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Abstract 
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. Standard therapies, including surgical resection, 
chemoradiation, and tumor treating fields, have not resulted in major improvements in the survival outcomes of patients with GBM. The 
lack of effective strategies has led to an increasing interest in immunotherapic approaches, considering the success in other solid tumors. 
However, GBM is a highly immunosuppressive tumor, as documented by the presence of several mechanisms of immune escape, which 
may represent a reason why immunotherapy clinical trials failed in this kind of tumor. In this review, we examine the current landscape of 
immunotherapy strategies in GBM, focusing on the challenge of immunoresistance and potential mechanisms to overcome it. We discussed 
completed and ongoing clinical trials involving immune checkpoint inhibitors, oncolytic viruses, vaccines, and CAR T-cell therapies, to provide 
insights into the efficacy and outcomes of different immunotherapeutic interventions. We also explore the impact of radiotherapy on the 
immune system within the GBM microenvironment highlighting the complex interactions between radiation treatment and the immune 
response.
Key words: glioblastoma; immunotherapy; CAR T cell; checkpoint inhibitors; vaccines.

Implications for Practice
The immunotherapy landscape is constantly expanding. Even though, to date, immunotherapy has not significantly impacted clinical 
practice in the treatment of glioblastoma, it is crucial for clinicians being up to date on the current “state of the art” of immunotherapy in 
GBM because it may represent a future direction for the treatment of this aggressive primary brain tumor.

Introduction
Glioblastoma (GBM) is the most common and lethal primary 
brain cancer in adults.1 First-line therapy for newly diagnosed 
GBM is represented by maximal safe resection, followed by 
concomitant chemoradiotherapy and maintenance therapy 
with temozolomide.2 In subgroups of patients, prescription of 
lomustine and tumor treating fields provide additional clini-
cal benefit3,4

Despite this aggressive standard of care (SoC), disease pro-
gression is inevitable, with 15-18 months of median overall 
survival (mOS) and a 5-year survival rate of <5%. For patients 
with unresectable tumor, the prognosis is even poorer.5

In recent years, the dismal prognosis of patients with GBM led 
to major research efforts to discover new therapeutical options.

Cancer immunosurveillance is the concept that immune 
system can actively identify and potentially eliminate cancer 
cells. However, some tumor cells develop the ability to evade 
the control of the immune system through a number of mech-
anisms (eg, loss or downregulation of tumor antigens and 
MHC (major histocompatibility complex) molecules, expres-
sion of inhibiting proteins, metabolic inhibition).6 Cancer 
immunotherapy focuses on overcoming immunoresistance of 
tumor cells to promote cancer eradication.
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Based on this assumption, significant results in several 
types of solid and hematological tumors have been reached, 
especially through the development of immune checkpoint 
inhibitors and chimeric antigen receptor (CAR) T-cell  
therapy,7-12 thus generating a growing interest in the appli-
cation of these therapeutical strategies for patients affected 
by GBM.

However, the initial enthusiasm has been mitigated by the 
recognition of the immunosuppressive nature of GBM.13 It is 
well known that GBM stands as a “cold tumor” that develops 
in a unique immune environment such as the central nervous 
system (CNS) and that sets in motion several mechanisms of 
immunosuppression.14,15 A better knowledge of these factors 
is needed for an effective implementation of immunotherapy 
in GBM.

Herein, we review ongoing and completed clinical and 
pre-clinical trials on immunotherapeutical approaches 
for GBM with a particular focus on immune checkpoint- 
inhibitors, tumor vaccines, and CAR T-cell therapies (Figure 
1). We will also provide insight on mechanisms of resistance, 
and on the relationship between radiotherapy (RT) and 
immune system, the understanding of which is crucial for the 
development of novel immunotherapeutical strategies.

