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Simple Summary: Brain tumours are abnormal growth of cells in the human brain. Continuous
effort is being made towards improving diagnosis and treatment options for such brain neoplasms.
Manual classification and segmentation of imaging scans are tedious, time-consuming, and subjective.
Over the last decade, the use of intelligent systems in the form of clinical decision support systems
(CDSSs) to assist in identifying, classifying, and evaluating brain tumours has seen a rise. A CDSS
can be used as a supportive tool for clinicians to deal with complex medical decisions and improve
healthcare delivery. This review aims to systematically identify different types of CDSSs used in
brain tumour diagnosis and prognosis through medical imaging. It analyses various CDSS tool types,
techniques, accuracy, and outcomes to provide the latest evidence available in this field of research.

Abstract: CDSSs are being continuously developed and integrated into routine clinical practice as
they assist clinicians and radiologists in dealing with an enormous amount of medical data, reduce
clinical errors, and improve diagnostic capabilities. They assist detection, classification, and grading
of brain tumours as well as alert physicians of treatment change plans. The aim of this systematic
review is to identify various CDSSs that are used in brain tumour diagnosis and prognosis and
rely on data captured by any imaging modality. Based on the 2020 preferred reporting items for
systematic reviews and meta-analyses (PRISMA) protocol, the literature search was conducted in
PubMed and Engineering Village Compendex databases. Different types of CDSSs identified through
this review include Curiam BT, FASMA, MIROR, HealthAgents, and INTERPRET, among others.
This review also examines various CDSS tool types, system features, techniques, accuracy, and
outcomes, to provide the latest evidence available in the field of neuro-oncology. An overview of
such CDSSs used to support clinical decision-making in the management and treatment of brain
tumours, along with their benefits, challenges, and future perspectives has been provided. Although
a CDSS improves diagnostic capabilities and healthcare delivery, there is lack of specific evidence to
support these claims. The absence of empirical data slows down both user acceptance and evaluation
of the actual impact of CDSS on brain tumour management. Instead of emphasizing the advantages
of implementing CDSS, it is important to address its potential drawbacks and ethical implications.
By doing so, it can promote the responsible use of CDSS and facilitate its faster adoption in clinical
settings.

Keywords: clinical decision support system; brain tumour; brain neoplasms; diagnosis; prognosis;
systematic review

1. Introduction

Brain tumours are abnormal and uncontrolled growth of cells in the human brain
that affect usual brain functionality [1]. Brain tumours are divided into primary and
secondary. Primary brain tumours originate in the brain and can be subdivided into
benign (non-cancerous) and malignant (cancerous). Secondary brain tumours are cancerous

Cancers 2023, 15, 3523. https://doi.org/10.3390/cancers15133523 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15133523
https://doi.org/10.3390/cancers15133523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0009-0003-8023-8317
https://orcid.org/0000-0001-7938-0269
https://orcid.org/0000-0001-9608-5990
https://orcid.org/0000-0001-5473-135X
https://doi.org/10.3390/cancers15133523
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15133523?type=check_update&version=1


Cancers 2023, 15, 3523 2 of 14

cells expanding to the brain from other parts of the human body [2]. The World Health
Organization (WHO) classifies brain tumours into four grades. Grades 1 and 2 consist of
less severe tumours such as meningiomas, while Grades 3 and 4 consist of more severe
ones such as gliomas [3]. Management and treatment of these brain neoplasms require an
understanding of the location, size, and type of tumour. Various imaging modalities such
as magnetic resonance imaging (MRI), positron emission tomography (PET), and computed
tomography (CT) are used in the diagnosis of brain tumours. MRI is usually preferred as it
is non-ionizing and non-invasive [4]. However, manual segmentation and classification of
these images are tedious processes, are prone to human error, and can be subjective. To
address these challenges, clinical decision support systems (CDSSs) are being used as a
supportive tool for radiologists and clinicians to aid in the diagnosis and prognosis of brain
tumours [4].

CDSSs are primarily designed for clinicians to use at the point of care, as shown
in Figure 1. A conventional CDSS is comprised of software designed to match patient
characteristics with a computerised medical knowledge base and present a patient-specific
recommendation or evaluation to the clinician for making an informed decision [5]. These
computerised systems aid in early detection and characterisation of brain tumours by
performing automatic tumour segmentation, differentiation, classification, and evaluation
of brain imaging data [6].
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Figure 1. Simple diagram of a CDSS. (i) User at the point of care sends a healthcare query to the (ii)
CDSS that matches (iii) patient record with the (iv) medical knowledge base and responds with an
(v) output with clinical recommendations.

