largest published cohorts in pediatric patients with low-grade gliomas [52, 53]. CNS 
brachytherapy leads to excellent long-term survival outcomes in pediatric low-grade gliomas and one study found 
that larger tumors (>15 cc) were more likely to recur after brachytherapy [52, 53]. In addition, CNS brachytherapy can 
also be considered as re-irradiation for tumor recurrence [54]. The most frequent sequelae after CNS brachytherapy 
for pediatric patients remains brain necrosis [55]. 
 
Radiation treatment considerations by histology 
 
Medulloblastoma 
Traditionally in North America, patients with medulloblastoma are risk-stratified by whether they have metastatic 
disease (in particular, CNS dissemination) or residual disease >1.5cm2 [56]. For standard-risk medulloblastoma, 
patients receive CSI to 23.4 Gy with involved field boost to 54 Gy with weekly vincristine followed by adjuvant 
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chemotherapy, a treatment paradigm supported by a Phase III clinical trial [57]. Reduction of CSI dose from 36 Gy to 
23.4 Gy without chemotherapy is not appropriate as a prospective randomized trial demonstrated an increased risk 
of early relapse [58]. For high-risk medulloblastoma, patients receive CSI to 36 Gy with whole posterior fossa boost to 
54-55.8 Gy with concurrent chemotherapy (weekly vincristine with or without daily carboplatin) followed by adjuvant 
chemotherapy [59]. 
 
The most recent COG trial for standard-risk medulloblastoma demonstrated that involved-field boost was non-
inferior to whole posterior fossa boost; however, 18 Gy CSI was inferior to 23.4 Gy CSI [3]. With further molecular 
classification, studies have found that WNT pathway-activated medulloblastoma carry a very favorable prognosis 
[56], thus ongoing prospective studies are exploring whether lower CSI dose (<23.4 Gy) is possible for patients with 
standard-risk WNT pathway-activated medulloblastoma (NCT02724579, NCT02066220, and NCT01878617). A recent 
clinical study found that omission of CSI is not appropriate for WNT-pathway activated medulloblastoma [60]. For 
high-risk medulloblastoma, an ongoing SIOP-HR-MB prospective study will examine the role of hyperfractionated 
accelerated radiotherapy with 39 Gy CSI and involved field boost to 59.8 Gy in twice daily 1.3 Gy fractions based on a 
Milan prospective study that showed a 5-year EFS of 70% with a hyperfractionated accelerated radiotherapy 
approach [61, 62]. In addition, the SIOP-HR-MB will study boosting the tumor bed alone (rather than the entire 
posterior fossa), with consideration of a boost to metastatic sites if there are ≤3 residual lesions after induction 
chemotherapy [61].  
 
In recent years, proton-beam radiotherapy has become increasingly used for patients with medulloblastoma given 
the dosimetric advantages of decreased radiation doses to normal organs compared with photon radiotherapy. 
Studies have not found differences in relapse rates or overall survival between proton and photon radiotherapy [63]; 
however, a growing literature has found that proton-beam radiotherapy improves acute hematologic toxicity, 
neurocognitive outcomes, hearing loss, and endocrine dysfunction in patients with medulloblastoma [38, 39, 41, 42].  
 
There are efforts to limit radiotherapy for young children given long-term side effects, especially devastating 
neurocognitive decline; however, overall survival of young children with medulloblastoma remains lacking [64, 65]. 
The current paradigm has been to utilize systemic therapy, intrathecal or high-dose methotrexate, and/or autologous 
stem cell transplantation to delay or omit upfront radiotherapy, achieving five-year overall survival rates of 70% or 
higher for patients with localized disease and about 50% for patients with disseminated disease [66, 67, 68]. There 
are considerations for the use of consolidative radiotherapy after systemic therapy or salvage radiotherapy at the 
time of recurrence [69, 70]. In the future, molecular analyses may help inform which specific subgroups of infant 
medulloblastoma may benefit from more intensive therapy [64, 71]. 
 