Glioblastoma Immunoresistance and Possible 
Strategies to Overcome
Despite the blooming success of cancer immunotherapy in 
many tumor types, GBM stood out as a model of resistance to 
immune-mediated destruction. Several works studied the rela-
tionship between GBM and immune system and shed light 
on a number of mechanisms that restrain the activity of the 
immune system. In addition, it has to be considered that such 
mechanisms of immune suppression take place in the CNS, 
that is, in an anatomic location separated by a blood-brain 
barrier (BBB) that for decades was believed to be the first 
line of defense of the brain, actively excluding most periph-
eral immune cells. This feature, together with the finding that 
the non-syngeneic tissues were not rejected from the brain of 
laboratory animals, led to consider for a long time the CNS 
as an immune privileged site.16 Only recent advancement in 
the field of neuroanatomy enabled to revise the concept of 
immune privilege of the CNS and to introduce the idea of a 
flexible BBB and of a peculiar immune surveillance adapted 
to this site.17

Nowadays, a large body of evidence indicates that GBM 
immunosuppressive control extends over the boundaries of 
the CNS. As shown by Fecci et al18, one of the dysfunctions 

Figure 1. Overview of the current landscape of immunotherapy strategies in GBM and related clinical trials. A. Immune checkpoint inhibitors are 
specific antibodies that block PD1/PDL1 or CTLA4 pathways, and TIM3, LAG3, and TIGIT coinhibitory molecules. B. Oncolytic viruses are RNA or DNA 
viruses that selectively infect and kill cancer cells. C. Therapeutic vaccines are peptide or “autologous” cell-based vaccines that activate T cells to target 
tumor antigens. D. CAR T-cell therapies target GBM-associated or GBM-specific antigens including EGFRvIII, IL13Ra2, HER2, and B7-H3. Image created 
in BioRender.com.
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observed in patients with GBM is the T-cell lymphopenia in 
treatment-naïve patients due to the sequestration of T cells in 
the bone marrow regulated by the tumor imposed loss of S1P1 
from the T-cell surface. Another mechanism of immune suppres-
sion is demonstrated by the presence in peripheral blood of an 
increased level of Arginase 1 (Arg1), led by neutrophils degran-
ulation that exert an immune suppressive activity on T cells.19,20 
Arg1 is an enzyme constitutively expressed in neutrophils stored 
within intracellular granules and we showed that its enzymatic 
activity is positively associated with glioma grade and represent 
an independent risk factor of disease progression and survival of 
patients with GBM.20 Of note, T-cell dysfunction can be restored 
by targeting Arg1 in vitro,19 thus showing another target of 
potential pharmacological intervention.

A key feature of GBM is the presence of an immune sup-
pressive tumor microenvironment (TME), largely dominated 
by the influx of blood-derived macrophages endowed with 
a strong immune suppressive activity. Of note, in GBM, the 
BBB is largely compromised allowing the infiltration of sev-
eral immune system cells from the peripheral circulation, 
but while blood-derived macrophages are present in large 
amount, very few cells of the adaptive immune system are 
present, thus showing that in this tumor there is a restricted 
access, facilitating the entrance of tumor-promoting cells, 
and excluding the presence of potential antitumor effector 
cells. A striking feature of the blood-derived macrophages is 
their acquisition of an immunosuppressive phenotype. In this 
respect, we demonstrated that blood-derived macrophages 
modulate their immune suppressive activity according to the 
location within the TME, with the highest activity in the cen-
tral tumor area, and a lower activity in the marginal area.21 
We also showed the presence of a significant iron metabolism 
in these macrophages, and that blocking this metabolic path-
way can contribute to fight immune tolerance.22 Interestingly, 
Platten et al23 showed that in IDH (Isocitrate Dehydrogenase) 
-mutated tumors the differentiation of infiltrating myeloid 
cells is blocked and that tryptophan metabolism drives the 
macrophages into an immunosuppressive state. Remarkably, 
pharmacological inhibition of tryptophan metabolism can 
reverse immunosuppression, thus stressing the point that 
understanding these metabolic mechanisms is important, 
especially toward the goal of developing optimized new 
therapies.

The lack of T cells in the GBM parenchyma could be due 
to several factors, such as the low mutational burden, the 
low number of antigen-presenting cells, and the presence of 
anti-inflammatory cytokines that inhibit the development 
of an efficient T-cell activation. However, recent studies also 
indicate that priming and activating an adaptive anti-tumor 
immune response can be obtained following a patient-specific 
vaccination, but unfortunately, this immune response does 
not lead to a significant survival benefit.24-26 These results 
clearly demonstrate that peripheral T cells activation can be 
induced and home to the tumor, but the cold and suppressive 
TME of GBM is a major obstacle to overcome resistance to 
immune-mediated therapies. In fact, given these important 
difficulties, it is clear that a single agent-based therapy will be 
insufficient to overcome GBM resistance.