Available literature on CDSSs, used specifically for brain tumours, is limited. This
systematic review is, to the best of our knowledge, the first of its kind to evaluate different
types of CDSSs used both for brain tumour diagnosis and prognosis through medical
imaging data. The research question is to identify what CDSSs are being used in the
diagnosis and prognosis of brain tumours, to summarise the techniques used, and to
evaluate their accuracy and outcomes.

2. Method

The methodology has been divided into (i) search strategy—databases used; (ii) study
selection—keywords and inclusion and exclusion criteria; (iii) data extraction—pre-defined
data extraction proforma; (iv) study quality assessment—to assess the quality of included
studies; (v) data synthesis—reasons for conducting a narrative and semi-quantitate review.

2.1. Search Strategy

The literature search was conducted, systematically, in two academic databases, viz.,
PubMed and Engineering Village. Both databases provided all the relevant studies needed
in this area of research. For identifying medical literature in PubMed, medical subject head-
ings (MeSH) terms were used—(“decision support systems, clinical” [MeSH Terms] AND
“Brain Neoplasms” [MeSH Terms]). In Engineering Village, both controlled vocabulary and
general terms were used—(((((((cancer)) OR ((((({Tumors} WN CV) OR ({Oncology} WN
CV))))))) AND ((((({Decision support systems} WN CV))))))) AND brain). Studies published
only in the English language were considered in this review. The search was not bound by
any time frame.



Cancers 2023, 15, 3523 3 of 14

2.2. Study Selection

The systematic review was conducted according to the 2020 PRISMA protocol [7]. The
PRISMA flowchart is shown in Figure 2. The literature search was conducted without any
time frame to identify all studies published until May 2023.
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Based on the purpose of this systematic review, there were 4 exclusion criteria: (i) studies
that did not use CDSS; (ii) studies that focused on comparing different methods/techniques—
comparative studies are out of scope of the current review; (iii) studies that did not investi-
gate brain tumours; and (iv) studies that focused on treatment options for brain tumours,
such as surgery or radiotherapy, as opposed to focusing on the use of CDSSs in the man-
agement of tumours. To provide an unbiased and comprehensive summary of CDSSs used
in the diagnosis and prognosis of brain tumours, papers that had insufficient information
on results or limited/poor methodology were also excluded. These comprised studies with
inadequate sample sizes, flawed study designs, or biased data collection methods.

2.3. Data Extraction

Two authors with in-depth knowledge of digital health technology and experience
in conducting systematic reviews independently performed data extraction using a pre-
defined data extraction proforma. Any conflicts or discrepancies between these two authors
were resolved by a third reviewer who is a senior researcher and an acknowledged expert in
the field of digital healthcare and neuro-oncology imaging clinical decision support systems.
Rayyan, a web application designed to facilitate the screening process in systematic reviews,
was utilised to track and manage conflicts. Discrepancies arose in a small fraction of cases
(6%), which were resolved through a consensus. Variables used for extraction of data
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were the year of study publication, study design, geographical location of the research
conducted, sample size, modality used, CDSS features, techniques/methods used, and
CDSS output. These have been listed in Tables 1 and 2 below.

Table 1. Study design.

Study Design Number of Papers Percentage of Papers (%)

Prospective cohort study 1 6 35
Retrospective study 1 6

Registry-based 10 59
1 Comprising 1 parallel randomized pilot trial.

2.4. Study Quality Assessment

All studies included in this review have been assessed for the quality of their research.
Keshav’s 5 Cs (viz., category, context, clarity, correctness, and contribution) [8] framework
was used to ensure a comprehensive approach towards including papers in this review.
Additionally, only studies that had adequate reasons for determining their sample size, pa-
tient selection criteria, and methodology were considered. This reduces bias and improves
the overall quality of a systematic review.

2.5. Data Synthesis

The identified studies were diverse in terms of their sample size, type of CDSS, and
techniques used. Hence, a meta-analysis was not performed. Rather, both a narrative and
semiquantitative summary of CDSSs used in brain tumour diagnosis and prognosis has
been provided. Individual CDSSs have been broadly categorised, as and when necessary.
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Table 2. Type of CDSS, modalities, techniques, accuracy, and outcome.

