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ORIGINAL RESEARCH
ADULT BRAIN

Systematic Literature Review of Machine Learning
Algorithms Using Pretherapy Radiologic Imaging for Glioma

Molecular Subtype Prediction
Jan Lost, Tej Verma, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Sara Merkaj, Gabriel Cassinelli Petersen,

Ryan Bahar, Ayyüce Gordem, Muhammad A. Haider, Harry Subramanian, Waverly Brim, Ichiro Ikuta, Antonio Omuro,
Gian Marco Conte, Bernadette V. Marquez-Nostra, Arman Avesta, Khaled Bousabarah, Ali Nabavizadeh,

Anahita Fathi Kazerooni, Sanjay Aneja, Spyridon Bakas, MingDe Lin, Michael Sabel, and Mariam Aboian

ABSTRACT

BACKGROUND: The molecular profile of gliomas is a prognostic indicator for survival, driving clinical decision-making for treatment.
Pathology-based molecular diagnosis is challenging because of the invasiveness of the procedure, exclusion from neoadjuvant ther-
apy options, and the heterogeneous nature of the tumor.

PURPOSE:We performed a systematic review of algorithms that predict molecular subtypes of gliomas from MR Imaging.

DATA SOURCES: Data sources were Ovid Embase, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science.

STUDY SELECTION: Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 12,318
abstracts were screened and 1323 underwent full-text review, with 85 articles meeting the inclusion criteria.

DATA ANALYSIS: We compared prediction results from different machine learning approaches for predicting molecular subtypes of
gliomas. Bias analysis was conducted for each study, following the Prediction model Risk Of Bias Assessment Tool (PROBAST) guidelines.

DATA SYNTHESIS: Isocitrate dehydrogenase mutation status was reported with an area under the curve and accuracy of 0.88 and 85%
in internal validation and 0.86 and 87% in limited external validation data sets, respectively. For the prediction of O6-methylguanine-
DNA methyltransferase promoter methylation, the area under the curve and accuracy in internal validation data sets were 0.79 and
77%, and in limited external validation, 0.89 and 83%, respectively. PROBAST scoring demonstrated high bias in all articles.

LIMITATIONS: The low number of external validation and studies with incomplete data resulted in unequal data analysis.
Comparing the best prediction pipelines of each study may introduce bias.

CONCLUSIONS: While the high area under the curve and accuracy for the prediction of molecular subtypes of gliomas are
reported in internal and external validation data sets, limited use of external validation and the increased risk of bias in all articles
may present obstacles for clinical translation of these techniques.

ABBREVIATIONS: AUC ¼ area under the curve; DL ¼ deep learning; MGMT ¼ O6-methylguanine-DNA methyltransferase; ML ¼ machine learning; SVM ¼
support vector machine; WHO ¼ World Health Organization; IDH ¼ isocitrate dehydrogenase

G liomas account for approximately 33% of brain tumor diag-
noses; among adults, .50% of these cases are high-grade

gliomas.1,2 The 2021 World Health Organization (WHO) classifi-
cation identified different forms of gliomas based on pathologic
characteristics of biopsied or resected tumor and the molecular
subtype.3 This method of diagnosis requires invasive sampling of
the tumor, which risks surgery and the potential for tumor mis-
classification due to tumor heterogeneity with sampling bias.4,5
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In addition, the inability to accurately predict tumor subtype
before surgery can result in limited access to neoadjuvant thera-
pies. Of note, the class of tumor affects a patient’s predicted sur-
vival as well as medical and surgical treatment options.3,6

