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Abstract
Background: Pediatric brain tumors (PBT) stand as the leading cause of cancer-
related deaths in children. Chemoradiation protocols have improved survival 
rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the 
risk of numerous adverse effects that can have long-lasting, detrimental effects 
on the quality of life for survivors. The pursuit of chemotherapeutics that could 
obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, 
including sunitinib, valproic acid, carboplatin, and panobinostat, have shown ef-
fectiveness in various malignancies but have not proven effective in treating PBT. 
The presence of the blood–brain barrier (BBB) plays a pivotal role in maintain-
ing suboptimal concentrations of anti-cancer drugs in the central nervous system 
(CNS). Ongoing research aims to modulate the integrity of the BBB to attain clini-
cally effective drug concentrations in the CNS. However, current findings on the 
interaction of exogenous chemical agents with the BBB remain limited and do 
not provide a comprehensive explanation for the ineffectiveness of established 
anti-cancer drugs in PBT.
Methods: We conducted our search for chemotherapeutic agents associated with 
the blood–brain barrier (BBB) using the following keywords: Chemotherapy in 
Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition 
of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and 
BBB, and Potential PBT Drugs. We reviewed each relevant article before compil-
ing the information in our manuscript. For the generation of figures, we utilized 
BioRender software.
Focus: We focused our article search on chemical agents for PBT and subse-
quently investigated the role of the BBB in this context. Our search criteria in-
cluded clinical trials, both randomized and non-randomized studies, preclinical 
research, review articles, and research papers.
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1   |   INTRODUCTION

Pediatric brain tumors (PBTs) comprise 25% of all child-
hood cancers,1,2 and are one of the leading causes of can-
cer-diagnosed death in children.3 From surgical removal 
of PBT followed by radiation therapy and adjuvant chemo-
therapy to immunotherapy, PBT treatment has substan-
tially improved throughout the years.1,4,5 Improvement 
in gross total resection (GTR) or subtotal resection (STR) 
of PBT has resulted in the targeted removal of the tumor 
and enhanced radiological treatment.6 For example, pro-
ton beam treatment is one promising radiation therapy 
as it allows targeted dosing at high levels with reduced 
surrounding tissue damage.7 Unfortunately, despite ad-
vancements, radiation therapy can cause hearing loss, im-
paired neurocognition, and alteration in neuroendocrine 
function, among other adverse events.8–10 The detrimental 
effect of radiotherapy in the modulation of BBB integrity 
was examined in immunocompetent and immunocom-
promised mice, and it was found that 12-h irradiation 
in immunocompetent mice caused alteration of efflux 
transporter activity compared to immunocompromised 
mice indicating a role of proinflammatory molecules in 
BBB structural changes.11 Similarly, human clinical trials, 
in vitro, and in vivo studies have shown leaky BBB caused 
by irradiation of central nervous system (CNS).12–14 Cell 
death augmented by radiotherapy is one of the underly-
ing mechanisms for leakage in the BBB, and one report 
showed a 15% decline in endothelial cell population post 
24-h irradiation with a 25 Gy dose.15 The reactive oxygen 
species (ROS) production from irradiation can indirectly 
damage the BBB by inducing apoptosis which starts as 
early as 4-h after irradiation, and the effect was observed 
maximum post 12-h of irradiation.16–18 Though several 
PBTs respond well to radiation, this comes at the cost 
of potential long-term neurological consequences, par-
ticularly a problem in young children with developing 
brains.19 Immunotherapy of PBTs is emerging as a novel 
adjuvant monotherapy in the post-radiotherapy setting, 
and early clinical trials show overall safety, feasibility, and 

survival benefit in patients.20 While it is still progressing, 
the adverse effects of immunotherapy are a serious con-
cern, with immune-related adverse effects showing up as 
early as 3 months post-therapy.21 Unfortunately, there is 
limited success with combinations of radiotherapy, neu-
rosurgery, and chemotherapy.22–25 Considering the overall 
side effects of the current therapy to treat PBTs’,26 che-
motherapy becomes the treatment choice for controlling 
the residual and micrometastatic tumors that cannot be 
removed by surgery.27 However, BBB, being important for 
regulating which molecules can pass from the blood into 
the brain, can hinder drug penetration leading to subopti-
mal drug concentrations in the CNS.28,29

In 1979, chemotherapy became part of standard-of-
care therapy as an adjuvant to surgery and radiation in 
PBTs. In patients with medulloblastoma (MB) with or 
without metastacies, the addition of chemotherapy as an 
adjuvant significantly improved the event-free survival 
rate up to 86% ± 9%.1 Several combinations of anti-tumor 
drugs have been optimized to a range of 4–9 treatment 
cycles, depending on the risk assessment of the disease.30 
Interestingly, in many cancers, including MB, it has been 
observed that children tolerate chemotherapy better than 
adults.31 While the exact mechanism of this tolerance is 
unknown, it is believed to be a combination of altered he-
patic metabolism, diminished resistance to treatment reg-
imens, and fewer concurrent disease states as compared 
to adult patients.32 Nonetheless, chemotherapy causes 
significant adverse effects, such as post-treatment pan-
cytopenia, encephalopathy, ataxia, and motor weakness, 
among many other undesirable effects.33 A systemic ap-
proach for chemotherapy involving the evaluation of mo-
lecular basis/checkpoints, the related epigenetics, and the 
genomic level study has increased efficacy and lowered 
the risk for toxicity in patients.34–36 Through the HIT-2000 
trial, it was established that a systemic drug regimen in 
combination with intraventricular methotrexate is better 
than craniospinal irradiation in children >4 years of age 
for the treatment of nonmetastatic MB.37 Even for treating 
high-risk PBTs in children >3 years of age, chemotherapy 