Ref CDSS Description Sample Size Modality Brain Tumour Types Techniques Used Accuracy Outcome

[9] Data-driven prognostic
support 42

Fluid-attenuated
inversion recovery

(FLAIR) or
T2-weighted MRI

Diffuse low-grade
gliomas

Linear and exponential
mathematical models with

coefficient of determination R2

and t-test to evaluate quality
of model predictions

89.00%

Notifies clinicians of
changes in tumour

diameter and whether
to continue/stop

treatment

[10]

Diagnostic support for
the detection and
classification of

tumours

Benign: training 75,
testing 65

Malignant: training
75, testing 65

MRI All

Denoising by the genetic
median filter, segmentation by
hierarchical fuzzy clustering,
feature extraction by GLCM
and Gabor feature, feature

selection by lion optimization,
and classifier by BSVM

97.69%
Analyses size and type

of tumour, stage of
cancer

[11]

Diagnostic support
that identifies and
grades tumours in

terms of their severity

Hospital: 134,
dataset: 80

T1-weighted,
T2-weighted, T1

post-contrast and
FLAIR MRI

Low-grade and
high-grade gliomas

MRI pulse fusion,
segmentation by adaptive

thresholding, feature
extraction by run length

matrix, identification and
classification by NB classifier

96.47% Detects and specifies
tumours

[12]

Diagnostic support is
not integrated but
ready to be used at

local and remote level

30 3D T1-weighted MRI All

Segmentation by
semi-automated 3D

segmentation method, feature
extraction by BoW,

classification by SVM

99.00%

Provides tumour
detection,

segmentation and 3D
visualisation

[13]

Diagnostic support for
detection and

classification of
tumours

48 T1 post-contrast MRI Glioblastoma and
metastases

Feature extraction by
Student’s t-test and correlation
analysis; classifiers used QDA,

NB, k-NN, SVM and NNW

97.92%

Automatically
differentiates between

glioblastoma
multiforme and

solitary metastasis
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Table 2. Cont.

Ref CDSS Description Sample Size Modality Brain Tumour Types Techniques Used Accuracy Outcome

[14]

A multi-stage classifier
for MR spectra of brain
tumours developed as

part of a DSS

81 astrocytoma, 32
metastases, 37
meningioma, 6

oligodendroglioma, 6
lymphoma, 5

primitive
neuroectodermal

tumour, 4
schwannoma, 4

haemangioblastomas
and 14 healthy

1H MRS All 3 diagnostic classifiers used:
LDA, decision trees, and k-NN 99.30%

Provides accurate
predictions and

reduces classification
errors

[15]

Diagnostic support for
the detection and
classification of

tumours

- 1H MRS All Pattern recognition and data
visualisation by LDA 90.00% Non-invasive tumour

diagnosis and grading

[16]
Diagnostic support and
qualitative evaluation

of Curiam BT
55 1H MRS All Fisher LDA and Peak

Integration >83.00%
Classification and
grading of brain

tumours

[17]
Diagnostic support:

FASMA for brain
tumour classification

126

T2-weighted, T1
post-contrast

MRI/1H MRS, DWI,
DTI, PWI

Gliomas, solitary
metastases, atypical

meningiomas
SVM, LDA, k-NN and NB >80.00%

Used advanced MRI
techniques for brain
tumour classification

[18] Childhood cancer
diagnosis by MIROR 48

T1-weighted,
T2-weighted

MRI/1H MRS, DWI
All SVM and k-NN 89% and 93%

Performs
non-region-specific

quantitative analysis of
brain imaging data

[19]

Diagnostic support for
paediatric brain

tumour
characterisation (part

of HealthAgents)

33 1H MRS
Pilocytic astrocytoma,

ependymoma,
medulloblastoma

Principal component analysis,
linear discriminant analysis on

MRS data
94.00% Categorises children’s

brain tumours



Cancers 2023, 15, 3523 7 of 14

Table 2. Cont.