Immunotherapy Clinical Trials in GBM
By the early 2000s, more than 1200 RCT (randomized clin-
ical trials) have been designed and conducted worldwide 

clearly stating that the majority of GBM RCT have failed.27 
In fact, despite the promising results shown by preclinical or 
early-phase trials, the data available to date from phase III 
studies have not yet confirmed a real clinical benefit. We will 
discuss later about completed and ongoing clinical trials of 
immunotherapy, analyzing both studies with immune check-
point inhibitors, viral therapy, vaccines, and CAR T cells ther-
apies for newly diagnosed and recurrent GBM.

Immune Checkpoint Inhibitors
Programmed death-1 (PD-1)/PD-L1 axis and T-lymphocyte- 
associated protein 4 (CTLA-4) are checkpoint regulators 
that downregulate the immune response and can be blocked 
through specific antibodies enhancing T cells response against 
tumors. TIM3, LAG3, and TIGIT are co-inhibitory molecules 
and immune exhaustion markers for which some immune 
checkpoint inhibitors are being studied as possible treatments 
in several types of cancer, including GBM.

Anti-PD-1/PD-L1
Nivolumab is a fully human PD-1 immune checkpoint inhib-
itor antibody anti-PD-1 receptor. CheckMate49828 was an 
open-label phase III study in which newly diagnosed GBM 
patients with unmethylated MGMT (O6-methylguanine- 
methyltransferase) promoter were randomized 1:1 to receive 
RT + nivolumab vs RT + temozolomide (according to Stupp 
protocol).2 Overall, 560 patients were enrolled. The study did 
not meet its primary endpoint of improving overall survival 
(OS) with nivolumab use: mOS was 13.4 months (95% CI, 
12.6-14.3) with nivolumab + RT and 14.9 months (95% CI, 
13.3-16.1) with temozolomide + RT (HR 1.31; 95% CI, 1.09-
1.58; P = 0.0037). In the same line, nivolumab was tested, in 
combination with temozolomide and RT, for patients with 
newly diagnosed MGMT promoter methylated GBM in an 
open-label phase III study (CheckMate54829). This study also 
did not meet its primary endpoint, demonstrating that the 
addition of nivolumab to concomitant chemoradiotherapy 
with temozolomide does not improve survival in this setting. 
In detail, 716 patients were enrolled and randomized 1:1 to 
receive nivolumab or placebo plus RT and temozolomide 
according to Stupp protocol. mOS was 28.9 months (95% CI, 
24.4-31.6) vs 32.1 months (95% CI, 29.4-33.8), respectively 
(HR, 1.1; 95% CI, 0.9-1.3).

Another randomized open-label phase II/III clinical trial 
is ongoing (NCT 04396860) in which nivolumab and ipili-
mumab (anti-CTLA4) are associated with RT vs standard 
chemoradiotherapy with temozolomide as control arm, in 
newly diagnosed MGMT unmethylated GBM patients. The 
results of this study are not currently available.30

In the recurrent setting, nivolumab was evaluated in an 
open-label phase III trial (CheckMate 14331) involving 57 
clinical sites in 12 countries. The study enrolled 369 patients 
with GBM at first recurrence following standard concomi-
tant chemoradiotherapy and subsequent temozolomide who 
were randomized 1:1 to receive nivolumab 3 mg/kg or beva-
cizumab 10 mg/kg every 2 weeks until unacceptable adverse 
events, disease progression, or death. This study also failed 
to meet its primary endpoint of OS and secondary endpoints 
as 12-month OS, median PFS (mPFS), and objective response 
rate (ORR). Another phase II study (NCT04704154) that 
is active but not in the recruitment phase is evaluating the 
association of nivolumab with regorafenib (a multikinase 
inhibitor, already tested for patients with recurrent GBM32) 
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in patients with recurrent GBM. Results are not available yet 
but are expected shortly.