Recent advancements in machine learning (ML) applications in
neuro-oncology have shown promise in tumor segmentation,7,8

differentiating gliomas from other intracranial malignancies such
as brain metastases9 and lymphomas,10 predicting glioma grade,11

and predicting the patient’s overall survival.12,13 Most of the pub-
lished literature on applying ML to neuro-oncology demonstrates
a high area under the curve (AUC) and accuracy in the internal
testing data sets, but validation of algorithms on external data sets
is limited to a very few studies. As a result, there is a limited trans-
lation of algorithms among different hospitals and study settings.
In addition, previous systematic reviews have demonstrated that
most of the literature is focused on small well-curated data sets
with an over-representation of commonly used data sets, such as
RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS; https://
www.kaggle.com/datasets/dschettler8845/brats-2021-task1) and The
Cancer Imaging Archive (TCIA; https://wiki.cancerimagingarchive.
net/display/Public/Collections).8-12,14

This feature further limits translation of algorithms between
different institutions. In addition, ML literature in neuro-oncol-
ogy often scores low in established reporting guidelines such as
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis Or Diagnosis (TRIPOD; https://www.
equator-network.org/reporting-guidelines/tripod-statement/) and
Checklist for Artificial Intelligence in Medial Imaging (CLAIM;
https://pubs.rsna.org/doi/10.1148/ryai.2020200029) with high
bias reported by the Prediction model Risk Of Bias ASsessment
Tool (PROBAST).15-17 These findings suggest that increased use
of standardized reporting criteria in publications and the estab-
lishment of large databases of annotated images in individual
hospitals are critically needed to translate useful algorithms into
patient care and to bridge the gap between the diagnosis and tar-
geted therapy. ML can potentially identify patterns that remain
invisible to a radiologist’s clinical interpretation and can extract
information from pretreatment imaging that can influence the
implementation of neoadjuvant therapy and the extent of surgi-
cal resection.

Our study evaluated the literature that uses ML to predict mo-
lecular subtypes of gliomas, such as isocitrate dehydrogenase
(IDH) mutation status and O6-methylguanine-DNA methyltrans-
ferase (MGMT) promoter methylation status, which can change
treatment options for patients. As an example, IDH-mutant astro-
cytomas have better survival and different treatment options com-
pared with glioblastomas that are uniformly IDH wild-type.3

Glioblastomas have dismal survival and require maximal resection
to improve survival.18 Therefore, predicting IDH mutation on
preoperative imaging can change the patient’s treatment strategy
and outcomes. In addition, the prediction of MGMT methylation
status can predict which patients will respond to temozolomide
therapy and, therefore, would influence neoadjuvant options
before resection.19 To guide medical care, the algorithm must
have high precision and sensitivity and be translatable to multiple
hospitals with different imaging protocols. The goal of our study
was to critically evaluate the literature that reports different

algorithms for predicting molecular subtypes of gliomas and to
assess the potential obstacles to translating these algorithms into
clinical practice.

MATERIALS AND METHODS
Study Selection
Literature screening for this systematic review conformed to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines, using Ovid EMBASE, Ovid
MEDLINE, Cochrane Central Register of Controlled Trials, and
the Web of Science Core Collection as databases. The study was
registered with the Prospective Register of Systematic Reviews
(PROSPERO, CRD42020209938). A clinical librarian collected
data in September 2020, January 2021, and September 2021,
respectively. The literature search strategy involved the use of
keywords such as “artificial intelligence,” “machine learning,”
“deep learning,” “radiomics,” “MR imaging,” “glioma,” “glioblas-
toma,” and related terms. We identified 12,470 studies (Fig 1A)
and added them for further screening to the Covidence Software
(Veritas Health Innovation).

After removing 152 duplicates, a neuroradiology attending
physician, a neuroradiology resident, and 3 graduate students
screened 12,318 studies. Conflicting assessments were resolved by
the board-certified neuroradiology attending physician after dis-
cussion with screeners. After abstract reviews, 10,995 studies
were excluded due to a lack of ML and neuro-oncology applic-
ability, resulting in 1323 full-text reviews. A secondary full-text
review was conducted on 886 studies, by either a radiology resi-
dent or a graduate student, followed by a second review by a
board-certified neuroradiologist attending physician.