Finding: Our research suggests that, despite the availability of potent chemo-
therapeutic agents for several types of cancer, the effectiveness of these chemi-
cal agents in treating PBT has not been comprehensively explored. Additionally, 
there is a scarcity of studies examining the role of the BBB in the suboptimal out-
comes of PBT treatment, despite the effectiveness of these drugs for other types 
of tumors.
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can be applied to the radiologically inaccessible residual 
tumor. In a randomized clinical trial of 261 patients with 
group 3 MB subtype, carboplatin use during radiotherapy 
increased survival rate from 54% to 73%.38

Despite the remarkable success of chemotherapy in 
PBTs, improvements in patient survival remain a signifi-
cant concern and challenge, and tumor subtype-associated 
differential success under chemotherapeutic treatment 
needs to be comprehensively explored.27 This premise re-
quires understanding and characterizing anti-tumor drug 
pharmacology in all histologically and clinically diverse 
PBT subtypes. Within the scope of this review, we discuss 
the most common PBTs and their chemotherapies with an 
emphasis on the BBB's role in drug delivery and the effi-
cacy of treatment.

2   |   PBT AND THE BLOOD –BRAIN 
BARRIER

Among the different pediatric brain cancers, MB is most 
prevalent, representing approximately 20% of all brain-re-
lated cancers in children.39,40 Cerebellum-originated MBs 
have been found among all ages, but children with a me-
dian age of 5 years show the highest incidence of MBs.41 
MBs are the first PBT to have its own Medulloblastoma 
Advanced Genomics International Consortium (MAGIC), 
which has provided insight into the molecular basis of 
MBs, leading to better clinical results.42 In 2006, the WHO 
classified the subgroup of cancers within MBs into four 
subtypes: Wingless/Integrated (WNT)-activated, Sonic 
Hedgehog (SHH)-activated, group 3 and group 4 with 
distinct genetic makeup which is essential for clinical 
differentiation.43,44

Diffuse intrinsic pontine glioma (DIPG), a high-grade 
glioma (HGG), is an aggressive PBT with poor survival 
that accounts for ~75% of brain stem tumors in children.39 
The WHO classification for pediatric high-grade gliomas 
(pHGGs) indicates diffused astrocytoma as grade II, grade 
III for anaplastic astrocytomas, and grade IV for glioblas-
tomas.45 The histone mutations HIST1H3B, H3F3A, and 
G34 are considered a predominant subgroup in pHGGs. 
Detailed molecular characterization and epigenetics of 
pHGGs have been carried out by various researchers.46–49 
Although there has been progress in understanding the 
subgroups of HGG, distinguishing it from the adult form 
of HGG, improvement for pediatric glioma is needed as 
mortality remains high at 43% for children up to 14 years 
old with PBT.50

Ependymoma is a relatively less common PBT (https://​
tumou​rclas​sific​ation.​iarc.​who.​int/​login?​redir​ectur​l=%​
2Fcha​pters%​2F45), and constitutes around 10% of the 
total childhood brain tumors reported.51 Interestingly, 

there seems to be a male predominance among ependy-
moma cases in patients <5 years of age.51,52 A literature 
review by Sun and colleagues evaluated sex discrepancy in 
brain tumor biology.53 They found that brain tumors occur 
more frequently in males compared to females regardless 
of age, tumor histology, or region of the world. They hy-
pothesized that sexually dimorphic mechanisms might 
control tumor cell biology, as well as immune and brain 
microenvironmental responses.53 According to the WHO 
classification, the subgroup of ependymoma includes 
subependymoma and maxillary ependymoma (grade I), 
classic (grade II), and anaplastic (grade III).54 Given the 
intrinsic association of the CNS and the BBB in drug phar-
macology, designing successful chemotherapy regimens 
and understanding the PBT-BBB-drug axis is crucial for 
maximizing therapeutic effects.

2.1  |  Blood–brain barrier

The BBB is a protective vascular barrier keeping the brain 
safe from the detrimental effect of toxins and patho-
gens.55–57 The structural component of the BBB primarily 
includes microvascular brain endothelial cells (MBECs) 
lining the cerebral blood vessels,58 pericytes that share the 
basement membrane with endothelial cells,59 and astro-
cytes with their tendrils for communication with neigh-
boring cells60,61 (Figure  1). Expression of tight junction 
proteins, namely occludins, claudins, junctional adhesion 
molecules, and cytoplasmic accessory proteins by MBECs, 
astrocytes, and pericytes play a pivotal role in barrier for-
mation.62–64 Despite tight junction formation by periph-
eral capillary endothelial cells, the TEER (Transepithelial 
electrical resistance) value observed is 2-fold less when 
compared to the BBB, pointing to a bidirectional paracel-
lular transport of molecules across the capillary endothe-
lial cells.65,66 The BBB-associated brain endothelial cells 
are distinct from capillary endothelial cells and exhibit 
extensive fenestration and enhanced tightness of inter-
cellular junctions with lower pinocytotic function.65,67,68 
The unique features of the BBB enable ionic homeostasis 
and optimal nutrition maintenance in the CNS.69 There is 
passive permeability for essential water-soluble nutrients 
across the BBB, while other nutrients engage with specific 
transporters for nervous tissue requirements.70,71 It is im-
portant to understand the specific role played by the BBB 
in PBTs as the BBB can present physiological obstacles for 
pharmacologic agents used in the treatment of PBTs.

