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ABSTRACT: Brain cancer is one of those few cancers with very high
mortality and low five-year survival rate. First and foremost reason for
the woes is the difficulty in diagnosing and monitoring the progression
of brain tumors both benign and malignant, noninvasively and in real
time. This raises a need in this hour for a tool to diagnose the tumors in
the earliest possible time frame. On the other hand, Raman
spectroscopy which is well-known for its ability to precisely represent
the molecular markers available in any sample given, including
biological ones, with great sensitivity and specificity. This has led to a
number of studies where Raman spectroscopy has been used in brain
tumors in various ways. This review article highlights the fundamentals of Raman spectroscopy and its types including conventional
Raman, SERS, SORS, SRS, CARS, etc. are used in brain tumors for diagnostics, monitoring, and even theragnostics, collating all the
major works in the area. Also, the review explores how Raman spectroscopy can be even more effectively used in theragnostics and
the clinical level which would make them a one-stop solution for all brain cancer needs in the future.

■ INTRODUCTION
Raman Spectroscopy is one of those very few techniques which
is label-free (other major ones being NMR, XPS, UV−vis,
FTIR, mass spectroscopy), nondestructive, and cost-effective
among those that can give a molecular profile of the samples.
Numerous research groups are working on improving the
conventionally used Raman instruments, integrating them with
other instruments to utilize as a multimodal tool, and
changing/enhancing parameters to increase performance
efficiency, portability, affordability, etc. This has led to various
Raman spectroscopy types namely resonance Raman, surface-
enhanced Raman (SERS), spatially offset Raman (SORS),
confocal Raman microspectroscopy, etc. They have been used
in various industries including forensics, pharma, food, etc.,
especially in quality control. Raman being nondestructive is
also very well suited for biological sample analysis too. This
potentiates its capability to act as a disease diagnostics and
monitoring instrument. Lately, they have been modified and
integrated to be used in treatment too.
Raman Spectroscopy works based on the Raman effect

where the inelastic scattering of photons results in their
movement from ground vibrational energy states to virtual
energy states and back. But if they stop at a higher or lower
vibrational energy state than where they started, it is called
Stokes and anti-Stokes Raman scattering, respectively.1 This
when recorded for different samples varies according to their
composition which is digitally represented in the form of peaks
based on the intensity and frequency variations observed,
helping in the identification of the sample composition. This

helps Raman spectroscopy recognize and distinguish cell lines
and tissue samples both in vivo and ex vivo. Moreover, within
these groups too, they can classify based on the biochemical
composition be it normal or tumorous, between different
grades of cancer, etc.

Brain tumor is caused by the abnormal growth of cells in the
brain region. Still, why a person gets a brain tumor is not well
established but a few reasons for getting one include rare
genetic conditions like von Hippel-Lindau disease, tuberous
sclerosis, etc. Brain tumor usually occurs in the meninges or
glial cells. In most cases, a meningioma tumor in the meninges
is benign, while glial cells called glioma can be malignant. The
tumors are classified into 4 grades with malignancy increasing
with each grade. Normally, the grade 1 tumors are benign, in
gliomas too. Grade 2 can/cannot be benign, whereas grades 3
and 4 are malignant. They are also categorized into primary
and secondary brain cancers based on the site of origin with
cancers starting in the brain itself considered to be primary and
the brain metastases from other cancers as secondary.2

There were 308,102 new cases and 251,329 fatalities due to
brain and CNS cancers worldwide in 2020, according to the
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GLOBOCAN 2020 report.3 Also, brain cancer has one of the
lowest 5% year survival rates among all other cancer types.4

These statistics and the complexity of brain tumors clearly
signify the requirement for better diagnostics, monitoring, and

treatment techniques. Here, Figure 1 shows the most followed
histopathology process, while Figure 2 shows how Raman
spectroscopy can, in comparison, be more helpful in all three
scenarios discussed above. Thus, in this article, we will be

Figure 1. Schematic representation of the long and tedious histopathology process. The patients need to undergo initial scanning to identify the
tumor. This is followed by a sample section which further undergoes multiple processing steps taking longer time and needs to be confirmed by a
neuropathologist which increases the chances of error. An error or partial removal of tumor leads to invasive surgery, again affecting the health and
quality of life of patient. (Created with Biorender.com.)

Figure 2. Schematic representation of the quick and reliable Raman spectroscopy process. Raman laser probe is used over the sample (a)5 which
gives the Raman spectra (b).6 Reprinted with permission from ref 5. Copyright 2018 Nature. Reprinted from ref 6. Copyright 2011 American
Chemical Society. This on processing using the computational model distinguishes between tumor and normal specimen (c). Overall system
containing all these is the Raman spectroscopy setup (d). (Figure 2d was created with BioRender.com.)
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Table 1. Major Peaks of Brain Tissues in Raman Spectrum, with Their Tentative Assignments7,15,16,12

Raman shift
(cm−1) assignment

421 cholesterol
425 cholesterol
431 cholesterol/cholesterol ester
450 ring torsion of phenyl
457 proteins and cholesterol
474 glycogen and polysaccharides
478 polysaccharides
498 nucleic acids, characteristic for DNA
524 S−S disulfide stretching in proteins
540 n(S−S) stretching (amino acid cysteine)
544 phospholipids
545 cholesterol
547 cholesterol
596 phosphatidylinositol
597 melanin
607 phospholipids
612 cholesterol
620 C−C twist aromatic ring (Phe)
624 phenylalanine
640 C−S stretching of cystine
642 C−C twisting mode of tyrosine
667 C−S stretching of cystine, collagen
670 hemoglobin
683 nucleic acids, characteristic of DNA
699 phospholipids
700 C−O stretching
700 cholesterol and phospholipids
717 phospholipids, choline groups
719 C−N+ stretching of choline
727 nucleic acids, characteristic of DNA
750 oxygenated hemoglobin, cytochrome
757 protein (Trp), hemoglobin
780 O−P−O stretching of DNA, uracil-based ring breathing

mode
782 DNA and/or RNA
817 stretching/collagen assignment
825 phosphodiester
826 Tyr, proline
826 O−P−O stretching of DNA and/or RNA
829 tyrosine
852 C−C stretching of tyrosine, collagen
853 tyrosine
857 protein (Tyr), collagen
875 phospholipids, choline groups
877 cholesterol
880 tryptophan, d(ring)
881 hydroxyproline and tryptophan (collagen); sterol ring stretch

of cholesterol; asymmetric stretching of choline
883 (CH2) (protein assignment)
893−894 phosphodiesters (nucleic acids)
925 C−C bonds of the peptide backbone
926 C−C bond of the peptide backbone
928 amino acids proline and valine (protein band)
933 proline, hydroxyproline
934 C−C backbone (collagen assignment)
936 C−C stretching of Proline, valine, collagen
938 C−C stretching (Amide III) � protein
940 protein, collagen
941 glycogen
950 single bond stretching vibrations for the amino acids proline