We predefined 8 uniform exclusion criteria: 1) abstract-only,
2) no application of ML reported, 3) not an original article, 4) not
published in English, 5) no investigation of glioma/glioblastoma,
6) unrelated to MR imaging, MR spectroscopy, or PET imaging,
7) no human research subjects, and 8) duplicates. Overall, 437
studies met$1 of the predefined exclusion criteria and were sub-
sequently excluded (Fig 1A). In the end, for this systematic
review, 85 studies were included that specifically analyzed molec-
ular subtype prediction in glioma, using ML techniques based on
pretherapy imaging. This resulted in 801 studies being excluded
from further review.

Data Extraction
Data extraction was performed by 3 graduate students and 1
undergraduate in Excel (Microsoft 2022). Studies were reviewed
twice, and disagreements were resolved in regular meetings with
a supervising neuroradiology attending physician until a consen-
sus was reached. Extracted information included article charac-
teristics (title, authors, publication year), patient data (patient
number, cohort sizes, data sources), tumor classification (tumor
type, analyzed molecular subtypes), model characteristics (imag-
ing data and best-performing ML algorithms), as well as valida-
tion techniques. Generally, accuracy results from the best-
performing prediction pipeline were reported. If patient cohorts
were split up within a study, different prediction results were
reported. We accounted for the use of external validation if
patient cohorts were geographically split. Data from the same
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source, solely split up by the time of inclusion, were classified as

internal validation. To give more insight into the different valida-

tion types used, we split internal validation techniques into cross-

validation and holdout-validation. For an overview of extracted

data, see the Online Supplemental Data.

Meta-analysis
All studies reporting AUC and 95% confidence intervals were

subjected to a meta-analysis using MedCalc for Windows,

Version 20.009 (MedCalc software). Heterogeneity was examined

using the Higgins I2 test, publication bias was evaluated using the

Egger test, and the results of the quantitative analysis were illus-

trated with a forest plot (Online Supplemental Data).

Risk of Bias Assessment
Risk of bias was assessed using PROBAST.17 Per PROBAST

guidelines, studies were classified into development, validation,

or development and validation studies. All included studies estab-

lished predictive models and, therefore, were at least considered

development studies; those that additionally tested their devel-

oped model on an independent cohort were considered to have

both development and validation.
PROBAST uses signaling questions across 4 distinct domains

to evaluate potential biases in each study. The first domain (partic-
ipants) pertains to the data sources and participant enrollment.
The second domain (predictors) evaluates the definition and mea-
surement of predictors and their association with the outcome.
Domain 3 (outcome) addresses potential biases in defining and
terminating the outcome in each study. Last, domain 4 (analysis)
evaluates whether inappropriate analysis methods were used or

important statistical considerations were overlooked.17 Additional
information on the application of PROBAST can be found in the
work of Moons et al,17 which is beyond the scope of this article.
Signaling questions from each domain were assessed separately
for development and validation cohorts. The average item scores
from each study and the risk of bias for all 4 domains were eval-
uated using Excel (Microsoft).

RESULTS
After a full-text review of 886 studies, 85 studies published
between 2016 and 2021 met the eligibility criteria of our analysis.

Patient Data
The mean patient number in all 85 studies was 165.32 (Fig 1B).
Data were taken from single-center hospital data, public databases,
or multicenter hospital data. The overall number of data sources
included is higher than the total number of studies because 17
studies included patients from 2 sources, resulting in a total of 102
sources among the 85 studies. While 52% (n¼ 53/102) of patient
data was obtained from single-center hospitals, 33% (n¼ 34/102)
was from publicly available databases and 15% (n¼ 15/102) was
frommultiple institutions (Online Supplemental Data).