Ref CDSS Description Sample Size Modality Brain Tumour Types Techniques Used Accuracy Outcome

[20]

Diagnostic support for
brain tumour diagnosis
and prognosis (part of

HealthAgents)

182

MRS,
ex vivo

high-resolution
magic angle spinning

(HR-MAS)

All LDA, SVM and LSVM >90.00%
Diagnosis and

management brain
tumours

[21]

Diagnostic support
automatic classification
framework as a part of

HealthAgents

- MRS All Classifiers: LDA, KNN,
LS-SVM >80.00% Classification of brain

tumours

[22] INTERPRET - T1 post-contrast,
MRS All short, long and concatenated

short + long TE 89.00% Diagnosis and grading
of tumours

[23]
Diagnostic support
and evaluation of
INTERPRET 2.0

38

T1 Spin Echo (SE),
axial T2 SE, axial

FLAIR, axial T1 SE,
axial T1

post-contrast, coronal
T1-post-contrast and

DWI

All short, long and concatenated
short + long TE 87.00% Classification of brain

tumours

[24]
Diagnostic support
and evaluation of

INTERPRET DSS v3

From INTERPRET:
266

From IDI-Bellvitge:
70

T1-weighted,
T2-weighted, 1H

MRS
All

LDA-based classifiers: short,
long and concatenated short +

long TE
>69.84%

Categorisation of MRS
from abnormal brain

mass

[25]

Diagnostic support for
the detection and
classification of

tumours developed by
INTERPRET project

334

Axial T2-weighted,
axial T1-weighted
pre-contrast, axial

T1-weighted
post-contrast MRI,

1H MRS

All LDA-classifier >90.00%
Prediction of tumour

classes and grading of
tumours
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3. Results

All studies, included in this review, allow us to answer these research questions: What
are the available CDSSs for the diagnosis and prognosis of all types of brain tumours, what
their features and techniques are, and finally, what their accuracy and outcomes are. These
are covered in the following sections.

3.1. Search Results

The literature search conducted via two databases produced 146 studies out of which
PubMed identified 36, while Engineering Village identified 111 studies. Automatic de-
duplication in EndNote removed 4 studies, while a manual scan removed an additional
14 duplicates, leaving 131 studies to be evaluated for the title and abstract screening in
Figure 2. Based on the title and abstract screening, 113 articles were removed. Out of the
remaining 18 studies for full-text assessment, only 1 did not fulfil all the inclusion criteria
and, thus, was removed. Finally, 17 articles were shortlisted for this systematic review.

3.2. Study Characteristics

All 17 studies identified were full-text articles (100%); there were no abstracts from con-
ference presentations. The types of study design within the review have been documented
in Table 1.

The search was not filtered by any time frame, in order to include all available studies
in this area until 30 May 2023. The distribution of studies published over time, and their
geographical locations are described in Figure 3a and Figure 3b, respectively.
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In total, 7 studies (41%) were based on publicly available datasets, 3 studies (18%)
were conducted based on international datasets, 2 studies (12%) used regional data, and
5 studies (29%) were conducted at a single centre.

3.3. CDSSs Used in the Diagnosis and Prognosis of Brain Tumours

The different types of CDSSs identified through this review, along with the sample
size, modality, sub-specific type of brain tumour, techniques, accuracy, and outcome have
been listed in Table 2.

3.3.1. Diagnostic Support Systems

MRI-based brain tumour classifier systems were proposed by [10,11]. Both studies
utilised the publicly available benchmark Brain Tumor Segmentation (BraTS 2015) dataset,
widely used for research on the challenge of brain tumour segmentation. It includes



Cancers 2023, 15, 3523 9 of 14

multiple modalities such as T1-weighted, T2-weighted, T1-weighted post contrast, and
FLAIR MRI sequences. Features were extracted by using the gray level co-occurrence matrix
(GLCM) method and run length of centralized patterns (RLCP), respectively. The accuracy
of classification of tumours performed by the boosting support vector machine (BSVM)
algorithm was 97.69% [10] as compared to 96.47% using naïve Bayes (NB) [11]. When
comparing the two classifiers, BSVM can be considered to have superior capabilities as it
performs well even with larger, high-dimensional datasets and the algorithm’s complexity
does not increase with reduced training time. Another study by [12], based on a hospital
dataset of 30 patients, with an accuracy of 99.00%, was able to determine the size, shape,
and location of tumours by utilising the speeded up robust features (SURF) enhanced
bag-of-words (BoW) feature extraction method combined with a SVM classifier. The 3D
visualisation capability of this CDSS outperformed available state-of-the-art tools, such
as ITK-SNAP and 3D-Doctor, according to a subjective comparative analysis. Based on a
subjective evaluation undertaken by two separate expert raters, the proposed diagnostic
support system can be implemented at local and remote levels. Finally, a study by [13]
proposed a computerised decision support framework, with a sample size of 48 patients,
for automatic tumour discrimination between glioblastoma multiforme (GBM) and solitary
metastasis (MET) using MRI. The novel segmentation method (D-SEG), along with a
neural networks-based classifier, achieved an accuracy of 97.92%. However, using a semi-
automatic segmentation method and a relatively smaller dataset can be seen as limitations
of the proposed CDSS.