and valine and polysaccharides

Raman shift
(cm−1) assignment

958 stretching vibrations of PO4 in hydroxyapatite
961 cholesterol
963 protein assignments
968 lipids
976 melanin
977 tricalcium phosphate Ca3(PO4) calcification seen in

schwannoma and necrosis
1002 phenylalanine, oxygenated hemoglobin
1003 γs(C−C) phenylalanine ring breathing mode
1031 phenylalanine
1035 collagen
1062 O−P−O stretch DNA and RNA, phospholipids, saturated

fatty acids, cholesterol
1081 lipids
1086 brain phospholipids (C−C and C−O stretching)
1086 nucleic acid
1089 fatty acids phosphate backbone
1092 characteristic for DNA
1097 nucleic acid
1122 glycogen
1126 brain phospholipids
1127 cytochrome c
1128 C−C stretching vibrations, typical for proteins
1128 cholesterol and phospholipids
1129 fatty acids
1129 lipid γ(C−C)
1155 beta-carotene, C−C and C−N stretching of proteins
1159 carotenoids
1174 C−H deformation of proteins
1174 nucleic acid (cytosine, guanine)
1176 breathing mode of phenylalanine
1208 phenylalanine (protein)
1210 protein (Phe, Tyr)
1212 oxygenated hemoglobin
1225 hemoglobin
1247 collagen, protein (amide III)
1250 nucleic acid
1250 hemoglobin
1255 nucleic acids, characteristic of DNA
1255 amide III, typical for proteins
1266 major protein bands
1267 phospholipids, unsaturated fatty acids
1267 amide bands of protein backbones
1269 amide II and III
1269 brain phospholipids
1296 major protein bands
1296 cholesterol and phospholipids
1299 fatty acids
1313 lipids
1313 collagen
1333 proteins and nucleic acids
1337 aliphatic amino acids (C−H deformation), including

tryptophan, nucleic acids; glycogen in necrosis
1340 tryptophan
1340 nucleic acids, characteristic of DNA
1342 aliphatic amino acids, including tryptophan, nucleic acids;

glycogen
1370 nucleic acid
1376 nucleic acids, characteristic of DNA
1397 lipids
1397 CH3, CH2 deformation of collagen
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reviewing the works which discuss the ability of Raman
spectroscopy in the diagnosis, monitoring, and treatment
(surgery) of brain tumors.

2. MOLECULAR FINGERPRINTING OF BRAIN TUMOR
Riva et al. analyzed 3450 spectra from 63 glioma biopsy
samples within 60 min of resection without any preprocessing.
Analyzing of samples via Raman revealed 19 new shifts which
have not been reported before representing calcification (975

cm−1), collagen (817 cm−1), heme content (743 cm−1),
glycogen (941 cm−1), lipids (431, 776, 875, 968 cm−1), nucleic
acids (498, 780, 825, 894 cm−1), and proteins (524, 933, 963,
1031, 1035, 1583, 1603 cm−1) (represented in Table 1).7

Kopec et al. suggested that the peaks obtained from aggressive
brain tumors at wavenumbers 1004 cm−1 (proteins), 1156 and
1520 cm−1 (carotenoids), 1585 cm−1 (cytochrome), and 1444
and 1655 cm−1 (fatty acids) are potential biomarkers for
oncological diagnosis.8 The major peaks related to low-grade
glioma are proline/tyrosine (877, 852 cm−1) and choline/

Table 1. continued

Raman shift
(cm−1) assignment

1404 melanin
1420 nucleic acids, characteristic of DNA
1436 major protein bands
1439 proteins and lipids
1439 phospholipids, saturated fatty acids
1440 lipid δ(CH2)
1447 aliphatic amino acids
1450 protein (CH2/CH3)
1486 nucleic acids, characteristic for DNA
1521 phospholipids (sphingomyelin), carotenoids
1523 carotenoids
1546 oxygenated hemoglobin
1556 indole ring, tryptophan
1566 hemoglobin
1578 nucleic acid
1581 C−C stretch of protein, nucleic acids
1583 C−C stretch of protein, phenylalanine, nucleic acids
1585 hemoglobin
1586 cytochrome
1595 melanin

Raman shift
(cm−1) assignment

1603 cytosine, phenylalanine and tyrosine/oxygenated
hemoglobinn

1605 oxygenated hemoglobin
1614 aromatic amino acids (protein); tyrosine and proline
1616 C−C stretching mode of tyrosine and tryptophan
1619 oxygenated hemoglobin
1623 hemoglobin
1657 lipids
1658 major protein bands
1660 protein and lipids
1661 amide II and III
1661 phospholipids, unsaturated fatty acids
1667 amide
1668 cholesterol
1735 cholesterol
1739 cholesterol ester
1225−1300 amide III
1580−1700 nucleic acid
1645−1675 amide

Figure 3. MRI, Raman image, and Raman spectra of normal brain tissues (a). Raman image and Raman spectra of medulloblastoma (b). Lipid
(red) and proteins (blue). The decrease in the intensity of red color in Raman image (b) clearly demonstrates that the lipid levels decrease in
tumor tissues which is affirmed by a high intensity blue peak (protein) and comparatively low intensity red peak (lipid).13 Reprinted with
permission from ref 13. Copyright 2018 Springer.
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cholesterol (877 cm−1), while it was phenylalanine (1004,
1032 cm−1); tryptophan (1553, 1339 cm−1); amide III,
collagen, and nucleic acid (1339 cm−1); and amide I, proteins,
lipids, and nucleic acid (1659 cm−1) for high-grade glioma.9

The following peaks were the factors of differentiation between
the two grades: C�O stretching (1858 cm−1), CH2 bending
(1450 cm−1), amide III and CH2 deformation (1230−1360
cm−1), structural changes of phospholipid (1130 cm−1), and
polysaccharides/amino acids (850 cm−1).10 The peak between
2889 and 2934 cm−1 (lipids and lipoproteins) had a lower
intensity than the ones at 1667 cm−1 (collagen and amide) in
cancer tissues and vice versa in normal tissues, which can be
paved back to structural changes in tissue during the course of
development into cancer where cell proliferation is high.11 It
was also pinpointed by Iturrioz-Rodriǵuez et al. that the
proliferation rate and mitochondrial content play a major role
in cancer as the peaks of RNA/DNA and cytochrome C are
increased in glioma cells.12

The peak at 1586 cm−1, which represents C�C bending of
phenylalanine and acts as a marker for malignancy, was also
found to correspond to tyrosine phosphorylation apart from
the amide III band shift to 1228 cm−1 from 1270 cm−1. The
ratios of Aproteins/lipids, I1586/1444, and I2930/2845, clearly higher in
medulloblastoma tissue than that in normal ones, are clearly
seen in Figure 3 establishing lower lipid content in cancer. The
average area containing lipid content in tumorous tissue was
24%, while it was 58% in normal tissues.13 An increase in peak
levels was significant in protein bands (2930 cm−1) of dense
cancer cells. Also, the protein/lipid ratio saw a spike in dense
cancer cells compared to normal but was not the same between
infiltered and normal cells.5 Another study from the same
group supports the previous literature showing enhanced
conformational changes from α-helix to β-sheets on tumor
progression and an increase in the lipid-to-protein ratio from
1.46 ± 0.02 in medulloblastoma to 1.99 ± 0.03 in normal brain
tissues.14

A nonexhaustive yet comprehensive list representing the
Raman peaks involved affecting the brain with their most
evident biochemical groups obtained from different sources are
given below in Table 1.