Description of Internal and External Validation Data Sets
and Techniques
Of 85 studies, 7 reported.1 distinct model pipeline to predict gli-
oma molecular subtypes, resulting in 95 analyzed pipelines.20-26

The best performing model results for each study are reported for
molecular alterations in gliomas, including IDH, MGMT, 1p/19q
codeletion, histone H3 K27M, ATRX, TERT, and others. The
results from external validation were reported. For studies with

FIG 1. A, Inclusion/exclusion criteria and resultant study data. Flow chart represents screening workflow and exclusion criteria to visualize the
eligibility of studies. The search strategy included keywords “artificial intelligence,” “machine learning,” “deep learning,” “radiomics,” “MR imag-
ing,” “glioma,” “glioblastoma,” and related terms. An independent librarian reviewed the data. We predefined 8 uniform exclusion criteria: 1)
abstract-only, 2) no application of ML reported, 3) not an original article, 4) not published in English, 5) no investigation of glioma/glioblastoma,
6) unrelated to MR imaging, MR spectroscopy, or PET imaging, 7) no human research subjects, and 8) duplicates. B, Distribution of all patients per
study included in training or validation of a predictive model. We excluded patients whose data were strictly used for models other than the
prediction of molecular subtypes. The line indicates the mean number of patients. AI indicates artificial intelligence.
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internal validation only, the holdout validation was prioritized

over cross-validation. Techniques varied among leave-one-out-

cross-validation, n-fold cross-validation to holdout, and external

validation. In 5% (n¼ 5/95) of the articles, the validation cohorts

were separated from the initial cohort by time only and were,

therefore, re-classified as internal validation in our analysis.

Overall, 81% (n¼ 77/95) used internal validation of any kind,

while only 37% (n¼ 35/95) used forms of cross-validation and

39% (n¼ 37/95) used holdout validation. Only 19% (n¼ 18/95)

reported accuracy from an external validation cohort.
We performed a Mann-Whitney U test on the studies that

reported accuracy, AUC, sensitivity, or specificity to analyze
whether statistically significant internal and external validation
differences were present. No significant differences were found
between both groups for all 4 categories (Table 1 and Fig 2).

Performance of Molecular Subtype Prediction
If studies had multiple predictions with the same model, the high-
est AUC and accuracy are reported. In internal validation studies,
IDHmutation status was the most frequently evaluated molecular
subtype, with the overall highest mean AUC and accuracy values
of 0.88 and 85%, respectively. MGMT promoter methylation was
reported in 12 studies as the best predicted subtype, with a mean
AUC and accuracy of 0.82 and 80%. The 1p/19q codeletion was
predicted in 9, with a mean AUC and accuracy of 0.84 and 85%.
Prediction models for histoneH3 K27Mwere identified in 6 stud-
ies with a mean AUC and accuracy of 0.80 and 81%. ATRX status
was predicted in 1 study with an AUC and accuracy of 0.93 and
92%. TERT promoter mutation was predicted in 2 studies, result-
ing in a mean AUC and accuracy of 0.77 and 77%. Other sub-
types included common subgroups like EGFR,27,28 p53,22 RB129

and VEGF,30 as well as a pooled accumulation of genetic

information that was predicted as groups (Online Supplemental
Data).31 Buda et al31 analyzed the prediction of pathologic bio-
markers Ki-67, S-100, and glial fibrillary acidic protein,23 which
were also included in this category. Overall, these studies
achieved a mean AUC and accuracy of 0.77 and 82% (Fig 3A).

Among studies that used external validation, 7 studies pre-
dicted IDH status with a mean AUC¼ 0.89 and accuracy¼ 86%;
3 studies predicted MGMT promoter methylation with a mean
AUC¼ 0.89 and accuracy¼ 83%; 2 studies predicted 1p/19q
codeletion status with a mean AUC¼ 0.82 and accuracy¼ 75%;
2 studies predicted ATRX status with a mean AUC¼ 0.72 and
accuracy¼ 77%; and 1 study predicted EGFR status with a mean
AUC¼0.82 and accuracy¼ 85%. Other molecular subtypes, such
as PTEN (accuracy ¼ 82.5%)32 and BRAF (AUC ¼ 0.85)33 muta-
tion status, were each evaluated in 1 study. No study with external
validation predicted histoneH3 K27M status (Table 2 and Fig 3A).