The constituent cells of the BBB express efflux trans-
porters, including ATP-binding cassette (ABC) proteins 
P-glycoprotein (Pgp) and breast cancer resistance pro-
tein (BCRP). These efflux transporters, as crucial as they 
are to BBB regulation, can pump out pharmacologically 
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important molecules from the brain.72,73 The critical role 
of these protein pumps has been shown in knock-out ani-
mals, confirming that many small molecules used as drugs 
are a substrate for these protein pumps and are excluded 
by the BBB resulting in lower efficacy of the drugs.74–76 
The integrity of the BBB in the tumor region, also known 
as blood tumor barrier (BTB), varies based on the type 
and subtypes of tumor.77 Limited studies have shown 
BBB integrity modulation for different PBTs (Table  1). 
Midline glioma (DMG) is a subtype of HGGs where the 
BTB is seen intact, whereas adult glioblastoma has been 
shown to express a leaky BTB.77,78 Likewise, it was demon-
strated that there is a substantial difference in the BBB of 
WNT-activated and SHH-activated MBs subtypes.79 The 
establishment of aberrant vascular networks in the WNT-
activated MB impacts paracrine signaling activity, which 
creates a non-functioning BBB and allows enhanced 

chemotherapeutic concentrations as compared to SHH-
activated MB. The heterogeneous alteration in the BBB 
in adult brain tumor and PBTs and their subtypes affect 
the permeability, bioavailability, and chemotherapeutic 
response of potential therapeutic chemoagents.79,80 Even 
though molecular identification and targeted therapy for 
PBTs have come a long way, better strategies are needed 
to improve drug penetration and thereby the efficacy of 
current and future therapeutic agents.

To effectively treat MB and the other PBTs, a chemo-
therapeutic agent must be capable of crossing the BBB 
to obtain optimal CNS concentrations.79,81,82 A drug's 
molecular size plays a critical role in traversing the BBB. 
Currently, only 5% of the available drug can pass through 
the BBB, emphasizing the need to explore and modulate 
both BBB and therapeutic agents.83–85 To achieve desired 
CNS concentrations of potential anti-tumor agents, it is 

F I G U R E  1   Presentation of BBB interplay with PBT, (A) Constituent cells of BBB and the in vivo environment, (B) enlarged part of CNS 
depicting BBB in healthy brain and brain tumor with the associated BBB inhibition of drug entry, and (C) molecular-level comparison of 
the normal brain with a brain tumor. BBB, blood–brain-barrier; PBT, pediatric brain tumor; CNS, central nervous system; MMPs, metrix 
metalloproteases. *Figure was generated utilizing Biore​nder.​com.
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essential to understand the role of the BBB and its modu-
lation for enhanced drug penetration.

3   |   CHEMO​THE​RAP​EUTIC 
TREATMENT OF PEDIATRIC BRAIN 
TUMORS (PBTs)

3.1  |  Medulloblastoma (MB)

Chemotherapeutic agents like cisplatin, carboplatin, 
lomustine, cyclophosphamide, and vincristine are 
commonly used in MB treatment1,86–90 (Table  2). In a 
pediatric study, the progression-free survival (PFS) of 
children with high-risk MB improved from 65% to 86% 
and 79% for 3 and 5 years, respectively, in those treated 
with craniospinal irradiation and vincristine.88 In other 
pediatric clinical trials of maintenance chemotherapy, 
lomustine, cisplatin, and vincristine were used to in-
hibit the resurrection of the disease.87,88,90,91 Patients 
3–10 years of age receiving adjuvant therapy with chemo-
therapy experienced a 96% 2-year survival rate compared 
to a 59% 2-year survival rate with radiotherapy alone.90,91 
Furthermore, patients with advanced stages of MB dem-
onstrate greater benefit of adjuvant chemotherapy com-
pared to early stage MB.88 Several studies have shown 
better response to chemotherapy alone for most MB 
subtypes like desmoplastic, extensive nodular, or classic 
MB, since it alleviates the use of radiation therapy.92–98 
Rutkowski et al demonstrated that histopathology analy-
sis was a strong independent prognostic indicator for 
8-year event-free survival and overall survival, where de-
escalation of chemotherapy may be appropriate in young 
children with desmoplastic/nodular and extensive nodu-
larity type of MB histopathology.92 In a different study, 
the standard risk of MB showed an expected overall sur-
vival of about 85% in patients with craniospinal irradia-
tion followed by adjuvant chemotherapy.1,99,100 However, 
in high-risk MB, this regimen has only a 50% cure rate, 
where intensive treatment with high-dose chemothera-
peutic agents increases the survival from 20% to 40% 
and 60% to 70%.101,102 In this pursuit of chemotherapy in 
MB, the phase I study of sonidegib (LDE225) on PBT and 
phase II for relapsed MB exhibited anti-tumor activity 
for patients with relapsed Hh MB, but it was not active 
against non-Hh MB.103

3.1.1  |  Sunitinib

The U.S. Food and Drug Administration (FDA) approved 
sunitinib (SU11248, Sutent), a tyrosine kinase inhibitor 
used as a multi-target agent in cancer angiogenesis.104T
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Chemical structure of Sunitinib. https://​pubch​em.​ncbi.​​
nlm.​nih.​gov/​compo​und/​Sunit​inib 