3. RAMAN SPECTROSCOPY IN DIAGNOSIS
3.1. Solid Tissue Sample. Raman spectroscopy due to its

ability to identify the biochemical changes precisely can be an
excellent tool to diagnose cancer and all its subtypes with high
accuracy. Iturrioz-Rodriǵuez and group collected samples from
four male glioma patients and tried to use Raman spectroscopy
for differentiating the healthy astrocytes from the cancerous
region, especially determining the tumor margin properly. The
outcome concludes that the band ranging between 1000 and
1300 cm−1 is sufficient to predict cancer cells with an accuracy
of 92.5%.12 In another study, a proof of concept was developed
by Ralbovsky and colleagues for deep-ultraviolet Raman
spectroscopy. Deep-UV could be a potential option against
conventional Raman spectroscopy involving visible or IR
spectra because of UV radiation’s ability to absorb and excite at
the same wavelengths, resulting in the enhanced resonance of
Raman signals. In this work, they used a UV wavelength of 198
nm (deep-UV) against NOD-SCID mice having brain cancer
inflicted with breast cancer cells. The UV exposure was fixed at
120 J/cm2 following the guidelines of the International
Commission on Non-Ionizing Radiation Protection (IC-
NIRP).17

In a similar study, Raman spectroscopy was used to
discriminate the glioblastoma, metastasis, and normal groups.
The group used the ratio between the peaks 721 cm−1, the
symmetric C−N stretch of choline, and 782 cm−1, the uracil/
cytosine ring breathing of nucleotides, to arrive at the
sensitivity and specificity levels. It was inferred that the
sensitivity and specificity levels remained above 85% in all
three cases.18

The study by Zhou et al. revealed that cancer tissues showed
a reduction in the intensity of the fatty acid-rich resonance
Raman (RR) peak at 2885 cm−1 and the taller peak of the
protein band at 2931 cm−1 compared to 2885 cm−1 unlike in
healthy normal tissues. Also, the peak shift from 1358 cm−1 in
low-grade glioma to 1378 cm−1 in high-grade glioma discloses
the domination of deoxy-hemoglobin in low and oxy-
hemoglobin in high-grade glioma, thereby helping in hypoxia
and necrosis monitoring. Also, the shift in peaks of amide I and
amide III in normal and grade IV glioma tissue suggests a
structural conformation change from α-helix to β sheets. The
predicted reason for the change is the mutation of tryptophan
W104. The team used a confocal micro-Raman spectrometer
with an excitation wavelength of 532 nm, taking 510 RR
spectra from over 121 subjects, and the results were also
compared with the results of the histopathological examination
which is the WHO gold standard.19

Till now, the predominant way of interpreting Raman signals
between normal and cancer tissues is by their peak intensity
and shift in wavenumbers. In this study, Kaushik et al. studied
the full width at half-maximum (fwhm) values to diagnose
cancer based on the analogy in semiconductors that the most
sensitive parameter of Raman spectra is the subtle variation of
width confirmed by the effect of acceptor−donor interactions
and quantum size. The hypothesis was established by the fact
that the team found a decrease in fwhm from 8 to 5 cm−1

(37%) that was seen in brain cancer samples against the
normal ones at 1001 cm−1 (protein). Similar results were also
obtained for 1349 cm−1 (nucleic acid) and 1379 cm −1 (lipids).
They showed a 13.8% increase and a 2% decrease,
respectively.20

Apart from chemometrics, there are a lot of parameters in
terms of the Raman spectroscopy instrument which can be
optimized to get better diagnosis.21 A study on one such
parameter was conducted by Leblond and group. They varied
spectra intensity qualitatively (visual) and quantitative quality
factors classifying spectra into low and high. These low and
high intensity spectra were applied on 44 brain cancer patients
using a hand-held Raman probe. The results after chemo-
metrics studies showed an increase of 20% sensitivity and 12%
specificity in high spectral images to that of its counterpart.22

3.2. Liquid Sample. A biosensor was developed by
Malsagova and team to check the prediction capacity of
Raman for brain cancer from human plasma samples. The
“silicon-on-insulator” (SOI) nanowires (NW) they created
were surface-modified with an analog of miRNA-363 (a brain
cancer marker). These were tested in a buffer solution to know
the maximum efficiency of the developed system and to have
an initial quantity to proceed with for the plasma samples. The
system used for plasma samples was surface-modified with
miRNA-363 itself. Overall, the sensor was sensitive, starting
from a concentration level of 3.3 × 10−17 M.23
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4. RAMAN SPECTROSCOPY IN MONITORING
This unique study used Raman spectroscopy to monitor
responses of T-cells and monocytes in tumor-conditioned
media of glioblastoma by introducing CD73 and EMT
activator ZEB1, regulators of cancer cell immunogenicity.
The results were analyzed using multivariate analysis tools,
PCA for unsupervised and LDA and SVM for supervised
analysis. The results obtained were matched with that of flow
cytometry. Both results indicated similar changes in the
immunomarkers. The major changes were seen in CD209,
CD64, CD4, CD8, and CD11c. From the results, it can be
interpreted that T-cells and monocytes are influenced and are
differentiated into mixed populations of anti- and pro-
tumorogenic macrophages and dendritic cells by ZEB1 and
CD73, respectively.24

Surmacki studied the effects of γ radiation on Daoy cells
(medulloblastoma) by both labeled (oxidative stress and
metabolic activity) and label-free (Raman spectroscopy)
methods. The work uses therapeutic doses of irradiation of 2
Gy and 10 Gy. The spectral analysis indicated the degradation
of proteins and membranes after treatment with 2 Gy γ
radiation. Further, data analysis shows an average sensitivity
and specificity of 80.35% and 79.65%, respectively. Thus, this
combination of Raman spectroscopy along with other
histological techniques can be used as a monitoring tool for
radiation-treated medulloblastoma patients in the future after
deeper study on the same.25

Raman spectroscopy will be used more often in the case of
monitoring than diagnosis or treatment. SORS with optimal
offset values would be a great choice as they can capture the
signals inside the skull from outside, thereby contributing to
the patient’s good by maintaining noninvasiveness.