Pembrolizumab is a humanized monoclonal IgG4 anti-PD-1 
antibody that has been tested in patients with GBM in both 
phase I and phase II trials. In particular, in a phase I study33 
26 patients with GBM with PD-L1 expression ≥1% on tumor 
tissue were enrolled and treated with pembrolizumab. The 
results were quite disappointing with an 8% response rate. 
In a subsequent phase II randomized study,34 pembrolizumab 
was evaluated with or without bevacizumab in patients with 
recurrent GBM, also in this case the results showed a poor 
efficacy with an mOS of 8.8 months (combination arm) and 
10.3 months (pembrolizumab alone). Pembrolizumab was 
also evaluated in a phase I trial35 in combination with hypof-
ractionated stereotactic re-irradiation and bevacizumab in 
patients with recurrent GBM and anaplastic astrocytoma. 
The results demonstrated an mPFS of 8 months and an mOS 
of 13.5 months in bevacizumab naïve patients. Unfortunately, 
the results are difficult to interpret as the enrolled popula-
tion is particularly heterogeneous. A very interesting study 
evaluated the use of pembrolizumab in a neoadjuvant setting 
in patients with recurrent GBM candidates for re-surgery36: 
35 patients were enrolled and treated with neoadjuvant 
pembrolizumab, with continued adjuvant therapy following 
surgery (neoadjuvant arm), vs pembrolizumab given only 
after surgery. The results showed an mOS of 13.7 m in the 
neoadjuvant arm vs 7.5 m in the adjuvant arm (P = 0.04) 
with an upregulation of T-cell- and interferon-γ-related gene 
expression in patients receiving treatment in the neoadjuvant 
setting. Another study evaluating nivolumab as neoadjuvant 
treatment showed changes in the tumor immune microen-
vironment and, in particular, an enhanced expression of 
chemokine, immune cell infiltration and tumor-infiltrating T 
lymphocytes37; however, another similar study demonstrated 
that macrophages and monocytes still constitute the major-
ity of infiltrating immune cells in GBM, even after anti-PD-1 
therapy and the persistently high expression of T-cell suppres-
sive checkpoints in these myeloid cells continues to prevent 
the optimal activation of T cells that infiltrate the tumor.38

The attempt to inhibit the CTLA-4 activity was pursued in a 
phase II clinical study on anti-CTLA-4 that is currently exam-
ining temozolomide treatment alone vs temozolomide with 
ipilimumab (anti-CTLA-4 monoclonal antibody) in patients 
with GBM after standard treatments.39 This trial is currently 
recruiting in 7 centers in the UK. Many other ongoing trials 
are evaluating the combination efficacy of anti-CTLA-4 with 
anti-PD-1 in treating GBM to improve the potential of these 
2 therapeutic strategies that, in monotherapy, maybe have not 
succeeded in radically changing GBM prognosis.40,41

Anti-TIM-3, Anti-LAG-3, and Anti-TIGIT
TIM-3 is a co-inhibitory molecule expressed on immune 
cells42and its inhibition is being explored for many tumor 
types, including GBM, in a phase I trial in combination with 
anti-PD1 drugs (NCT03961971).43 Moreover, LAG-3 was 
an early marker of exhausted T cells, indicating the poten-
tial therapeutic benefit of early treatment with anti-LAG-3 
drugs.44 Nowadays, anti-LAG-3 alone or concomitant to 
anti-PD1 treatment is being investigated in a phase I trial 
for patients with recurrent GBM (NCT02658981).45 Anti-
TIGIT drugs directly inhibit T-cell proliferation and improve 
the anti-tumor immune response in many pre-clinical studies 
as a monotherapy or in combination with PD-1 and TIM-3 

inhibitors.46,47 Anti-TIGIT treatment is currently in phase 
I clinical development for recurrent GBM in a multicenter 
trial in combination with antiPD-1 drugs (NCT04656535)48 
(Table 1).

Oncolytic Viruses
Oncolytic viruses (OVs) have the antineoplastic role of 
selectively infecting and killing cancer cells, leaving normal 
cells intact by their low pathogenic effect.49 Moreover, OVs 
potentially can switch the tumor microenvironment (TME) 
from immunosuppressive to immunocompetent. Indeed, OV 
releases tumor antigens and can be armed with a transgene. 
There are several clinical trials that have evaluated viral ther-
apy in patients with GBM.50,51