A preclinical report indicated inhibition of MB can-
cer by sunitinib involving the STAT3-AKT signaling 
pathway.105 Pharmacologically, the plasma maximum 
concentration (Cmax) is observed between 6 and 12 h 
post-administration, and the bioavailability of oral 
sunitinib is estimated to be ~50%.106,107 Despite proven 
efficacy in treating renal cell carcinoma,104 the success 
of sunitinib in treating pediatric MB is poor. One po-
tential reason for this could be due to its limited pene-
tration through an intact BBB.108 A study by Sobanska 
and colleagues used a rabbit model to show that the 
exposure of sunitinib in plasma, aqueous humor, and 
CSF was different depending on the time of day of 
drug administration (8 am dose area under the curve 
[AUC0−time of last measurable concentration], CSF: 55.5 ng*h/mL 
vs. 9 pm dose AUC0−time of last measurable concentration, CSF: 
66.3 ng*h/mL, respectively).108 However, sunitinib pen-
etration through the BBB was reported to be very low 
(<5%) and comparable in both dosing groups.

To overcome the limitations of the BBB, a study by 
Szalek and colleagues evaluated the antibiotic cipro-
floxacin to modulate the BBB and enhance penetra-
tion of sunitinib.109 They found that rabbits treated 
with sunitinib + ciprofloxacin had higher 24-h CSF 
exposures (AUC0–24 and Cmax) compared to those that 
only received sunitinib (50.4 vs. 155 ng*h/mL and 4.2 
vs. 18 ng/mL).109 As clinical outcome data in pediatrics 
for sunitinib are limited, a phase II clinical multicenter 
trial conducted by the Children's Oncology Group in 
29 children found that sunitinib (as monotherapy) was 
reasonably well tolerated in children with recurrent 
ependymoma or high-grade glioma.110 However, the 
trial was closed at the time of interim analysis as there 
was no efficacy associated with sunitinib for recurrent 
PBT. The study concluded that sunitinib lacked anti-tu-
mor activity as monotherapy.110

3.1.2  |  Valproic acid

Valproic acid (VPA) is a histone deacetylase inhibitor 
(HDACi) that has shown promise in cancer therapeu-
tics given that histone deacetylase is a key component of 
epigenetic machinery, and it regulates gene expression 
through increased histone acetylation, while behaving as 
oncogenes in some cancers like MB.

Chemical structure of VPA. https://​pubch​em.​ncbi.​
nlm.​nih.​gov/​compo​und/​Valpr​oicAcid 

A report by Li and colleagues showed VPA inhibited cancer-
ous growth in the MB cell line.111 In a phase I clinical trial 
of children with brain cancer malignancies, the Children's 
Oncology Group showed that limiting VPA trough plasma 
concentrations to 75–100 μg/mL minimized toxicities.112 
In 2011, the FDA issued warnings for life-threatening 
side effects when VPA concentrations exceed 75 μg/mL.113 
Consequently, balancing the benefit vs. toxicity of VPA is a 
clinical challenge in the treatment of cancer.

Ionized forms of VPA at a plasma pH of 7.4 render 
it less permeable through plasma membranes for pas-
sive diffusion,114,115 and likewise, VPA also has difficulty 
crossing the BBB. VPA's difficulty in penetrating the CNS 
is believed to be because VPA acts as a substrate for the 
ATP-binding efflux transporter on the BBB.116 Given the 
potential of VPA as an anti-tumor agent, current stud-
ies are exploring the acceleration of VPA influx through 
BBB. One such study determined that pre-treatment with 
Gastrodia elata extract substantially improved BBB pen-
etration of VPA due to upregulation of influx transport-
ers, specifically the OATP transporter.117 The study found 
that rats treated with Gastrodia elata at oral doses of 1 and 
3 g/kg for 5 days increased the BBB AUC penetration ratio 
from 0.36 to 1.47 and 1.02, respectively.

3.1.3  |  Carboplatin

Carboplatin is a platinum alkylating agent that cova-
lently binds to DNA. Carboplatin is most commonly 
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used for ovarian cancers. However, carboplatin has 
shown potential for treatment of other cancers, with 
studies underway.

Chemical structure of Carboplatin. https://​pubch​em.​
ncbi.​nlm.​nih.​gov/​compo​und/​Carbo​platin 

The molecular mechanism of carboplatin is similar to cis-
platin but with lower side effects.118 In 2021, a randomized 
controlled trial in 261 children with MB found that carbo-
platin inclusion during radiotherapy enhanced survival by 
19% compared to no carboplatin.38 However, improved sur-
vival was only observed in the high-risk group 3 children 
with MB.38

Preclinical in  vivo studies have shown enhanced 
carboplatin penetration through the BBB when co-ad-
ministered with RMP-7, a bradykinin analog.119,120 
Specifically, Elliott and colleagues showed that intrac-
arotid doses of RMP-7 from 0.01 to 9 μg/kg significantly 
increased the permeability of carboplatin into tumor 
tissue (F [6, 144] = 10.92, p < 0.001) and surrounding 
brain tissue (F [6, 144] = 9.17, p < 0.001) in a dose-de-
pendent manner.119 A study by Matsukado et al120 also 
showed that intracarotid infusions of RMP-7 increased 
the transport of carboplatin to tumors by 2.7 fold 
(p < 0.001). This could have clinical implications as 
they found that the RG2 glioma rats treated with car-
boplatin and RMP-7 had increased survival compared 
to those who only received carboplatin alone (37% vs. 
74%).