Studies [14,15] used data from magnetic resonance spectroscopy (MRS) for automatic
classification of 1H MR spectra from brain tumour samples. The multi-stage classifier was
based on decision trees, LDA and k-NN, reduced bias and classification errors and had
superior prediction capabilities [14], as compared to using only LDA in [15]. Both studies
successfully categorised tumours into benign vs. malignant and low-grade vs. high-grade
with higher than 90.00% classification accuracy.

Paper [16] conducted a prospective parallel-randomized pilot study to evaluate Cu-
riam BT—a CDSS for the diagnosis of brain tumours based on 1H MRS. Curiam BT included
four predictive models: Model 1, Model 2, Model 3 and Model 4. Model 1, with a short
echo time (STE) classifier, was used to discriminate between aggressive, meningioma, and
low-grade glial tumours and attained an accuracy of 88%. Model 2, with both STE and
long echo time (LTE) classifiers, was used to discriminate between aggressive, meningioma,
and low-grade glial tumours and achieved an accuracy of 92%. Model 3, with an STE
classifier to discriminate between high-grade tumours and low-grade tumours, attained
an accuracy of 83%, and Model 4 using STE to discriminate between meningiomas and
non-meningioma attained an accuracy of 91%. All models were based on Fisher LDA
and peak integration. The pilot study, conducted with a sample size of 55, confirmed that
Curiam BT improved diagnostic accuracy and can be used as an effective tool to train and
assist novice radiologists to diagnose brain tumours. To optimize the CDSS for routine
practice, conducting a clinical trial with a larger sample size and integrating the CDSS
within the Picture Archiving and Communication System (PACS) of the hospital are a few
recommendations provided by [16].

Study [17] developed a fast spectroscopic multiple analysis (FASMA) system, based
on various combinations of multiparametric MRI data for brain tumour classification. This
CDSS was designed with an SVM classifier and integrated data from 3T 1H-MRS, DWI,
DTI, and PWI for characterisation of brain tumours. The highest accuracy in classification
of tumours was obtained when all the above-mentioned MR parameters were considered.
It was also seen that k-NN and LDA had inferior classification accuracies as compared to
the SVM classifier. SVM produced an accuracy score of >90.00% in the intra-tumoral area
and >80.00% in the peri-tumoral area. FASMA provides additional information regarding
tumour characteristics and can be used as an assistive tool for tumour diagnosis and
grading.
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Paper [18] designed a modular medical image region of interest analysis tool and
repository (MIROR) for childhood cancer diagnosis. The study was conducted on a cohort
of 48 children. The CDSS used advanced MRI data to differentiate between benign and
malignant tumours. A 10-fold cross-validation was performed to compare the tSVM and
k-NN classifiers. When utilizing all extracted features, the SVM-based classification model
achieved an accuracy of 89% while k-NN-based model achieved an accuracy of 93%. The
repository also aims to increase the children’s brain tumour dataset and add medical
information from previous cases to assist clinicians in decision making.

The HealthAgents project, funded by the European Union, included studies [19–21].
The HealthAgents network is a globally distributed repository of information and knowl-
edge regarding brain tumour diagnosis and prognosis [20]. An interactive user interface of
HealthAgents was designed by [19] to facilitate classification of children’s brain tumours.
The study was conducted on a cohort of 33 children with cerebellar tumours. MR spectral
data was used to provide diagnostic information on brain tumours. For a three-class classi-
fier, principal component analysis followed by LDA achieved a classification accuracy of
91.00%. A leave-one-out analysis for a two-class classifier achieved a classification accuracy
of 94.00%. Through these techniques, clinicians are provided with flexibility to use MRS
data for childhood brain tumour diagnosis. The first release of the HealthAgents DSS
was presented in study [20]. It was based on a sample size of 182 with feature extraction
performed by LDA, SVM, and LSVM. The STE and LTE models combined achieved >90.00%
classification accuracy and had significant improvement over using models based on STE
or LTE separately. The study concluded that in vivo MRS data, when combined with ex
vivo/in vitro high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS)
and gene expression, has the potential to improve brain tumour classification and produce
novel prognostic biomarkers [20]. A study conducted by [21] developed an independent
automatic classification framework as a part of the pattern recognition technique develop-
ment of the HealthAgents project. This study also suggested that including HR-MAS or
gene expression data, such as DNA microarrays, could improve the diagnostic capability
of the proposed framework.