Ependymoma 
Clinical trials have found that patients with intracranial ependymoma who receive adjuvant radiotherapy have 
excellent local control >70% and 5-year overall survival >80% for patients with gross total resection [2, 72]. For 
patients with localized ependymoma, involved field radiotherapy is used with a total dose of 54.0-59.4 Gy. For 
patients with disseminated disease, 36 Gy CSI is often used followed by involved field boost [73]. Patients with 
subtotal resection have poor outcomes after adjuvant radiotherapy (54.0-59.4 Gy) with 5-year EFS of 34-43% in 
recent prospective studies [2, 28, 72, 74]. A recent prospective clinical trial examined the role of stereotactic boost (8 
Gy in 2 fractions) to gross residual disease after conventional radiotherapy and found that it was safe, achieving 
favorable 5-year PFS of 58.1% and OS of 68.7% [28]. The ongoing SIOP-EP-II will further characterize the safety and 
efficacy of a stereotactic boost (8 Gy in 2 fractions) to unresected ependymoma (NCT02265770). Proton radiotherapy 
has also been found to be safe and result in similar outcomes compared to photon radiotherapy [75, 76, 77]; 
however, long-term toxicities comparing the two modalities remain limited [78]. 
 
Some prospective studies have examined the role of adjuvant chemotherapy or observation for young patients after 
surgery; however, there remains a high recurrence risk without adjuvant radiotherapy [2, 79, 80]. Retrospective 
studies suggest that adjuvant radiotherapy leads to survival benefit even in children with ependymoma under the age 
of 3 years [81, 82]. While a prior study found that patients with supratentorial ependymoma had more favorable 
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outcomes without adjuvant radiotherapy compared to those with infratentorial ependymoma [79], results from COG 
ACNS0121 demonstrated that observation for patients with gross totally resected grade 2 supratentorial 
ependymoma, which portends excellent overall survival, led to 5-year EFS of 61.4% [2]. Nonetheless, these studies 
suggest that omission of post-operative radiation may be possible in a subset of children [2, 79, 80]; however, a 
better understanding of the biological landscape of ependymomas is warranted to refine the current risk 
stratification system [2]. 
 
High-Grade Gliomas 
For pediatric patients with high-grade gliomas (HGGs), adjuvant radiotherapy is standard, with total doses of 54.0-
59.4 Gy [4, 83]. For patients with DMG, including diffuse intrinsic pontine glioma (DIPG), conventional radiotherapy to 
54 Gy in 30 fractions remains standard [84, 85]. Prior studies exploring radiation dose intensification and 
hyperfractionation showed no significant improvement in outcomes [86, 87, 88, 89]. Furthermore, many prospective 
studies have also explored the role of concurrent radiotherapy with various radiosensitizers or chemotherapeutic 
agents, but ultimately, none has shown significant improvement in outcomes [88, 89]. For DMG, studies have also 
explored the role of hypofractionated radiotherapy in an attempt to lessen treatment burden [88]. One prospective 
study failed to demonstrate non-inferiority for 39 Gy in 13 fractions when compared to 54 Gy in 30 fractions [84], 
while another matched cohort study found no differences in outcomes for patients receiving at least 50 Gy in 1.8-2.0 
Gy per fraction compared to those receiving 39 Gy in 13 fractions or 44.8 Gy in 16 fractions [90].  
 
Given that progression-free survival (PFS) and overall survival (OS) are exceedingly poor for progressive HGG, with 
median of 3.5 months and 5.6 months, respectively, recent studies have explored the role of re-irradiation for 
pediatric and young adult HGGs [91, 92, 93, 94]. While there is a variety of dose fractionation regimens, data suggest 
that re-irradiation is safe and can lead to median OS of 14 months [91, 92, 93, 94]. 
 
Intracranial germ cell tumors (GCTs) 
After multimodal treatment, including radiotherapy, five-year OS rates are greater than 90% and 75% for pure 
germinomas and NGGCTs, respectively [5, 6, 8, 9, 95]. For localized pure germinomas, radiation options include CSI or 
chemotherapy followed by whole ventricular irradiation (WVI) with or without involved-field boost. A recent 
prospective clinical trial demonstrated that combined chemotherapy and reduced field focal radiotherapy had similar 
OS when compared with CSI [6]. Given that studies examining relapse patterns after chemotherapy and focal 
radiotherapy in localized pure germinomas have reported recurrences around the ventricular system [6, 96], WVI is 
the current standard of care instead of focal radiation alone [9].  
 