3.1.4  |  Vismodegib

Vismodegib is a small molecular inhibitor shown 
to efficiently inhibit relapse in SHH-activated MB, 
where the probability of drug resistance develop-
ment is high.121

Chemical structure of Vismodegib. https://​pubch​em.​
ncbi.​nlm.​nih.​gov/​compo​und/​Vismo​degib​ 

A phase I and phase II clinical trial concluded that vismode-
gib is an efficient and well-tolerated drug against pediatric 
and adult MB, and vismodegib achieves anti-MB activity by 
inhibiting the SHH signaling pathway.122 This trial reported 
an objective response rate of 37% for vismodegib but the 
drug showed no response (0% response rate) in a non-SHH 
type MB. Currently, there are limited data on vismodegib's 
ability to cross the BBB. A recent study published in early 
2023 by Tylawsky and colleagues utilized a fucoidan-encap-
sulated vismodegib strategy to improve drug delivery across 
the BBB, and decrease the adverse effect of growth plate 
fusion observed at clinically effective doses.123 They found 
that in their animal model, fucoidan-based nanoparticles 
encapsulating delivery of vismodegib exhibited good effi-
cacy, reduced bone toxicity, and increased drug exposure to 
healthy brain tissue. This is especially significant to pediat-
ric patients as growth plate fusion can stunt a child's growth 
potential. Overall, these findings demonstrate a potent strat-
egy for targeted delivery that overcomes the BBB to achieve 
increased selective tumor penetration and has therapeutic 
implications for drug delivery to other diseases in the CNS.

3.1.5  |  TB403

TB-403, a humanized recombinant IgG1 mono-
clonal antibody with high affinity to the receptor 
(Neuropilin-1) of the placental growth factor (PIGF), 
inhibits PIGF-associated stimulation by blocking the 
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PIGF-neuropilin-1 ligand–receptor interaction in cap-
illary endothelial cells.124 TB-403 can also interact 
and have an inhibitory effect with vascular endothe-
lial growth factor receptor 1 (VEGFR1).124 PIGF is ex-
pressed in MB PBT, produced by the cerebellar stroma 
via the SHH ligand.125 Moreover, PIGF and neuropilin-1 
(Nrp1) signaling play an important role in the growth 
and spread of MB.124 In murine models with human MB 
xenograft and mimicking clinical symptoms, TB-403 
inhibited primary tumor growth and spinal metastasis 
by interfering with PIGF and neuropilin-1 binding.126 
This preclinical study recorded that in the presence of 
TB-403, the mean mouse survival increased from 40 to 
>55 days. Regarding clinical data, a phase I dose esca-
lation study of TB403 found that the most commonly 
observed treatment-emergent adverse events were fa-
tigue, constipation, pyrexia, and dyspnea.127 Available 
data also suggest that the VEGF pro-angiogenic sign-
aling pathway inhibitors may increase plasma levels 
of pro-angiogenic factors such as PIGF, a determinant 
of drug-induced resistance to therapy.124 The phase I 
trial of TB-403 in relapsed MB, neuroblastoma, Ewing 
Sarcoma, and alveolar Rhabdomyosarcoma indicated 
its good tolerance in the small population of heavily 
pretreated advanced solid tumor patients. In this trial, 
15 subjects were given 4 dose levels (20, 50, 100, and 
175 mg/kg), and the treatment caused a total of 75 ad-
verse events (AEs) in 10 out of 15, but no fatal adverse 
events were observed during the project. However, seri-
ous adverse events were recorded in 3 out of 15 patients 
treated. The results of the study did not show any con-
clusive therapeutic response, with 63% of the relapsed 
MB patients experiencing stable disease conditions for 
100 days.128 TB-403 does not require BBB penetration as 
it exerts its inhibitory effect on ligand–receptor block-
ing. Nevertheless, investigation for the on-site effect of 
the antibody on the distal part of the brain by examining 
the BBB penetrating capability could improve the thera-
peutic future of TB403.

3.2  |  Diffuse intrinsic pontine glioma 
(DIPG)

DIPG is a high-grade pediatric glioma, a malignant brain-
stem tumor, with a median survival of <1 year, while 
less than 10% of patients reported having overall survival 
>2 years.129 The tumor's location makes it difficult for 
complete resection.130 In children, DIPG accounts for 80% 
of brainstem tumors.131,132 Histological analysis reveals a 
close similarity between grade III anaplastic astrocytomas 
and grade IV glioblastoma.45 In 50% of the patients, clinical 
symptoms include cranial nerve palsies, long tract signs, 

cerebellar ataxia, and dysmetria.133,134 In DIPG, the most 
affected nerves are cranial nerves VI and VII, and these 
nerves' altered function is a symptomatic characteristic of 
DIPG.133 Common and standard practices for DIPGs com-
prise a 54–59 Gy dose of fractionated radiation because of 
the interior location of the tumor.135 Early approaches of 
monotherapy or combined chemotherapies have failed to 
work against DIPG cancer efficiently.136–138 It is believed 
that the oncogenic drivers for the DIPGs are the mutations 
in the histone protein, either by somatic-like mutations in 
H3K27M or H3K27 trimethylation.47 Since the discoveries 
of histone protein mutations responsible for this disease, 
several molecular inhibitors for histone deacetylase and 
demethylase have been evaluated for potential therapeutic 
application.139–141 For DIPG, chemotherapeutic options are 
inefficient because of the intact BBB, which restricts the 
delivery of drugs to DIPG tumors.142 However, there is an 
indication of SHH-mediated signaling of lower BBB per-
meability in DIPG.143 Regardless of the recent advances in 
identifying a target and specific drug, drug delivery failure 
across the BBB remains a significant challenge, and drug 
effectiveness against other tumors fails to inhibit DIPG.144