5. RAMAN SPECTROSCOPY IN SURGERY
A Raman imaging study carried out over a period of 1.5 years
in 209 patients with different types of brain cancer was able to
identify recurring glioblastoma with 100%, primary with 94%
and glioma metastases with 90% accuracy. Similarly, for
oligodendroglioma, astrocytes, and their IDH1 mutant
versions, the accuracies stood at 90%, 86%, and 81%,
respectively.26 Another work by Livermore and group studies
the ability of Raman to classify brain cancer based on their
genetic subtypes. This experiment was from fresh samples
collected from 62 patients having IDH wildtype and IDH
mutated astrocytoma and oligodendroglioma. Apart from
these, the group also has cryosectioned, FFPE, and LN-18
(IDH-wildtype and mutated parental) glioma cell lines. The
results of all these samples were further authenticated by
genetic sequencing and immunohistochemistry. Quantitatively,
the sensitivity and specificity for predicting among the 3 tissue
types were 79−94% and 90−100%, respectively. The overall
time for all types of classification and prediction was within 15
min per sample.27 Uckermann and team explored the feasibility
of using Raman Spectroscopy for identifying IDH1 mutation
glioma tissue samples. Overall, there was a surge in DNA-

Figure 4. Raman spectra of normal, infiltrated, and cancer tissues (a). H&E staining of normal, infiltered, and cancer tissues (histopathology) (b).
Cancer spectra (blue) in panel (a) distinctly shows a peak between 2845 and 2885 cm−1, representing its low lipid content in line with the literature
studies which impart that a high protein to lipid ratio represents the presence of cancer. Here in panel (b) it is validated with the H&E staining
where the cancer image is highly stained.5 Reprinted with permission from ref 5. Copyright 2018 Nature.
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related spectral bands while that of lipids decreased. Also,
variations in spectral bands corresponding to protein were seen
between IDH1 wild type and IDH1 mutant gliomas. The
classification was finally done only based on 5 bands (498, 826,
1003, 1174, and 1337 cm−1) and the accuracy was 89%.15

Auner et al. analyzed 64 samples either fresh or frozen from
28 pediatric patients to differentiate between tumors and their
grades. The tissues had accuracy levels above 90%, while their
differential sensitivity and specificities for low and high-grade
ependymomas were 100% and 96% and between normal and
low-grade glioma it was 91.5% and 97.8%, respectively.28 The
same team published the results of a comprehensive 6-year
study on pediatric patients with solid tumors. The work used
Raman to detect brain tumors among other types. A training
set based on PCA-DFA gave 95.1% accuracy, while the testing
group gave 88.9%. The team also tested the algorithm in a
generalized database and found 85.5% accuracy in spotting
brain cancer. The histopathology verifications were performed
by pediatric pathology specialists.29 One more team also
worked on pediatric patients. In their work, ex vivo brain

tissues of 29 pediatric patients were imaged using Raman. The
images were trained via machine learning algorithms to
discriminate between normal and tumorous brain tissues and
between normal and low-grade glioma (LGG). The accuracy
was achieved at around 85% in both cases.30

A label-free in situ intraoperative cancer detection system
based on high wavenumber (2000 to 4000 cm−1) Raman
spectroscopy was developed by Leblond and team for the
detection and biopsy of brain cancer. They validated the
integrated core needle biopsy system with an animal study on
swine. Further, a human clinical trial was also conducted on 19
patients to identify the capacity of the newly devised HWN RS
to decide between normal and cancerous brain tissues. The
tissues were classified into dense (>60%), infiltered (5−60%),
and normal (<5% or no) cancer cells to check the tumor
border too as shown in Figure 4.5 Fifty-nine patients, 223
tissue samples, and 1273 spectra were obtained to differentiate
meningioma and dura mater using Raman spectroscopy. They
were analyzed with the help of a machine learning-based
classifier which gave about 100% and 93.97% in the external set

Figure 5. Surface-enhanced resonance Raman Spectroscopy (SERRS) system. Plasmonic gold nanostars (surface enhancer) bioconjugated with
other moieties along with the schematic of the Raman with an in vivo animal operating setup (a) to give enhanced SERRS spectra (b). TEM image
of gold nanostars (c).37 Reprinted with permission from ref 37. Copyright 2019 Ivyspring International Publisher.
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while the internal 5-fold cross-validation set gave 96.06 ±
0.03% and 95.44 ± 0.02% sensitivity and specificity,
respectively. The study used the tissue samples obtained
intraoperatively without any preprocessing and were measured
using Raman spectroscopy within 20 min of excision to match
the in vivo sample condition as much as possible. Though the
sensitivity is obtained to be 100% from the classifier, single
spot measurements cannot be used for diagnosis as in areas of
infiltration the tumor margin in the tissue varies from point-to-
point necessitating the need for more spectra.31

The feature engineering approach opted for by Leblond et
al. analyses a data set of 547 spectra based on about 30
parameters through a Bayesian framework. This comprehen-
sive molecular profiling infers plausible changes noticed in
glioma like a nucleic acid increase, collagen IV overexpression,
and a shift in the spectra of peaks involved in primary
metabolism.9 A feature-driven Raman analysis was established
by Stables and colleagues to ease and improve the real-time
intraoperative use of Raman spectroscopy. They mapped the
sub-band spectra with a frequency modulator (FM) to provide
the output as sound signals varying for normal and disease
conditions. Then participants were asked to predict based on
listening tests. The classification accuracy was 71.1%, though
feature extraction by SVM output was 88.99%. The parameters
like hearing sensitivity and effects due to age and sex would
also have significantly contributed to the results. Still,
improvement in the sonification parameter might give better
results.32

Straehle et al. interpreted ex vivo brain tumor samples via
stimulated Raman histology (SRH) with the help of a novice
neuropathologist to determine the accuracy and comprehen-
sibility of SRH. The results were also compared with the same
section’s hematoxylin-eosin (H&E) staining results. In terms of
accuracy, SRH did not have a significant impact but was not
inferior to that of the H&E stained sections as their accuracy
stood at 87.3% against 88.9%, respectively. The ability of SRH
images to highlight putative axons, tumoral, and glial fibers
unlike in H&E staining talks about its comprehensiveness.33

Also, the SRH can be used as an intraoperative technique
during surgeries as a parallel tool to that of the conventional
due to their time-saving ability and easy processing of data due
to their digital nature.34 Another study by Pekmezci and the
group also showed similar results between SRH and H&E
stained sections. The results were noninferior as both SRH and
H&E stained groups confirmed only around half the samples
for glioma infiltration at the tumor margin, while immunohis-
tochemistry results were comparatively more significant than
the other two.35

Odion and group explored the ability of SESORS in three
different systems and offset values namely 4 mm in paraffin
film and tissue phantom and 5 mm in a Macaque monkey skull.
The system used for surface enhancement was a Gold nanostar
with PEG and Raman active dyes. The group came up with a
two-layer phantom setup that can give clean spectra by scaled
subtraction. The top layer of the setup had DTTC-labeled
nanostars while the bottom had Cy-7 labeled nanostars. After
this, they went one step ahead to rectify the limitations in
SESORS in terms of penetration of the skull, that too with
good intensity. Further, as the penetration was to be through
bone, which usually overwhelms underlying signals because of
the phosphate groups, the authors used an axicon lens which
has better area coverage with a better permissive laser. This
modified setup was called inverse SESORS. This shows the

potential of the novel system to be used in enhanced
noninvasive brain cancer detection studies.36