DNX-2401
DNX-2401 is an engineered replicative oncolytic adenovirus 
that contains two stable genetic changes in the adenovirus 
genome to selectively and efficiently infect and replicate reti-
noblastoma pathway deficient such as tumor cells. Preclinical 
studies have demonstrated DNX-2401 to be effective in glioma 
xenograft mouse models receiving intratumoral injections of 
the virus by direct oncolysis in addition to eliciting antitumor 
immune responses.52,53 In a phase I (NCT00805376) trial, 37 
patients with recurrent GBM were divided into two groups: 
(i) patients in the first group (n = 25) receiving an intratu-
moral injection of the virus through a biopsy needle into 
the tumor to evaluate safety and (ii) patients in the second 
group (n = 11) receiving an intratumoral injection through 
an implanted catheter. In the first group, 72% (18/25) of 
patients showed tumor objective response. The mOS was 9.5 
and 13 months for first and second group of patients, respec-
tively.54 Due to the results of a phase Ib trial (NCT02197169; 
TARGET-I), we could assume that IFN γ did not appear to 
provide an additional benefit or improve survival rates com-
pared to treatment with DNX-2401 alone.55 On the contrary, 
positive trial evidence that the concomitant administration of 
TMZ seems to be safe in a phase I analyzing patients with 
GBM at first recurrence. A phase II trial (NCT02798406: 
CAPTIVE/KEYNOTE-192) is evaluating the combination 
of DNX2401 with the anti-PD-1 antibody pembrolizumab 
in patients with recurrent GBM or gliosarcoma. The interim 
analysis (n = 42 patients) showed an mOS of 12.3 months.56,57

Oncolytic Polio/Rhinovirus Recombinant
The second OV that received a breakthrough therapy desig-
nation for recurrent GBM from the FDA was PVSRIPO, a 
genetically engineered version of the live-attenuated Sabin 
type 1 poliovirus (PVS).58 Its efficacy relies on its natural tro-
pism to the poliovirus receptor CD155, which was found to 
be upregulated in GBM.59 NCT01491893 is a phase I study 
with a dose-escalation phase and subsequent dose-expansion 
phase, whose overall results confirmed the absence of neuro-
virulence although the mOS did not radically differ from his-
torical data (12.5 months); however, the survival rate of the 
patients who received the experimental therapy was higher 
than the survival rate of the historical control group at 24 
and 36 months.60 Therefore, it was designed a phase II trial to 
further evaluate PVSRIPO in this setting (NCT02986178).61

Vocimagene Amiretrorepvec (Toca 511)
Vocimagene Amiretrorepvec (Toca 511) is a γ retroviral 
replicating vector which encodes a gene for an optimized 
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cytosine deaminase, capable of converting 5-fluorocytosine 
(5-FC) to 5-fluorouracil (5-FU).62 Although the results of 
the phase I/II studies demonstrated a good safety profile and 
encouraging efficacy data with durable benefit in terms of OS 
and some complete radiological responses with Toca 511 in 
patients with grade 3 gliomas and GBM63 this benefit was 
not confirmed in the subsequent phase II/III trial published 
by Cloughesy et al in 2020.62 In this randomized, open-label, 
phase II/III trial, 403 patients with first or second recurrence 
of anaplastic astrocytoma (grade 3 WHO) or GBM were ran-
domized 1:1 to receive Toca 511 as experimental arm vs SoC 
(temozolomide or lomustine or bevacizumab). In Toca 511 
group, Vocimagene Amiretrorepvec was administered as a 
local injection into the resection cavity at the time of resection 
and, subsequently, an oral pro-drug 5-fluorocytosine formu-
lation (Toca-FC) was started 6 weeks after surgery, repeated 
every 6 weeks, at the dose of 220mg/kg/d. The study did not 
meet its primary endpoint of OS. The mOS was 11.1 months 
in the Toca 511/Toca FC arm and 12.22 months in the SoC 
arm (HR 1.06; 95%Ci 0.83-1.35; P = 0.62). No significant 
differences were demonstrated between the two treatment 
arms for the secondary endpoints (safety, durable response 
rate [DRR], 12-month OS, PFS and patients reported out-
come, and quality-of-life analysis).