3.2.1  |  Panobinostat

Panobinostat is a histone deacetylase inhibitor that acts 
as a potent inhibitor of DIPG, and the epigenetic dysregu-
lation is depicted in Figure 2A. It was first identified by 
Grasso, C.S et  al. while performing chemical screenings 
against DIPG.139,145

Chemical structure of Panobinostat. https://​pubch​em.​
ncbi.​nlm.​nih.​gov/​compo​und/​Panob​inostat 

In the presence of panobinostat, there was a significant 
decrease in proliferation via the upregulation of genes 
MKI67 and CCND1.139 The tumor inhibitory effect of pa-
nobinostat was validated in DIPG mouse and H3.3K27M 
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orthotopic xenograft models.146,147 It was shown that pano-
binostat improved the epigenetic effect on mesenchymal 
stem cells tumor necrosis factor-related apoptosis-in-
ducing ligand (MSCs TRIAL), resulting in tumor growth 
arrest and an increase in overall survival by 5.5 days com-
pared to control group.148,149 In  vitro analysis based on 
western blotting showed dose-dependent enhancement in 
H3 acetylation and H3K27 trimethylation in panobinos-
tat-treated cells expressing H3.3K27M mutation.139 RNA-
seq data from the study also supported the normalization 
of the K27M gene while decreasing oncogenic target gene 
expression in panobinostat-treated cells.139 Further, pre-
clinical studies on human cells and mouse DIPG have 
confirmed panobinostat as an efficient chemical agent 
against DIPG.146 Preclinical studies for this inhibitor alone 
or in combination with other compounds have shown a 

better survival rate in a synergistic approach in several 
studies.139,150

Although the exact reason for the inefficient outcome 
of this drug when used alone is still not completely un-
derstood, poor BBB penetration has been proposed as 
a significant contributor to the diminished potency of 
panobinostat.151,152 An in  vitro study by Hennika and 
colleagues tested this theory by administering mice 
with different regimens of panobinostat. They found 
that extended daily consecutive treatment in both ge-
netic and orthotopic xenograft models was required to 
get adequate exposure in the brain, but this came with 
significant toxicity.146 Efforts are being made to enhance 
the BBB penetration of panobinostat to achieve desired 
CNS concentrations. It was found that convection-en-
hanced delivery (CED) combined with positron emission 

F I G U R E  2   Major pathways or targets of (A) epigenetic drugs panobinostat (upper panel) and temozolomide (lower panel), and (B) 
polyamine synthesis targeting drug difluoromethylornithine. HATs, histone acetyltransferase; HDACs, histone deacetylase; MGMT, 	
O6-methylguanine-DNA methyltransferase; DFMO, difluoromethylornithine. *Figure was generated utilizing Biore​nder.​com.
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3.2.3  |  Temozolomide

Temozolomide is an orally bioavailable agent and has 
proven function against high-grade gliomas and has 
exhibited a better clinical effect than procarbazine 
(not discussed in this review), another potent tumor 
inhibitor.168–170

Chemical structure of Temozolomide. https://​pubch​
em.​ncbi.​nlm.​nih.​gov/​compo​und/​Temoz​olomide 

Mechanistically, temozolomide causes a reduction in O6-
methylguanine methyltransferase (MGMT), which is re-
quired for DNA repair (Figure  2A). This reduction in the 
enzyme results in an increased level of O6-methylguanine 
in DNA, leading to a higher cytotoxic effect.171,172 A phase 
III clinical trial in adults reported a higher survival rate of 
around 11% for radiotherapy combined with temozolomide 
when compared to radiotherapy alone.173 Because of its 
good tolerance, temozolomide is prescribed for most cases 
of glioblastoma in patients.174 Unfortunately, this drug's 
utilization post-radiotherapy has not shown benefit in pedi-
atric DIPG cases.175–178 A comprehensive review compiling 
different trial studies pointed to no substantial difference in 
overall survival compared to the control treated with only 
radiotherapy.132

One of the critical reasons for the ineffectiveness of 
this drug against DIPG is the BBB.179 Despite the small 
size of temozolomide (194 Da) and associated lipophilic-
ity, the detected concentration of the drug in brain tumor 
tissue is only about 17.8% of the plasma level with mean 
area under-concentration-time curve (AUC) for plasma 
level 17.1 and 2.7 μg/mL × h for brain.180 The differen-
tial integrity of the BBB (different parts of the brain) 
was observed for the selective permeability of temozolo-
mide in the pontine, the cortex, and CSF, suggesting a 
location-based phenotype for the BBB.181,182 A study by 
Ostermann et  al. showed CSF levels of temozolomide 
in patients with newly diagnosed recurrent malignant 
gliomas were consistently in the 20% of plasma level 
range but could get up to 35% of the plasma levels when 
co-administered alongside radiation.183 Controlled and 
targeted radiation can be used for a transient opening 
and modulation of the BBB neurovascular unit for better 

tomography (PET) might have utility in increasing BBB 
penetration.153 A study by Tosi and colleagues utilized 
both CED and PET to modulate the CED infusions of pa-
nobinostat to ensure saturation of the tumor by drug.153 
They concluded that personalized image-guided drug 
delivery might be useful in potentiating CED-based 
treatment algorithms to support clinical translation of 
panobinostat for improvement in survival rates in pedi-
atric diffuse midline glioma.

3.2.2  |  Difluoromethylornithine (DFMO)

DFMO is a small molecule that irreversibly inhibits the 
polyamine synthesis pathway, inhibiting cell prolifera-
tion154,155, illustrated in Figure 2B.