For localized NGGCTs, the Children’s Oncology Group (COG) trial ACNS0122 showed the best outcomes after 
chemotherapy followed by CSI, with five-year EFS and OS of 84% and 93%, respectively [95]. Currently, chemotherapy 
followed by response-adapted reduced field focal radiotherapy or WVI with or without involved field boost remains 
controversial in localized NGGCTs with conflicting data regarding increased relapse in the spine [97, 98]. An ongoing 
clinical trial COG ACNS2021 examines chemotherapy followed by response-adapted WVI and spinal canal irradiation 
for localized NGGCTs (NCT04684368). Meanwhile, 54 Gy focal RT (without WVI) was most recently investigated in the 
SIOP CNS GCT II following dose-intense chemotherapy with adequate local control [99]. For patients with metastatic 
intracranial GCTs, CSI followed by involved field boost remains standard [100].  
 
In recent years, proton-beam radiotherapy has been studied for treatment of intracranial GCT and found to be safe 
and effective with comparable disease control albeit with short follow-up [101, 102, 103]. Given the high cure rates 
and the superior dosimetric distributions of protons [102, 104], proton-beam radiotherapy may be able to improve 
long-term toxicity, but long-term studies remain needed. 
 
 Atypical teratoid rhabdoid tumor 
Intracranial atypical teratoid rhabdoid tumors (ATRTs) are aggressive and patients have a 2-year PFS of 40-50% 
despite multimodal treatment, including surgical resection, intensive chemotherapy, radiotherapy, with or without 
autologous stem cell transplantation [7, 105]. Radiotherapy has been shown in retrospective studies to improve 
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outcomes for pediatric patients with ATRT [106, 107, 108]. Focal radiotherapy (50.4 – 54 Gy) can be considered for 
patients with localized disease, while CSI with involved field boost to a total dose of 50.4 – 54 Gy is recommended for 
patients with metastatic disease [7, 105]. For patients under the age of 3 years with metastatic disease, a lower CSI 
dose (23.4 Gy) can be considered if treated as per ACNS0333 while patients over the age of 3 years with metastatic 
disease generally receive 36 Gy CSI [105]. For patients under the age of 3 years, a total dose of 50.4 Gy can also be 
considered if treated as per ACNS0333 [105]. Focal proton radiotherapy for patients with localized disease results in 
similar outcomes to photon radiotherapy [109]. Prior data suggest that patients <3 years of age with ATRT have 
worse prognosis [108], potentially related to the omission of radiotherapy. A forthcoming randomized phase III 
clinical trial, SIOPE ATRT01, will investigate whether 3 cycles of high-dose chemotherapy are non-inferior to focal 
radiotherapy (54 – 59.4 Gy depending on extent of resection) as consolidation for patients between 1-3 years of age. 
All patients over the age of 3 years on SIOPE ATRT01 will continue to receive focal radiation for localized disease and 
CSI for disseminated disease. 
 
Low-grade glioma and benign histologies 
While radiotherapy was used frequently for low-grade gliomas (LGGs) and benign histologies, such as 
craniopharyngioma and meningiomas many decades ago, radiation is more frequently omitted now with better 
surgeries and systemic agent options [30, 110, 111, 112, 113, 114, 115, 116, 117, 118]. For low-grade gliomas, 
radiation is effective in improving symptoms, such as vision deficits, and can provide excellent local control [110, 111, 
119, 120, 121]. A recent prospective study found that a clinical target volume expansion of 5mm was adequate, with 
five-year PFS of 71% and OS of 93% [119]. For pediatric patients with craniopharyngiomas, when gross total resection 
is not possible, adjuvant radiotherapy can provide excellent local control [114, 115, 116]. Proton-beam radiotherapy 
can also be considered for these etiologies with comparable outcomes [122, 123, 124, 125]. A recent study with a 
small cohort of 18 pediatric patients with LGGs showed no significant decline in neurocognitive function after proton 
radiotherapy [126]. 
 