An earlier study was also on similar lines. Moody and co-
workers checked the potential of SESORS to noninvasively
detect neurotransmitters inside the skull region from outside.
The animal model they opted for was a cat skull as it has a skull
thickness of 2 mm (humans: 3−14 mm), thus making the
offset value to be 2 mm. They used Au as the surface-
enhancing agent and coated it with neurotransmitters. These
neurotransmitters namely serotonin, melatonin, and epinephr-
ine were detected by SESORS at a minimum concentration of
100 μM.38 Nicolson and colleagues developed a (SESO(R)-
RS), “surface enhanced spatially offset resonance Raman
spectroscopy”, to study glioblastoma in a noninvasive method.
In this study, the group did in vivo imaging of deep-seated
GBM in mice through the intact skull. They developed their
own spatially offset Raman spectroscopy (SORS) system,
integrated with the surface-enhanced Raman spectroscopy
(SERS). The surface enhancement involved was a gold
nanostar and a Raman-reporter dye system functionalized
with cRGDyK peptide, as seen in Figure 5. The SORS was
initially compared with conventional Raman spectroscopy
against a PTFE phantom at 2 mm and 3 mm spatial offset
while the SESO(R)RS system had an offset of 2.5 mm. This
was not optimized further as the aim of the study was to
visualize and interpret SESO(R)RS in Glioblastoma non-
invasively.37

The molecular and electron level changes taking place
between the peak 1584 cm−1 representing the cytochrome c
and complex IV inhibits the controlling mechanisms of the
electron transport chain. The results do not support the widely
accepted Warburg mechanism for cancer but oxidative
phosphorylation. Though they are the mechanism of action
for normal cells, in cancer cells, there is an increased
concentration of cytochrome c to regulate bioenergetics via
ATP and also enhance denovo lipid synthesis. In conclusion,
the team recommends Raman spectroscopy to continuously
examine the redox state changes in the mitochondrial
cytochrome and thereby malignancy of brain tumors.39 Zhou
and colleagues studied glioma in 21 specimens using confocal
Raman microspectroscopy in the visible range and found two
new peaks increasing in intensity with increasing grade of
glioma. One at 1129 cm−1 is attributed to phosphatidic acid, an
unsaturated fatty acid, or lactic acid, which plays an important
role in glycolysis and 1338 cm−1 to adenosine triphosphate
(ATP). Both contribute to characteristic effects in the
metabolism of cancer, especially the Warburg effect hypoth-
esis,40 contradictory to ref 39.

The work involves the use of Raman Spectroscopy to
compare, analyze, and understand Glioma-like stem cells that
are either radiation resistant or intermediate or sensitive based
on their IC50 values. The results demonstrated high intensities
for nucleic acid bands. This was attributed to the higher
proliferation rates seen in neurospheres in the order of
resistant > intermediate > sensitive, appropriately affirming
previous literature.41 Additionally, the glycogen and cholesterol
levels were low in cancerous groups when compared to normal.
The quantitative data were analyzed using CDA and then were
measured in MGG23, MGG4, and SK1035 neurospheres.
These were matched with their results in a clonogenic assay,
and a minimum of 95% accuracy was obtained. The group also
treated the GSCs with drugs like 2-DG, ZOL, and HC-3 and
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Table 2. Performance of Raman Spectroscopy against Brain Tumors

brain tumor sample data analysis sensitivity % specificity % accuracy % highlight/observation/inference ref

4 patients, 4 tissue samples: glioma (grades III and IV) PCA-LDA avg: 92.5 peaks associated with cytochrome c,
RNA, and DNA are higher in cancer
cells

12

90 tissue samples: meningioma (grades I and II) PCA-QDA
SPA-QDA

85.7 100 96.2 peaks of amino acids, CH2 deformation
and bending phospholipid structural
changes, amide III and C�O
stretching differentiates between
grades I and II of meningioma

10

MCR-ALS
SPA-LDA
SPA-SVM
PCA-LDA
GA-LDA
PCA-SVM
GA-SVM
GA-QDA

8 healthy samples and tumor samples from 5 patients (2
anaplastic astrocytoma and 3 glioblastoma)

PCA 96 SERS-specific spectra clearly discern
healthy and cancerous brain tissue
samples

43

Untreated, 2-DG, Zol, and HC-3 treated glioma stem-like
cells (GSCs)

CDA 86.1 radiosensitizing ability of 2-DG, Zol and
HC-3 (explored for the 1st time) for a
radiation dose of 8Gy are studied

44

PCA-LDA
LOOCV

117 FFPE blocks, 59 glioblastoma tissue samples, 53
patients: necrosis, peritumoral zone, and vital zone
identification

SVM 64 82 70.5 classifies tumor margin, thereby identi-
fying normal and tumor environment

45

5-fold cross-
validation

280 spectra, 19 patients: glioma (grades II−IV) SVM 80 90 84 1st swine brain biopsy model 5
LOOCV human glioma surgery using modified

hand-held Raman
Human medulloblastoma (Daoy cells), γ radiation PCA compares biochemical changes shown

in label-free (Raman) and labeled
techniques (oxidative stress and
metabolic activity) in medulloblasto-
ma

25

RMSECV
Control PLS-DA 77.1 83.4
2 Gy 86.6 71.3
10 Gy 74.1 88.0
Immune cells grown on media conditioned by glioblastoma
stem-like cells (GSCs)

PCA-LDA >70 >70 CD73 and ZEB1 influence monocyte
and T-cell phenotypes

24

SVM >67 >67
random cross
validation
using PLS

1273 spectra, 223 samples, 59 patients (meningioma and
dura matter)

SVM high intensity of collagen in dura mater
than in meningioma

31

external test
set valida-
tion

100 93.97

5-fold cross-
validation

96.06 95.44

3450 spectra, 63 fresh samples: normal and glioma (grades
II−IV)

random for-
est (RF)
and gra-
dient
boosting
trees (GB)

83 reduced lipid content in the healthy
group; increased DNA content in the
tumor group

7

LOPOCV
5-fold cross-
validation

121 samples 19
Normal tissues vs Brain tissues SVM 100 71 normal healthy brain tissue concentra-

tion of lipid:protein is 1.15:1
Healthy brain tissues vs Glioma tissues SVM 100 96.3 99.6 grade IV glioma tissue concentration of

lipid:protein is0.82:1

Low grade (grades I and II) vs High grade (grades
III and IV)

LOOCV 96.3 53.7 84.1

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c01848
ACS Omega 2023, 8, 27845−27861

27853

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01848?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table 2. continued

brain tumor sample data analysis sensitivity % specificity % accuracy % highlight/observation/inference ref

11624 spectra,
73 samples - fresh healthy brain tissues vs glioma tissues

PCA-LDA 96 99 99 RS of 5-ALA-induced fluorescent sam-
ples outperforms RS analyzed samples