Chemical structure of DFMO. https://​pubch​em.​ncbi.​
nlm.​nih.​gov/​compo​und/​Diflu​orome​thylo​rnithine 

Polyamines are one of the major substrates in intracel-
lular biosynthesis and catabolic pathways and are thus 
tightly regulated.156,157 DFMO inhibits the activity of 
ornithine decarboxylase1 (ODC1), which is required for 
the decarboxylation of ornithine into polyamine putres-
cine.158–160 ODC1, which has different activity levels in 
response to growth stimuli, is found to be upregulated 
in cancer.161 Though its effect on adult cancers is un-
derwhelming,162,163 the use of DFMO in childhood can-
cer has potential given its activity in neuroblastoma 
cell lines.164,165 Recent data demonstrated hyperactivity 
of the polyamine pathway in DIPG preclinical in  vitro 
and in  vivo models.166 Briefly, this study showed that 
DFMO, combined with polyamine transport inhibitor 
AMXT 1501, significantly increased the survival rate of 
mice to 160 days compared to 60 days for control group 
in the orthotopic DIPG model. Brain polyamines have 
also been shown to break down the integrity of BBB. 
Interestingly, given DFMO's inhibition of the synthe-
sis of polyamines, it has been shown to decrease the 
postischemic breakdown of the BBB.167 Consequently, 
BBB resistance to other synergistic molecules is risky in 
DIPG treatment.167
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drug penetration.183 Studies are ongoing to improve BBB 
penetration for temozolomide by employing techniques 
like focused ultrasound, regadenoson (a vasodilating 
process), and nanoparticles to enhance penetration and 
inhibit transporters.184–187

3.2.4  |  Bevacizumab

Bevacizumab is a recombinant and humanized monoclo-
nal antibody (mAb) with high specificity and affinity for 
VEGF188,189; the mechanism is shown in Figure 3. VEGF 
is pivotal in tumor growth and metastasis in children.189 
Prior to the primary tumor resection, children with can-
cer have increased circulating VEGF levels.190,191 Clinical 
data show overexpression of VEGF-A and its receptor 
VEGFR2 in various brain tumors, including DIPG.189,192 
Bevacizumab appears to be relatively safe for children 
with primary CNS tumors.193 Non-randomized trials 
of bevacizumab in children diagnosed with PBT show 
varying levels of clinical improvements.158,194,195 Parekh 
et  al demonstrated a 6-month progression-free survival 
of 38% in patients <21 years of age with WHO grade 3–4 
gliomas who receive bevacizumab alone or in combina-
tion with CCNU1.97 Hummel and colleagues demon-
strated that bevacizumab-based therapies were feasible 
and safe in HGG and DIPG pediatric patients but did not 
improve survival in patients with DIPG.195 Currently, for 
DIPG, trials are being conducted with VEGF-neutralizing 
mAb.196–198 A decrease of 65% in tumor size was observed 

with bevacizumab in combination with temozolomide, 
but the study only included two patients, raising questions 
about this combination's clinical benefit.199

The VEGF antagonist mAb does not require cross-
ing the BBB as it can directly bind to VEGFR2; however, 
reaching the distal part of CNS will be more beneficial for 
treating DIPG.200 Currently, there are no clear data on the 
receptor-based transcytosis of mAb across the BBB. Since 
antibodies are relatively large (150 kDa), this will likely 
hinder mAb's ability to cross the BBB.201

3.3  |  Ependymoma

Ependymomas are tumors with a slow proliferating rate. 
In most cases, fractionated radiotherapy or surgery is the 
preferred treatment with limited knowledge of the ben-
efits of chemotherapeutic regimes.202–204 A prominent 
marker of angiogenesis is the overexpression of VEGF.205 
Approximately 190 ependymoma-diagnosed children's 
cases in the United States are reported yearly with <60% 
10-year or more survival.43,50 The standard treatment re-
gime includes near-total-resection (NTR) or gross total 
resection (GTR) followed by fractionated radiotherapy, 
with an exception in children under 3 years of age.206 Two 
clinical trials have tried to validate this resection method-
ology and confirmed survival rates ranging from 60% to 
80%.206,207 Other clinical trials have demonstrated positive 
outcomes with combined therapy of alkylating agents like 
carboplatin, ormaplatin, and oxaliplatin with or without 

F I G U R E  3   Bevacizumab is a humanized monoclonal antibody that inhibits angiogenesis by neutralizing vascular endothelial growth 
factor (VEGF), which is upregulated in tumor growth and metastasis of multiple types of CNS tumors. CNS, central nervous system; 
VEGFR, vascular endothelial growth factor receptor. *Figure was generated utilizing Biore​nder.​com.
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cisplatin.208,209 The progression-free survival of children 
treated with only GTR followed by radiotherapy com-
pared to patients who received chemotherapy and NTR 
showed a comparable effect of around 58% and 67%, re-
spectively.208 In addition to an increased progression-free 
survival rate, chemotherapy is also desired in  situations 
where complete resection is impossible. A German HIT-
REZ study enrolled 138 pediatric patients for evaluation 
of systemic chemotherapy and concluded no advantage of 
chemotherapy in recurrent ependymoma; however, resec-
tion followed by chemotherapy extended the survival rate 
by more than 1 year.210 Another phase II trial for sunitinib 
enrolled 17 children with DIPG and 13 with ependymoma 
and found no significant anti-tumor activity of this drug 
alone.110 As such, multiple trials and research efforts are 
underway to find a better chemical agent for ependymoma 
inhibition.211

ABC transporters are located in tissues of the intestine, 
liver, kidneys, heart, lungs, brain, placenta, and testis and 
are highly expressed in tissue interfaces, specifically blood 
endothelial interfaces like the BBB.212,213 Reports have 
suggested the invariable occurrence of ABC receptors like 
multiple drug resistance 1 (MDR1) and CRP in different 
subtypes of ependymoma.214,215 The BBB-associated ABC 
transporters play a vital role in drug concentration across 
the BBB, and their primary function is to extrude both en-
dogenous and exogenous molecules, including drugs.216 
Thus, a detailed, comprehensive analysis of the BBB on 
chemotherapy for ependymoma is needed.