Algorithm-Based Prediction Models
Overall, of internally validated models, 35% (n¼ 27/77) included
tree-based; 27% (n¼ 21/77), support vector machine (SVM);
32% (n¼ 25/77), neural networks; and 5% (n¼ 4/77), other clas-
sifiers. In externally validated models, 44% (n¼ 8/18) were tree-
based; 39% (n¼ 7/18), SVM; 6% (n¼ 1/18), neural networks; and
11% (n¼ 2/18), other classifiers (Table 3 and Fig 4B).

A neural network with a mean AUC and accuracy of 0.88 and
85% achieved the best overall prediction results. No statistically
significant difference among all ML classifiers and neural net-
works was found with the Mann-Whitney U test. Tree-based
algorithms and SVM performed slightly worse than neural net-
works with an AUC and accuracy of 0.82 and 82%, and 0.83 and
83%, respectively (Table 3).

In internal validation models, the overall mean AUC and ac-
curacy for deep learning (DL) algorithms (0.82 and 82%) were
higher than ML algorithms (0.88 and 86%) and were statistically
significant by the Mann-WhitneyU test (P¼ .02) (Fig 4B).

These results were not observed in external validation pipe-
lines (Table 3).

Performance of Studies on the Prediction of IDH
Mutation and MGMT Methylation Status
Mean AUC and accuracy for the prediction of IDHmutation sta-
tus were 0.88 and 85% in internal validation studies and 0.85 and
86% in external validation studies. For the prediction of MGMT
promoter methylation, AUC and accuracy in internal validation
studies were 0.79 and 80% and 0.89 and 83% in external valida-
tion. While a P value of .02 indicated a statistically significant dif-
ference between AUC values for IDH and MGMT for internal
validation cohorts, Mann-Whitney U tests did not show such a
difference between accuracies, with a P value¼ .16 (Fig 5).

Table 1: Mean performance measurements of all studies

Accuracy AUC Sensitivity Specificity
Internal validation 83% (n¼ 66/77) 0.84 (n¼ 60/77) 81% (n¼ 50/77) 82% (n¼ 49/77)
External validation 83% (n¼ 15/18) 0.85 (n¼ 14/18) 78% (n¼ 15/18) 85% (n¼ 15/18)
P value (Mann-Whitney U test) .83 .79 .25 .45

FIG 2. Algorithm performance measurement in internal and external
validation data sets. Percentages are reported as fractions to visualize
measurements in 1 graph.
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Risk of Bias Assessment
A risk of bias assessment was performed per PROBAST guide-
lines (Fig 6 and Online Supplemental Data).17

The risk of bias was low in the participant, predictor, and out-
come sections of development and validation studies. The risk of
bias was high in all of the analysis sections of the studies, regard-
less of whether these were development or validation studies. The
main reasons for high bias in the analysis sections were due to
items 4.1 and item 4.4.

Item 4.1 assesses the number of patients relative to imaging
features extracted, suggesting an overfitting issue. It scored as
“no” in 77.64% (n¼ 66/85) of the studies. Additionally, item 4.4

suggesting a lack of reporting or incor-
rect handling of missing data, such as
simple exclusion, was found in 98%
(n¼ 83/85) of studies.

DISCUSSION
Diagnosis and treatment of gliomas are
based on pathologic and molecular
classifications outlined in the 2021
WHO Classification of CNS tumors.
Noninvasive methods for image-based
prediction of glioma molecular subtype
on preoperative images are the next

frontier in neuro-oncology because they will provide information
before surgical intervention and have the potential to change
treatment options for patients with brain tumors. Since 2017,
published literature has significantly increased, showing high pre-
diction results for this classification task. However, a thorough
assessment of this literature to identify algorithms that can be
used for clinical translation have yet to be performed.