The international network for pattern recognition of tumours using magnetic reso-
nance (INTERPRET) DSS was evaluated by [22]. A multi-centre European collaboration,
from 2000 to 2002 called the INTERPRET project, developed a DSS to assist neuroradiolo-
gists who had no prior experience of using MRS data to diagnose and grade brain tumours.
It was seen that the tSTE classifier performed better the LTE classifier, with a classification
accuracy of 89.00%. Ref. [23] evaluated the second version of the INTERPRET DSS. This
study confirmed the added value of using 1H MRS data for brain tumour characterisation.
Version 2.0 is integrated with an additional long-TE classifier as opposed to only short-TE
in version 1.0. To use Version 2.0, expert knowledge was not required in spectroscopy
or any specific protocol. Ref. [24] evaluated the third version of the INTERPRET DSS.
It had a larger embedded database and improved diagnostic differentiation capabilities.
Three LDA-based classifiers—short, long, and concatenated short+long TE— differentiated
between common types of tumours. The combined LTE and STE classifier achieved the
highest accuracy with 89.20%. The CDSS also successfully differentiated between tumour
and pseudo-tumoral disease. The combined LTE and STE achieved a classification accuracy
of 92.10%. A study by [25] evaluated the INTERPRET prototype DSS to classify brain
tumours of 334 patients based on in vivo 1H single-voxel spectral data of different types
of brain tumours. The study concluded that using MRS data for brain tumour diagnosis
over MRI data alone showed significant improvement in diagnosis. The combined use
of LTE and STE also improved the accuracy of classification. The LDA-based classifier
integrated within this prototype DSS successfully differentiated between three tumour
groups—meningiomas, LGGs and HGGs.
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3.3.2. Prognostic Support Systems

Study [9] was the only work identified, through this systematic review, which de-
signed a CDSS that predicts tumour diameters under Temozolomide (TMZ) chemotherapy
and provides a prognosis on when to stop treatment. The study was conducted with a
sample size of 42 patients with diffuse low-grade gliomas (DLGG) and was based on two
mathematical models—linear and exponential. The input variables were tumour diameters
and the time of acquisition of the MRI scan since the start of the treatment. The linear model
with an average accuracy of 89.00% prevailed. However, the limited number of available
DLGG cases did not allow model validation on a separate dataset. Hence, increasing the
size of the dataset and additionally including molecular factors that affect tumour growth
are recommended.

4. Discussion

It should be emphasized that a CDSS does not completely substitute for a clinician’s
diagnostic decision; rather, it assists clinicians in dealing with a large amount of complex
medical imaging data in a shorter time span. A well-designed CDSS not only improves di-
agnostic capabilities but also should be easily implemented within routine clinical practice,
optimizing care delivery and decision making [26].

The various types of CDSSs identified through this review for brain tumour diagnosis
and prognosis were Curiam BT [16], FASMA [17], MIROR [18], HealthAgents [19–21] and
INTERPRET [22–25]. There have been some significant achievements during the develop-
ment of such systems worth mentioning. While designing and developing INTERPRET, a
vast repository of brain tumours was created containing 304 histopathological STE low-
grade gliomas, meningiomas, and high-grade malignant tumours. Another achievement of
this project was to define a data acquisition protocol to standardize data collection from
different centres. MIROR helps in providing the latest techniques and findings in the
diagnosis of brain tumours improving the skillset of the clinicians.

A major area of concern is not just designing the CDSS software but also implemen-
tation and acceptance of its use by clinicians in routine clinical practice. Acceptance of
CDSS use will only be possible if the clinicians view CDSS both as a tool and a process.
Clinicians are also more likely to use the CDSS if their own decision-making matches with
the system’s [26]. The systems’ frequent lack of transparency regarding how the output
was achieved can be another reason why there is lack of user acceptance [27]. Another
notable barrier to CDSS implementation is its inability to effectively support complex
patient care [28]. The implementation of CDSS incurs initial costs, such as those associated
with training, support, and maintenance. Overcoming the initial cost barrier is essential to
realise the potential benefits of CDSS [29]. Addressing these barriers requires careful plan-
ning, stakeholder engagement, organisational readiness, and understanding of potential
benefits of CDSS in improving clinical decision-making, patient outcomes, and healthcare
delivery [30].