3.3.1  |  5-azacytidine

5-azacytidine (AZA) was first discovered in 1960 as a 
pyrimidine analog with the ability to inhibit DNA meth-
ylation.217 In an in  vitro study, AZA was discovered to 
stimulate the differentiation of human glioblastoma cells 
while simultaneously reducing the expression of the G 
protein-coupled formylpeptide receptor (FPR), which acts 
as a mediator in the chemotaxis of phagocytic leukocytes. 
Additionally, AZA was observed to lower global methyla-
tion levels within glioblastoma cells, all the while activat-
ing the tumor suppressor.218 A study involving rabbits and 
dogs examined the CSF levels of AZA. It demonstrated 
that AZA was able to penetrate the CNS through the 
blood-CSF barrier, with CSF levels reaching 27% and 58% 
of the plasma Cmax.219 In a pilot clinical trial involving 
six children with recurrent posterior fossa ependymoma, 
AZA was administered at doses of 10 mg for 12 consecutive 
weekly infusions into the fourth ventricle tumor resection 
cavity. Notably, there were no observed neurological tox-
icities, and two out of five patients exhibited a decrease in 
the size of intraventricular lesions.220

3.3.2  |  Pembrolizumab

Pembrolizumab is a humanized monoclonal antibody 
known for its high affinity for programmed cell death 
ligand 1 (PD-L1), which is found on antigen-presenting 
cells, including cancer cells. It functions by inhibiting 
the interaction between PD-L1 and the programmed 
cell death-1 (PD-1) receptor on cytotoxic T-lymphocytes, 
thereby enhancing the T-cell response against cancer 
cells.221 Notably, PD-1 and PD-L1 are highly expressed in 
supratentorial ependymoma and posterior fossa epend-
ymoma. In these cases, the PD-L1-PD-1 interaction serves 
to protect the host by restraining hyperactive T-effector 
cells. However, disrupting this interaction has shown 
promise in improving anti-tumor cytotoxic T-cell immu-
nity.222–224 In advanced melanoma patients, treatment 
with pembrolizumab yielded an overall response rate of 
33%. Furthermore, there was a 35% rate of progression-free 
survival for 12 months, and the median overall survival 
reached 23 months.225 Pembrolizumab has demonstrated 
effectiveness against various cancer types, as summa-
rized in a report by the European Medicines Agency.226 
Currently, an ongoing phase I clinical trial of pembroli-
zumab (Study ID-NCT02359565) is investigating its use 
in pediatric brain tumors, including ependymoma, with a 
focus on identifying side effects and determining the op-
timal dosing for patients under 18 years of age. However, 
despite its effectiveness as an immune checkpoint inhibi-
tor (ICI), the success of pembrolizumab also depends on 
its ability to cross the BBB. Therefore, a phase II trial 
(Study ID-NCT05879120) is underway to explore the role 
of the BBB in influencing the potency of pembrolizumab 
in the treatment of recurrent glioblastoma in patients over 
18 years of age.

4   |   CONCLUSIONS AND FUTURE 
PROSPECTIVE

We focused this review on the major types of PBTs, their 
chemotherapeutic treatment, and the involvement of 
the BBB. PBTs represent a significant treatment chal-
lenge, and the success of even highly potent anti-PBT 
drugs can be limited by poor penetration through the 
BBB. The use of chemotherapy was initially as an ad-
juvant to surgical and radiotherapy-based treatments, 
but significant progress has been made in their usage 
in pediatric brain cancers. Chemotherapy can poten-
tially become a standard treatment modality, thereby 
eliminating the need for radiotherapy and its associ-
ated long-term side effects. The failure of conventional 
anti-cancer drugs in treating PBTs is potentially due 
to the restrictive cellular barriers that isolate the CNS, 
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maintain homeostasis, and regulate the passage of mol-
ecules across the BBB.

Two promising research pathways dominate efforts to 
improve CNS drug delivery. One is focused on develop-
ing novel systemic drug delivery methods, and the other 
is on directly modulating the BBB to improve CNS drug 
bioavailability.81,82,227–229 PET image-guided HDAC inhi-
bition (PETobinostat) is a recent drug delivery method 
that combines convection-enhanced delivery and image 
guidance is being applied to increase BBB penetration of 
panobinostat.153

There is a need for a better delivery method to counter 
the BBB resistance for drugs like nimotuzumab, gefitinib, 
and erlotinib, which have been shown to have some ben-
eficial outcomes in subsets of DIPG.230,231 In this regard, 
in  vitro BBB models can be used to screen anti-tumor 
compounds in a timely manner and evaluate the BBB 
integrity modulation for desired drug penetration before 
clinical data are available.232–235 More research is needed 
in this area to optimize the bioavailability of anti-tumor 
agents across the BBB and augment PBT therapeutic 
options.
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