46

LOOCV
8 patients, 7 brain cancer types PLS-DA 90 50 carotenoids, cytochrome c, fatty acids

and protein peaks are the major
Raman signals for classification

47

44 cancer patients, low vs high spectra SVM 89 90 higher spectral levels increase sensitivity
and specificity by 20% and 12%,
respectively

22

5-fold cross-
validation

Normal stem cells vs Inherent GSCs PCA-LDA
and CDA

99.6 resistant phenotype was reversed using
small molecule inhibitors

42

Normal stem cells vs Radiation-induced LOOCV 97.9
Normal vs Tumour tissues in cerebellum (14 samples) LDA 93.3 concentration of 16 biochemical com-

pounds present in the brain was
assessed using RS

48

Normal vs Tumour tissues in whole brain (28 samples) PLS-DA 94.1
Grade IV medulloblastoma vs Healthy tissues PLS-DA 98.5 96 high levels of β sheet and low levels of

α-helix conformation changes are
seen in tumorous groups

14

cross valida-
tion

96.3 92

62 patients genetic subtypes of glioma PCA-LDA 79−94 90−100 classifies IDH mutant, IDH wildtype
astrocytomas, and 1p/19q codeleted
IDH mutant oligodendroglioma

27

only IDH mutation LOPOCV 91 95
104 patient blood serum samples (grades I and II) MLP phenylalanine associated with brain

metastasis of lung cancer
49

RNN
CNN

Glioma vs Control PLS-AlexNet 100
Glioma vs Lung cancer 5-fold cross-

validation
95.2

209 patients - fresh samples PCA astrocytoma IDH-1 mutant and oligo-
dendroglioma, which varies only by
1p/19q codeletion, is identified with
81% accuracy

26

Non-neoplatic 100
Primary GBM 90
Recurrent GBM 100
Astrocytoma 86
Oligodendroglioma 90
Metastasized glioma 90
IDH mutated in oligodendroglioma and astrocytoma 81
435 spectra, 19 tissue samples of brain cancer DFA training

set
95.1 6-year study on brain tumor classifica-

tion using RS
29

testing set 88.9
10 patients - necrosis tissue from brain tissue (both
tumorous and nontumorous)

PCA 84 89 87 Raman optimized by changing parame-
ters like laser power, integration time,
and signal-to-noise ratio to precisely
identify necrosis tissue

50

12 patients: benign vs infiltered SVM 86 90.1 88.3 differentiation of benign and tumor-
marginalized areas using RS was done

51

133 spectra, 20 patients: Glioma LVQ 89.5 introduces a new discrimination and
classification system to predict the
efficiency of RS

52

Normal white matter 85.7
172 spectra - neoplastic vs normal brain tissues PCA-Eucli-

dian dis-
tance

97.4 100 variation in fatty acids, proteins, and
hemoglobin was noticed between the
meninges and cerebellum

53

1951 spectra of tissues meta-analysis of the accuracy of RS in
distinguishing cancer and normal
tissues

54

Glioma 96 99
Meningioma 98 100
98 spectra - mouse model normal cells vs glioma cells PCA 98.3 75 tumor discrimination accuracy of cells is

better than tissue samples
55
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Table 2. continued

brain tumor sample data analysis sensitivity % specificity % accuracy % highlight/observation/inference ref

8 patients - normal vs cancer cells boosted tree 94 90 86 detected cancer tissues 1.5 cm beyond
the detection level of MRI, in real-
time

56

161 spectra, 17 patients LOOCV multimodal RS with MR guidance for
real-time detection was developed

57

Dense cancer cells (>90% cancer cells) boosted tree 97 91 93
Infiltered cancer cells (≤90% cancer cells) boosted tree 89 91 90
22 specimens - normal brain tissue vs brain metastasis PLS-DA training set

97.1
primary tumors of brain metastasis were
from colon, bladder, mamma, renal,
prostate, and lung carcinomas

58

linear SVM 99.5
radial SVM 99.8
PLS-DA independent

70.4
linear SVM 80.3
radial SVM 89.3
KMC
VCA
5-fold cross-
validation

649 spectra, 64 samples, 28 pediatric patients SVM 1st study to differentiate pediatric brain
tumors from that of normal ones

28

Normal brain 96.9
Glioma 96.7
Medulloblastoma 93.9
Ependymomas: high vs low grade LOOV 100 96
Normal tissue vs Low-grade glioma 91.5 97.8
43 RR spectra from 7 brain cancer patients SVM 90.9 100 a peak at 1572 cm−1 (amide II) was

observed in all samples under reso-
nance Raman spectroscopy but not in
nonresonance spectroscopy

59

ROC
PCA

48 FFPE samples from 41 patients -normal, glioma, and
metastatic samples

feature-driven
SVM

mean 91.36 mean 96.19 97.01 accuracy of feature-driven SVM in-
creased by 26.25% to that of con-
ventional SVM

32

feature-driven
KNN

91.02

feature-driven
LDA

95.38

10-fold cross-
validation

17 patients: normal vs cancer LOOCV effect of room light artifacts was
explored using artificial neural net-
works (ANN)

60

(Excluding light artifacts) boosted trees 93 91 92
ANN 94 89 92

(Including light artifacts) boosted trees 84 51 71
ANN 91 89 90

952 spectra, 48 FFPE samples, 41 patients Cross valida-
tion

metastatic set had reduced 718 and 925
cm−1 and higher 1250, 1400, and
1670 cm−1 peaks compared to normal
and GBM sets

18

GBM PCA-LDA 100 94.44
Metastatic brain 96.55 100
Normal brain 85.71 100

31 spectra, 8 patients : normal vs brain metastases (lung) SFS-SVM 85 75 augmented RR peaks of tryptophan,
lactate, and amide II are seen in brain
metastases

61

8 patients: normal vs lung cancer metastasized in brain PCA-LDA 97 100 in metastases, amide I and collagen
have high intensity; lipids and lip-
oproteins have low intensity, while it
is vice versa in normal tissue

11
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checked their Raman spectral bands to learn about their drug
efficiency in treating cancer.42

A compilation of the results from various Raman studies
irrespective of surgery or diagnosis or monitoring, their
precision levels and the methods used to come to an inference
quantitatively and qualitatively are presented in Table 2.