Our systematic review shows that literature in this field has
several limitations, which include low patient numbers (mean¼
165.31), limited use of geographically distinct validation data
sets (18.95%), and limited use of multicenter hospital data
(14.71%). The most predicted molecular biomarkers were IDH
and MGMT, which are critical for classifying glioblastoma from
lower-grade gliomas and for predicting response to temozolo-
mide therapy. Testing for these is standard of care in clinical
practice. Therefore, these results are more available than other
molecular biomarkers.

We show that DL algorithms result in significantly higher
AUC values in internal validation studies than ML (P value¼
.02), leading us to recommend developing DL algorithms for
future applications. Our review highlights the feasibility of accu-
rately predicting glioma molecular subtypes; however, only some
studies addressed the need for transparency and interpretability
of these prediction models and demonstrated a high risk of bias.

FIG 3. AUC and accuracy (ACC) results from internal and external validation studies. Results from 76 internal and 18 external validation studies
are demonstrated on the basis of the molecular subtype that is being predicted. The central line in each result indicates the median value of
the labeled subtype. Percentages are reported as fractions to provide visualization.

Table 3: Performance of algorithms

Accuracy AUC
Internal validation
Tree-based 82% (n¼ 23/27) 0.82 (n¼ 23/27)
SVM 83% (n¼ 12/21) 0.83 (n¼ 17/21)
Neural network 85% (n¼ 22/25) 0.88 (n¼ 18/25)
Others 84% (n¼ 3/4) 0.85 (n¼ 2/4)

External validation
Tree-based 85% (n¼ 6/8) 0.84 (n¼ 7/8)
SVM 82% (n¼ 7/7) 0.84 (n¼ 4/7)
Neural network 86% (n¼ 1/1) 0.86 (n¼ 1/1)
Others 89% (n¼ 1/2) 0.88 (n¼ 2/2

Table 2: Types of algorithms used to predict the molecular subtypes of gliomas and the
number of studies that used them

IDH MGMT 1p/19q H3 K27M ATRX TERT Others
Internal validation
Tree-based 11 4 4 4 0 0 4
SVM 9 1 2 2 1 2 4
Neural networks 14 6 3 0 0 0 2
Others 3 1 0 0 0 0 0

External validation
Tree-based 4 1 0 0 1 1 1
SVM 2 1 2 0 1 0 1
Neural networks 1 0 0 0 0 0 0
Others 0 1 0 0 0 1 0
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A unique aspect of our study is the broad inclusion criteria, which
required screening of .12,000 abstracts before full-text review.
Our study also contains the largest number of evaluated articles
(n ¼ 85) with the most characteristic features extracted (n ¼ 18)
(Online Supplementary Data).34 In our analysis, we extracted not
only feature characteristics of patient data sets but also imaging
sequences, including advanced imaging modalities, algorithms,
and types of ML algorithms with outcome assessment on internal
and external validation data sets.

In addition to a thorough feature-extraction process from indi-
vidual articles, we performed bias analysis with the most relevant
assessment tool currently available, PROBAST.17 Prior studies
demonstrated that ML approaches for the evaluation of gliomas
have significant deficiencies in reporting quality as assessed by
TRIPOD,9-11 aligning with our results of high bias. Unlike the pre-
vious systematic review, which had more restrictive inclusion cri-
teria, our systematic review included 35 studies that did not report
AUC (n¼ 21/95) or accuracy (n¼ 14/95) in evaluating their

respective models. Our less restrictive inclusion criteria, inclusion
of studies that did not report both AUC and accuracy allowed us
to better evaluate the distribution of different ML approaches in
this field. Furthermore, our review did not exclude studies with
non-MR imaging modalities or those with missing data, resulting
in a total of 44 studies being included in our analysis.34 While our
findings generally agree with the results of prior work, we provide
additional information on the differences in internal and external
validation studies (conclusions), prediction performances of ana-
lyzed glioma molecular subtypes (section 4.4), and details of differ-
ent image modalities with their corresponding performance
metrics (Online Supplemental Data).