Sitimagene Ceradenovec
Sitimagene Ceradenovec is a replicant-deficient adenovirus 
that contains the cDNA for prodrug-converting enzyme, 
Herpes-Simplex-Virus thymidine kinase (HSV-tk). The 
ASPECT study was a randomized, open-label phase III trial in 
which patients with newly diagnosed GBM were randomized 
1:1 to receive surgical resection and intraoperative perilesional 
injection of Sitimagene Ceradenovec followed by ganciclovir 
in addition to standard care vs surgical resection and standard 
care alone. Two hundred and fifty patients were randomized 
and the study met its primary endpoint: the median time to 
death or re-surgery was longer in the Sitimagene Ceradenovec 
arm (308 days, 95% CI 283-373) vs in control arm (268 days, 
210-313) (HR 1.53, 95%CI 1.13-2.07; P = 0.006). However, 
the mOS was comparable in the 2 treatment arms64 (Table 2).

Therapeutic Vaccines
Another chapter of GBM immunotherapy consists of ther-
apeutic vaccines. Cancers vaccines can be created with 
“predefined” antigens (whether patient specific or tumor 
type shared) or with autologous tumor cells obtained from 
the removal of patient’s tumor. Autologous tumor cells can 
then be engineered to be re-injected to patients activating 
endogenous antigen-presenting cells (APCs) response or can 
be lysed and delivered to autologous APCs (dendritic cells 
vaccines).65,66

SurVaxM
A synthetic survivin (ubiquitous cancer-associated antigens) 
vaccine (SurVaxM) has been evaluated in an early trial 
(NCT01250470) studying 9 patients showing its safety.67 
Furthermore, a recent phase II trial confirmed the related 
safety data when used as upfront therapy in 64 patients 
(NCT02455557). The related survival analysis evidenced an 
mPFS of 11.4 months, and the mOS was 25.9 months from 
the first SurVaxM dose.26 These encouraging results led to the 
designation of a phase II trial (SURVIVE; NCT05163080), 
still ongoing.

Rindopepimut
The Epidermal Growth Factor receptor (EGFR) is often 
overexpressed in GBM and it is associated with a par-
ticularly aggressive phenotype.68 EGFR overexpressions, 
amplifications, and mutations with hyperactivation of 
its pathway can be found in approximately 60% of 
GBMs69; the most frequent EGFR mutation in this set-
ting is certainly EGFRvIII.70 Rindopepimut (CDX-110) is 
an EGFRvIII-targeted peptide vaccine that was evaluated 
in a double-blind randomized phase III clinical trial in 
newly diagnosed GBM patients with centrally confirmed 
EGFRvIII expression (ACT IV trial).71 Seven hundred and 
forty-five patients were enrolled after maximal safe surgi-
cal resection and completion of concomitant chemoradio-
therapy without progression and randomized 1:1 to receive 
Rindopepimut or KLH (Keyhole Limpet Hemocyanin) in 
combination with maintenance temozolomide. The pri-
mary endpoint was OS in patients with minimal residual 
disease (MRD defined as tumor enhancing < 2 cm2 post 
concomitant radiochemotherapy), but the study was closed 
for futility following the pre-planned interim analysis. 
The mOS was not different in the two treatment groups 
with an mOS of 20.1 months (95% CI 18.5-22.1) for the 
Rindopepimut arm vs 20.0 months (95% CI 18 1-21 9) 
for the control arm (HR 1 01, 95% CI 0 79-1 30; P = 0 
93). The mPFS was also not different between treatment 
arms (HR 1.01, 95% CI 0.80-1.29; P = 0.91) with ORR 
in evaluable population of 15% (95% CI 10-21) in both 
treatment arms. Despite the disappointing results, the same 
study demonstrated that Rindopepimut was able to elicit a 
robust humoral response in treated patients that corticoste-
roid use did not impact. Study treatment was well tolerated 
no significant differences in patient-reported quality-of-life 
outcomes. The most frequent serious adverse events were 
seizures (5%) and cerebral edema (2%).

IMA950
IMA950 is a multi-peptide vaccine composed of 9 MHC 
class I restricted peptides and 2 MHC class II-restricted 
peptides, c-Met and survivin, all of them overexpressed in 
GBM cells.72,73 The safety and immunogenicity of IMA950 
with adjuvant poly-ICLC were assessed in a phase I/II trial 
(NCT01920191) in 16 patients, with an mOS of 19 months 73.  
Notably, 4 patients experienced short-term cerebral edema. 
Thus, it was designed another phase I/II trial to study the 
safety of IMA950 and poly-ICLC combined with pembroli-
zumab (NCT03665545).73