6. MULTIMODAL RAMAN SPECTROSCOPY
An intraoperative study comparing the use of 5-ALA-induced
fluorescence-driven surgery and the possibility of replacing it
with Raman was explored. With 5-ALA fluorescence-guided
surgery, surgeons can switch from white light to blue light with
a click of a button which is not possible if Raman spectroscopy
is integrated into surgery. But 5-ALA fails in terms of
successfully representing the tumor margins, whereas Raman
spectroscopy manages to be efficient both at the core and
margin of the tumor tissue and obvious with the normal
tissues. Clearly, the Raman results upheld the previous
literature as peaks of lipids (825, 853, 1087, 1124, and 1305
cm−1) and DNA (517, 885, 1206, and 1342 cm−1) are
dominant in glioma groups, while amino acids (540, 615, 635,
and 649 cm−1) and amide III protein (1522 and 1553 cm−1)
peaks are dominant in normal brain tissues. Thus, the authors
conclude by suggesting the combined multimodal use of both
5-ALA fluorescence and Raman spectroscopy to target cancer
tissues in vivo.46 Another intraoperative study by Jermyn and
group investigated the detection ability of Raman beyond the
preoperative MRI detection levels. Their results supported
Rahman’s discrimination capacity as it was able to discern low-
density cancer 1.5 cm beyond the MRI levels.56 The same
team, in another similar work, compared the better of MRI and
Raman imaging for cancer detection in depth with specifics. It
was found that Raman outperformed T1-contrast enhanced
MRI and T2-weighted MRI by detecting invasive cancer cells
to a maximum of 3.7 and 2.4 cm beyond T1 and T2 levels,
respectively. Also, Raman spectroscopy was able to find as
small as 6 invasive cancer cells for each 0.0625 mm2.63

Gajjar proposes the complementary use of both FTIR and
Raman for brain tumor diagnosis as they observed 1045 to
1545 cm−1 (phosphate to carbohydrate) changes in high-grade
gliomas and alteration in 1121 to 1020 cm−1 (RNA to DNA)
ratio in meningioma, only with FTIR. Similarly, changes in the
1670 to 1001 cm−1 (cholesterol to phenylalanine) ratio to
discriminate low-grade astrocytoma from meningioma were
observed only in Raman.64 But another similar study by
Depciuch and colleagues comparing tumorous and non-
tumorous brain tissues is profiled based on their molecular
changes in FTIR and Raman spectroscopy. The findings infer
major changes in the sphingomyelin and phosphatidylcholine
levels when analyzed via Raman. On the other hand, FTIR
only on Kramers−Kronig transformation was able to identify
changes in 1450, 2847, and 2915 cm−1, all belonging to lipid
vibrations, but the same was more comprehensive in Raman.65

Combined spatial frequency and resonance Raman spec-
troscopy was developed by Zhou et al. to distinguish between
brain metastases and normal brain tissues. The SFS’s dominant
amplitude moved away from the center in all directions,
indicating low spatial frequency in the center and vice versa.
The higher frequency low amplitude system prevailed majorly
in cancerous tissues contrasting to normal tissues. The RR
spectra results revealed the significant intensity augmentation
of lactate, tryptophan, and amide II. The carotene peaks were
either constant or moved to a higher frequency in metastases
tissues. These results on further interpretation with SVM
showcased reliable similarity with the gold standard “histo-
pathology”.61

7. NONLINEAR RAMAN SPECTROSCOPY
In general, nonlinear Raman spectroscopy involves more than
one laser source, and the Raman signal is independent of
incident light intensity unlike in conventional, linear Raman
spectroscopy. The interaction of the energy from different laser
sources, usually a pump beam and stokes beam, enables a high
signal-to-noise ratio (SNR) and resolution magnitude
compared to spontaneous Raman spectroscopy. Widely used
nonlinear Raman spectroscopy techniques are coherent anti-
Stokes Raman spectroscopy (CARS) and stimulated Raman
spectroscopy (SRS).
7.1. Coherent Anti-Stokes Raman Spectroscopy

(CARS). Uckermann with his team explored the ability of
CARS to delineate glioblastoma, brain metastases of breast
cancer, and melanoma in a mouse model. The CH-tuned
CARS setup showed lower intensity in their signals, unlike
normal tissues because lipid content is lower in tumor
conditions. The intensity of reduction was not as significant
in metastases as that of glioblastoma. This was attributed to the
primary brain cancer characteristic in GBM compared to the
metastases of melanoma and breast cancer, thereby helping in
the discernment and diagnosis.66 Pohling et al. mapped the
tumor region in a mouse brain tissue using multiplex-CARS.
The infiltration region was detected by SVM. Unlike most
other works, which color codes based on spectral intensity, this
study color-coded based on pathological information. The final
output was checked with the reference H&E stained samples
and was found to be in-line with them.67 A study by Galli and
group investigated the effect of tissue fixation methods on
CARS images and tissue biochemistry. The results revealed
that fixing using methanol-acetone lowers the lipid content
making it incompatible for CARS, while formalin did not alter
the biochemistry much nor the contrast and intensity of the
images obtained.68

Most CARS studies are done with a multimodal approach. A
novel multimodal photon microscopy using nonlinear imaging
was put forth by Meyer and team to replace or complement
the current gold standard “histopathology”. The multimodal
setup involves coherent anti-Stokes Raman spectroscopy

Table 2. continued

brain tumor sample data analysis sensitivity % specificity % accuracy % highlight/observation/inference ref

95 spectra, 45 tissue samples: GBM, necrotic, gray matter DFA gray matter showed higher lipid content
and necrosis, higher protein and
nucleic acid content, while GBM
remained in the middle

62

Training 99.6
Validation of fresh 97.8
Validation of FFPE 77.5
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(CARS), second harmonic generation (SHG), and two
photon-excited fluorescence microscopy (TPEF). Only the
aliphatic CH2 band is used by CARS to discern tumor and
normal tissue, while SHG gives high chemical selectivity,
especially to the blood vessels, arachnoid membrane, and other
components rich in collagen. On the other hand, TPEF helps
in imaging morphology of the tissue label-free. The results
combined overall were also verified with FTIR and Raman
spectroscopy. This completed setup managed to produce
similar results to that of H&E staining but only on a large scale.
At a single-cell level, the latter was superior.69 Study by Galli et
al. involved green fluoroscence protein (GFP) tagged to glioma
cells and 5-ALA for targeting glioma both used by TPEF and
CARS, respectively, to demonstrate the identification of
infiltrated brain tumors in both human and mouse models.
The usage of CARS images with GFP helps in finding the
neoplastic tumor in a single cell level, making it more precise
and giving an idea about the cellular changes in both ex vivo
and in vivo glioma.70 Another similar study used CARS and
TPEF images of 55 brain tumor lesions and overlaid them to
give a highly resolute image comparable to that of the gold
standard histology images. The CARS system used a 670 nm
laser as its pump beam and a 830 nm Ti:Sa beam at its Stoke’s
beam source. These were recombined spatially and temporally
to come up with the CARS images. Thus, the images obtained
can guide neurosurgeons to avoid brain hemorrhage as the
images were able to represent even the blood vessels while also
saving time for neuropathologists to identify section regions
minimizing the invasiveness of the surgery.71 One more study
by Uckermann et al. utilized CARS and TPEF combination to
classify between brain tumor, its subtypes, brain metastases of
other solid tumors, and nontumors. Samples were obtained
from 382 patients and 28 nontumor brain samples. The texture
analysis done using CARS was further analyzed with LDA. The
developed system was able to identify all nontumors with
100% accuracy, while the overall correct rate stood at 96%.