For CDSSs, as prognostic support systems, more research is needed, due to a limited
number of articles in this review, to show the overall capability of such systems. In the
literature, more focus has been given to designing diagnostic support systems, as opposed
to prognostic support systems, which leaves the latter to be explored further.

The strength of this systematic review is that it has highlighted the importance of
addressing potential drawbacks of CDSSs along with their advantages. This could lead to
improved decision-making, risk mitigation, and faster implementation in clinical practice.
Not bound by a timeframe to include all relevant studies and having the search strategy
highly specific on CDSS used in brain tumour diagnosis and prognosis based on medical
imaging data are other strengths of this review. However, a limitation should be mentioned.
This review only considered studies published in the English language; there could be
others CDSSs being developed that are published in different languages.

There is scope for future work that can be recommended based on this systematic
review. The presence of a global standard protocol may increase CDSSs’ translation into
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routine clinical practice. Additionally, including clinicians’ feedback, user needs, and
expectations while designing the CDSS may improve its acceptance at the point of care.
Finally, if there is a stage where the CDSSs reveal their decision-making process, it will allow
clinicians to increase their engagement with the systems and accelerate CDSS adoption. This
type of a multi-task CDSS can be fully embedded within a clinician’s regular workflow. This
will give rise to a more trainable system that can accept feedback, revise recommendations,
and provide alternative clinical decisions for improved healthcare delivery.

5. Conclusions

Management and treatment of brain tumours require an early and accurate diagnosis,
while prognostic understanding can also be beneficial in the choice of care planning for the
patient. Advances in neuro-oncology imaging techniques have improved both detection
and treatment planning of these tumours. Leveraging advanced imaging technologies,
vastly available medical knowledge, and patient-specific information, a CDSS provides
evidence-based recommendations to assist clinicians at the point of care. It reduces medical
errors, enhances diagnostic capabilities, and has the potential to improve healthcare delivery.
Presence of a global standard or guideline specific to CDSSs on brain tumour diagnosis
and prognosis is recommended. Increased effort must be taken not only in developing
such CDSSs but also when implementing them into routine clinical practice to increase
clinicians’ engagement and CDSS adoption. To be able to do so, highlighting a few of
areas of improvement is necessary. Although a CDSS improves diagnostic capabilities
and healthcare delivery, there is a lack of specific evidence or studies to support these
claims. The absence of empirical data slows down both user acceptance and evaluation of
the actual impact of CDSS on brain tumour management. Embedding CDSS into routine
clinical practice may increase complexity, requiring additional funding and investment
in the latest technology, infrastructure, and training of healthcare professionals. With
each patient condition being unique, a well-tailored patient-specific recommendation is
needed, which is a drawback of current CDSSs as they lack customization. Ethical and
legal considerations such as patient privacy and safety, consent, and liability should be
given importance alongside the technical aspects. Instead of emphasizing the advantages
of implementing CDSS, it is important to address its potential drawbacks and ethical
implications. By doing so, we can promote the responsible use of CDSSs and facilitate their
faster adoption in clinical settings.
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Abbreviations

The following abbreviations have been used in this review.

BSVM boosting support vector machine
CDSS clinical decision support system
CT computed tomography
DLGG diffuse low-grade glioma
DSS decision support system
DTI diffusion tensor imaging
DWI diffusion weighted imaging
FASMA fast spectroscopic multiple analysis
GLCM gray-level co-occurrence matrix
HGG high-grade glioma
HR-MAS high-resolution magic angle spinning nuclear magnetic resonance
INTERPRET international network for pattern recognition of tumours using MR
k-NN k-nearest neighbors algorithm
LDA linear discriminant analysis
LGG low-grade glioma
LTE long echo time
MeSH medical subject headings
MIROR modular medical image region of interest analysis tool and repository
MRI magnetic resonance imaging
MR magnetic resonance
MRS magnetic resonance spectroscopy
NB naïve Bayes
NNW neural network
PACS picture archiving and communication system
PET positron emission tomography
PRISMA preferred reporting items for systematic reviews and meta-analyses
PWI perfusion weighted imaging
QDA quadratic discriminant analysis
STE short echo time
SVM support vector machine
TMZ Temozolomide
WHO World Health Organization
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