VXM01
VXM01 is a DNA plasmid vaccine that contains an atten-
uated strain of Salmonella typhimurium, which encodes 
the murine vascular endothelial growth factor receptor 2 
(VEGFR-2) whose activation enhances angiogenesis and cell 
proliferation and is commonly expressed within the tumor 
microenvironment.74 NCT02718443 showed a favorable 
response in 5 patients with recurrent GBM. Interestingly, the 
prolonged survivors had lower intratumoral PD-L1 expres-
sion thus favoring the eventual combination with immune 
checkpoint inhibitors.75 In this regard, a phase I/II trial 
(NCT03750071) is evaluating VXM01 in combination with 
Avelumab in recurrent GBM.
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APVAC1
APVAC1 contains a library of pre-curated and preprepared 
shared tumor antigens and patient-specific neoantigens.76 The 
safety and immunogenicity of APVAC1 were demonstrated 
in 15 patients with newly diagnosed GBM in a phase I study 
(NCT02149225), the survival analysis showed an mPFS 
of 14.2 months and an mOS of 29 months.24 Furthermore, 
another ongoing Phase I trial is evaluating a personalized vac-
cine (NeoVax) with pembrolizumab (NCT02287428).77

Autologous Vaccines
In the context of autologous vaccines as a possible treatment 
in patients with GBM, there are several early-phase studies in 
the literature that have evaluated the use of vaccines based 
on dendritic cells (DCs).78,79 These cells have the task of pre-
senting antigens to naïve T cells to ensure the activation of 
an adaptive immune response. DCVax-L is the most studied 
DC vaccine to date, composed of autologous dendritic cells 
pulsed with autologous tumor lysate that was evaluated in 
a phase III study in newly diagnosed GBM patients, in com-
bination with maintenance temozolomide after surgery and 
combined chemoradiotherapy.80 Patients were randomized 
2:1 to receive DCVax-L plus temozolomide vs Placebo plus 
temozolomide; in case of disease progression/relapse during 
treatment, crossover was allowed. For the intent-to-treat 
(ITT) population of 331 patients, the mOS was 23.1 months 
(evaluated from the date of surgery). Due to the possibility 
of crossover, approximately 90% of all patients in the ITT 
population received DCVax-L during the study. Treatment 
was well tolerated with only 2.1% of patients reporting grade 
3-4 adverse events possibly related to vaccine treatment. 
These data should be interpreted with caution considering 
the high crossover rate, the statistical design, and the absence 
of information regarding the stated primary endpoint of the 
study which was PFS.75 A phase III randomized open-label 
study (NCT04277221)81 is evaluating the use of Autologous 
Dendritic Cell/Tumor Antigen (ADCTA) immunotherapy in 
combination with a standard treatment (bevacizumab) in 
patients with first recurrence of GBM after the Stupp pro-
tocol. The primary endpoint was OS whereas the secondary 
endpoints were PFS, 6-month PFS, and 1- and 2-year survival 
rates. Another active but not currently recruiting phase II/III 
study (NCT03548571)82 is evaluating the use of dendritic cell 
immunotherapy against cancer stem cells in newly diagnosed 
IDH-wt, MGMT-promoter methylated GBM patients receiv-
ing concomitant radiochemotherapy with temozolomide as 
first-line treatment. The primary endpoint is PFS, whereas sec-
ondary endpoints include OS, assessment of patient-reported 
quality of life, immunological response by analysis of delayed 
type hypersensitivity reaction in skin and lymphocyte clonal 
analysis, and safety (Table 3).

CAR T-Cell Therapies
CAR T cells are engineered synthetic receptors that function 
to redirect lymphocytes, usually T cells, to recognize and 
eliminate cells expressing a specific target antigen. Despite 
the impressive clinical responses in patients with hematologic 
malignancies following the treatment with CAR T cells, the 
efficacy of this type of strategy for solid tumors, including 
GBM, is to be defined yet. Only a few CAR candidates have 
been studied in humans with GBM, since the target of CAR 
T cells should not be expressed on healthy cells to avoid an 

autoimmune response against the brain.83 Brown et al84 con-
ducted a phase I trial with IL-13 Ra2 CAR T (NCT02208362) 
and reported a case of transient complete response (PFS 7.5 
months) in a patient with recurrent multifocal GBM report-
ing a marked improvement in terms of quality of life. These 
encouraging results led to the development of other CAR 
T-cell therapies targeting HER 2, EGFRvIII, and H3K27M 
due to their high expression in GBM and concomitant absence 
in normal cells.39,85-87 The results seem to be encouraging in 
terms of safety. Completion of clinical trials is required to 
evaluate their clinical safety and efficacy (Table 4).