Future Directions 
In the coming decades, there are many exciting developments for the field of radiotherapy in the treatment of 
pediatric CNS tumors. There remain unanswered questions about the optimal dose- and fractionation-schemes along 
with radiation fields for different pediatric CNS tumors. There are ongoing investigations examining the role of dose 
de-escalation for standard-risk WNT pathway-activated medulloblastoma and decreasing the radiation field to WVI 
and spinal canal irradiation for localized NGGCTs (Table 1). These prospective studies will determine whether these 
treatments are effective and if so, will likely decrease long-term toxicities for these patients who have excellent 
prognoses. While radiation dose intensification and hyperfractionation did not improve outcomes in HGG [86, 87, 88, 
89], the SIOP-HR-MB prospective randomized clinical trial will study whether hyperfractionated accelerated 
radiotherapy may benefit patients with high-risk medulloblastoma (Table 1).  
 
In recent years, there have been dramatic improvements in radiation techniques with IMRT/VMAT providing more 
conformal treatments while proton-beam radiotherapy has favorable dosimetric advantages. Thus, in recent years, 
studies have found that these techniques can improve toxicity profiles [22, 38, 39, 40, 41, 42]. While there are some 
concerns about neutron contamination from proton radiotherapy and increased low dose radiation from 
IMRT/VMAT, the clinical relevance of these concerns remains poorly understood. Future studies are needed to 
understand the benefits of these newer radiation techniques and in particular, additional comparative studies are 
needed. The newly-created Pediatric Proton/Photon Consortium Registry will help provide much-needed and 
important long-term toxicity information [127].  
 
Although frequently used for recurrent CNS tumors, the use of SRS or SRT remains under-utilized for pediatric CNS 
malignancies [25, 35, 128]. Prospective studies are only recently starting to investigate the role of SRS or SRT in the 
upfront treatment of pediatric CNS tumors, such as supplemental radiation for sub-totally resected ependymoma 
[28]. Given the excellent conformality of SRS and SRT, further studies, such as SIOP-EP-II, are needed to understand 
whether these techniques can improve outcomes for pediatric CNS tumors (Table 1).  
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Conclusions 
Over the last five decades, improvements in the treatment of many pediatric CNS tumors have led to increased 
survival and reduced long-term toxicity. Radiotherapy plays an important role in curing children with CNS 
malignancies; however, radiation carries significant risks of acute- and long-term toxicities. With improved 
technology, modern radiation techniques and fields have contributed significantly to these efforts of improving the 
therapeutic ratio. Future efforts continue to be needed to improve post-radiation toxicity for long-term survivors 
while developing novel radiation regimens to improve outcomes in aggressive CNS tumors that continue to carry a 
poor prognosis. 
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Table 1. Ongoing and forthcoming clinical trials with investigative questions regarding radiation dose/fractionation or radiation fields 

 

Study Name (NCT # 

if applicable) 

Cooperative 

Group/Institution 

Phase Tumor Histology Treatment Arms/Strata with 

investigative questions regarding 

radiotherapy 

ACNS1422 

(NCT02724579) 

COG II Newly Diagnosed WNT-Driven 

Medulloblastoma 

18 Gy CSI with 36 Gy involved 

field boost (total dose of 54 Gy) 

ACNS2021 COG II Newly diagnosed non-germinomatous 

germ cell tumors 

Whole ventricular irradiation and 

spinal canal irradiation for 

patients with adequate response 

to induction chemotherapy 

SIOP-EP-II 

(NCT02265770) 

SIOP Europe II/III Newly Diagnosed Ependymoma Stratum 2 for patients with 

residual disease after resection: 

54-59.4 Gy conventionally 

fractionated conformal radiation 

followed by 8 Gy in 2 fractions 

stereotactic radiotherapy boost to 

residual disease 

SIOP HR-MB 

(forthcoming) 

SIOP Europe III Newly Diagnosed High-Risk 

Medulloblastoma 

One randomized arm: 39 Gy CSI 

and involved field boost to 59.8 

Gy in twice daily 1.3 Gy 

fractions 

SIOP PNET 5 MB-

SR (NCT02066220) 

SIOP Europe II/III Newly Diagnosed Standard-Risk 

Medulloblastoma 

Low-risk (WNT-driven 

medulloblastoma): 18 Gy CSI 

with 36 Gy involved field boost 

(total dose of 54 Gy) 

SJMB12 

(NCT01878617) 

St. Jude’s II Newly Diagnosed Medulloblastoma Stratum W1 (low risk) for WNT-

driven medulloblastoma: 15 Gy 

CSI with 36 Gy involved field 

boost (total dose of 51 Gy) 
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