We recommend future studies evaluating ML algorithms in
the imaging of gliomas to develop prediction algorithms based on
larger data sets with geographically distinct data for model valida-
tion to provide generalizable results.35 Until now, most studies
relied on single-center hospital data and publicly available data
sets. We recommend building databases of annotated images in

FIG 4. Comparison of performance of different ML algorithms in internal and external validation data sets. A, In internal validation studies, 35%
(n¼ 27/77) used tree-based; 27% (n¼ 21/77), SVM; 32% (n¼ 25/77), neural network; and 5% (n¼ 4/77), other classifiers. The section named
“Others” includes machine and deep learning algorithms, which cannot be classified into these 3 groups, and mixed classifiers with characteris-
tics of multiple techniques. Lines indicate the mean value. B, Comparison of ML and DL algorithms. This figure refers to SVM and tree-based
algorithms as overall ML algorithms. At the same time, all neural network–based classifiers are DL classifiers. In internal validation studies, 68%
(n¼ 52/77) used ML algorithms, and 32% (n¼ 25/77) used DL classifiers. The DL algorithms demonstrated higher AUCs and statistically significant
internal validation data sets. In the 95 patient cohorts analyzed, 68 studies used classic ML classifiers for their predictive models, while 26 used
DL networks. The comparison of algorithms in external validation data sets was limited due to the small number of studies that validated DL
algorithms. ACC indicates accuracy.
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individual hospitals and considering federated learning.36,37 These
changes will result in less reliance on publicly available data sets
that are highly curated and will provide a diversity of hospital train-
ing data that will overcome the low data set patient number and
allow translation of algorithms between different hospitals.38

Additionally, we recommend that journal editors require validation
of data set results, despite the expected drop in AUC and accuracy.
This is well-represented in the recent RSNA-MICCAIS AI chal-
lenge, which demonstrated that the highest prediction for MGMT
methylation based on an unseen external validation set was an
AUC of 0.62.39-42 Our literature review demonstrates 17 articles
predicting MGMT methylation with AUC results ranging from
0.55 to 0.93 (mean, 0.81) in internal and external validation sets.

Some of the reasons for the inability to replicate these results
could be low patient numbers in the reported studies, lack of
description of model validation, high bias within the articles with
the potential for overtraining, differences in segmentations among
data sets, and differences in methods of MGMT methylation
assessment between different hospitals. Future studies should con-
sider that other pathologic testing protocols for molecular charac-
terization at different hospitals and tumor heterogeneity with
sampling bias can be a source of error because it is currently used
as the criterion standard in ML algorithm development and,
therefore, introduces reference bias in the respective findings.

Limitations
A limitation of this review includes analysis of studies with
incomplete data, which resulted in unequal data analysis for crite-
ria such as the accuracy of results. Additionally, the number of

studies with external validation was low, limiting the generaliz-
ability of the findings and raising an important point for editors
and authors to consider the need to include external validation
data sets in their publications. Furthermore, publication bias was
not assessed because it was considered beyond the scope of this
review. Finally, we compared the best prediction pipeline each
study had to offer, which might introduce bias in our findings de-
spite our efforts to minimize bias in our analyses.

CONCLUSIONS
The results of prediction algorithms for molecular subtypes of
gliomas in published studies demonstrate high AUC and accu-
racy. Still, there is an increased risk of bias based on the
PROBAST assessment, which can result in poor data reproduci-
bility. Improvement in reporting the quality of articles, develop-
ment of large hospital-annotated data sets, and performance of
external validation studies in future literature are critical for iden-
tifying algorithms that can be translated into clinical practice.
This issue raises the need to develop novel tools for efficient data
curation and annotation within the clinical workflow.
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