Radiation and the Immune System: A 
Complex Interaction
Tumor cell death induced by RT is a very complex mecha-
nism. The evidence of the (direct or indirect) DNA and vas-
cular damage according to recent RT studies suggested the 
central role of the immune response in this process. Preclinical 
studies have shown that while high doses were required to 
induce tumor cells death in immunodeficient mice, a lower 
dose in immune-competent mice is sufficient.88

Several reviews attested the role of radiation in immune 
modulation improving the tumor immune response.89-91 
These studies suggested that radiation could enhance immune 
response using stereotactic RT (high dose per fraction for one 
or few fractions) rather than conventional fractionated RT 
(1.8-2 Gy per fraction).89,91

Different outcomes were induced by radiation, including 
both enhancing and attenuating anti-tumor immune response 
through the release of tumor antigens, increasing the num-
ber of tumor-infiltrating lymphocytes, and also enhancing the 
activity of the dendritic cells. Moreover, irradiated tumor cells 
showed altered expressions of molecules such as FAS ligands 
and PD-L1 that are involved in programmed cell death and 
this may enhance immune checkpoint inhibitors efficacy.90

On the other hand, RT may also have an impact on 
myeloid-derived suppressor cells, increasing the amount 
of regulatory T cells.91 In addition, circulating naïve T cells 
are extremely radiation sensitive: it is known that while the 
tumor lethal radiation dose is 3 Gy, T-cell death may occur at 
0.5 Gy. For this latter reason, RT would lead to lymphopenia, 
in fact lymphocytes circulating both in the high- and the low-
dose area around the tumor dies.92

Yovino et al93 conducted a study to estimate the radiation 
dose received by lymphocytes passing through the radiation 
field of GBM patients, in order to explain the treatment- 
related lymphopenia. Based on the number of irradiations, 
dose rate, and radiation field size, the authors calculated the 
amount of blood irradiated, reporting that the proportion of 
blood exposed to 0.5 Gy or more, increased with the number 
of fractions, lower dose rates, and larger irradiation fields. In 
fact, the modeling determined that a single radiation fraction 
delivered 0.5 Gy to 5% of circulating cells, and after 30 frac-
tions, 99% of circulating blood had received >0.5 Gy (target 
volume 8 cm treated by 60 Gy).

The same data about lymphopenia were reported by other 
authors, who proposed the blood as an immune-related organ 
at risk during RT.94 In fact, if brain volume that received 25 
Gy was more than 40%, a significant increase in the fre-
quency of acute severe lymphopenia (lymphocyte count < 500 
cells/mL) was reported.95 Lymphopenia with a count inferior 
to 200 cell/mL after chemoradiotherapy in GBM could affect 
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OS, identifying patients with poor prognosis.96 Moreover, in a 
study that evaluated the effects of RT on circulating lympho-
cyte count in patients treated with anti-PD-1 ICI, the authors 
reported that patients who developed RT-induced severe 
lymphopenia were more likely to have severe lymphopenia 
when ICI was initiated and that severe lymphopenia at that 
beginning of ICI therapy was associated with increased mor-
tality reported in the multivariable analysis (hazard ratio, 2.1; 
P = .03).97

In conclusion, RT has a conflicting role in GBM immune 
response: on one hand, it induces immunogenic cell death 
that can contribute to immune response, while on the other 
hand, RT induces lymphopenia that was associated with poor 
prognosis and may attenuate the immune response to ICI. 
Probably, hypofractionation, reduction of RT target volume 
and decreasing dose to a healthy brain, could be useful to 
increase immune response in GBM.98-100

Conclusions
Immunotherapy is clearly a revolution in the treatment of 
solid tumors. However, the role of immunotherapy in GBM 
remains a challenge because of the immunosuppressive nature 
of this tumor and its unique immune environment. Further 
studies will be needed to better understand possible strategies 
to overcome the mechanisms of immunosuppression. Data 
from clinical trials will show the future path, likely combina-
tion strategies may play a role.
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