Forty-two samples were analyzed in a fresh state to test the
system’s ability to translate to the clinic. Also, the setup was
able to classify tumors even with an image resolution of 1
μm.72

7.2. Stimulated Raman Scattering Spectroscopy
(SRS). Ji et al. tapped the potential of SRS to discriminate
between neoplastic and non-neoplastic in both ex vivo and in
vivo mouse models. The team used a tunable pump beam of
600 to 1000 nm from an optical parametric oscillator and a
Stoke’s beam of 1064 nm over the sample. The energy
difference between the two beams was matched with the
molecular vibrations to induct SRS. The results acquired
through SRS were matched with that of H&E staining, and a
Cohen’s κ value of 0.98 was obtained, implying an approximate
98% match.73 The SRS imaging system integrated with
multivariate curve resolution (MCR) and quadratic SVM was
utilized by Bae and colleagues to virtually do the H&E staining
in glioblastoma specimens and further subtype classification,
where illustration of the same is seen in Figure 6. Apart from
visualizing the vascular proliferation and demyelination
progress, the setup was able to signify the intratumoral
heterogeneity to a certain extent.74 One study employed fiber-
laser-based SRS for histology. The aim of the study was to
explore the competence of SRS to identify the tumor attained
from the infiltrate tumor margins of brain tissue samples. The
stimulated Raman histology (SRH) and H&E stained samples
with a residual tumor were identified properly in 49% of the
samples, while the same for immunohistochemistry (IHC) was
56%. The observations were done by three neuropathologists
in a blinded manner.35 In another work by Ji et al., fresh,
unprocessed samples from 22 brain cancer patients was
obtained to detect the tumor infiltration. The team exercised
quasi-likelihood strategy to develop a generalized additive
model (GAM) exploiting 1477 field of view (FOV) images
from 3 epilepsy and 15 brain cancer patients. Half the set of
images were used to train the model, while the remaining were

Figure 6. Graphical representation of SRS imaging diagnostic platform for rapid glioblastoma subtyping. Here, the image stack denotes the tissue
area obtained under an SRS microscope. Each tile of the stack undergoes multivariate curve analysis to express the major spectral components.
Among those components, the decomposed spectra are used for subtyping glioblastoma while reconstructed concentration maps are merged to give
histological images.74 Reprinted from ref 74. Copyright 2021 American Chemical Society.
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used to test it. Due to SRS’s proficiency to recognize the
histoarchitectural structures, axonal, and cellular densities
unlike other Raman systems, they were inculcated in the
classifier to improve the result leading to a specificity of 98.5%
and sensitivity of 97.5% and also a κ = 0.86 against the H&E
stained light microscopy.75

A multimodal SRS-SOCT (spectroscopic optical coherence
tomography) setup was exploited by Soltani and group to
assess its capability to distinguish between a normal and
tumorous brain in a 9 L gliosarcoma rat model. It was found
from the work that SOCT can resolve spatial and spectral
features of the SRS comparatively easily which leads to faster
data acquisition of even larger regions, which makes the
multimodal setup a good option to consider for clinical use.76

Orringer et al. were the first ones to come up with a SRS
microscopy for intraoperative use in the clinic and also SRH,
virtual H&E staining. The virtual stained images were obtained
with 2 s per frame FOV in a mosaic pattern, stitched, and
recolored, taking only 2.5 min for a whole mosaic. The
instrumental setup consisted of a portable fiber-laser-based
microscopy integrated with the SRS. Samples from 101 brain
tumor patients were considered for the study, with half done
via frozen sectioning and the remaining via SRH. The portable
setup showed a 25-fold enhanced SNR. The inter-rater
reliability [Cohen’s kappa (κ)] consistently remained above
0.89 in all cases whether it be distinguishing between glial and
nonglial, SRH and H&E staining, or lesional and nonlesional
with an accuracy of above 90%.77

8. CHEMOMETRICS
Aguiar et al. imaged 263 spectra of various brain tissues both
tumorous and nontumorous and analyzed 16 biochemical
compounds by using a least-squares fitting spectral model. The
discriminant models used were LDA and PLS-DA. The
accuracies for separating normal and tumor models were
93.3% and 94.1%, respectively, which are approximately the
same. This suggests the use of any one of the models for
discrimination analysis in the future.48 The aim of the study
was to discriminate between grades I and II meningiomas via
Raman microspectroscopy with utmost accuracy. For the same,
the team investigated 90 meningioma samples and the
biochemical changes were analyzed with multiple chemometric
methodologies. Among them, SPA-QDA and PCA-QDA
showed higher accuracy values of about 96.2% with sensitivities
and specificities at 85.7% and 100%, respectively.10 Lilo and
team collected 95 meningioma tissue samples from grades I
and II combined. The samples were analyzed using Raman
hyperspectral imaging and processed by 3D-PCA-QDA. The
results of postprocessing showed 96% accuracy with 95%
specificity and 100% sensitivity.78

Chen and colleagues used different computational algo-
rithms to find the most accurate prediction among convolu-
tional neural networks (CNN), recursive neural networks
(RNN), multilayer perceptron (MLP), and AlexNet for binary
classification between control groups and glioma and glioma
and lung cancer using 5-fold cross-validation. AlexNet’s
accuracy stood out at 100% and 95.2%, respectively, making
it the best algorithm among the ones used.49 Jermyn et al. used
artificial neural networks to accommodate the Raman spec-
troscopy to be used in the presence of light artifacts to detect
invasive cancer cells, thereby enhancing clinical translation
ability and robustness for intraoperative use. The team was
able to achieve an accuracy of about 90%.60 Liu and group

proposed a new method for the data analysis of Raman spectra,
which was previously commonly used in pattern recognition. It
is a neural network-based algorithm and is called learning
vector quantization (LVQ). The normal and glioma tissue
diagnosis accuracy was 85.7% and 89.5%, respectively.52

An SVM algorithm was introduced with a 2-level
discriminant analysis to predict the primary tumors of brain
metastases. The results obtained via radial-SVM surpassed that
of linear-SVM and PLS-DA. The algorithm prediction was 99%
accurate in successfully identifying the independent primary
tumors.58 In another study, three classifiers (LDA, KNN, and
SVM) went through both principal components and sub-band
feature extraction to improve the classification efficiency of
Raman spectroscopy. In this modified feature-driven classifier
setup, LDA negatively performed with a 1.16% reduction in
efficiency, but the other two classifiers KNN and SVM
improved by 25% and 26.25%, correspondingly.32 One
machine learning algorithm used was developed using Scikit-
learn to classify performance with leave-one-patient-out cross-
validation: gradient boosting trees and random forest.7

9. CONCLUSION
The review clearly establishes Raman to be a potential method
in the detection, monitoring, and surgery of brain cancer. This
can go as a standalone tool to improve the lives of brain tumor
patients in the future. This can also proceed as a multimodal
means along with conventional imaging instruments like the
MRI and CT scanning techniques. Unlike histopathology
which requires hours of time and expert neuropathologists to
analyze, Raman spectroscopy can provide unbiased accurate
interpreted data in real-time. It also does not need any
preprocessing or staining.28 Though currently, there are not
any Raman-approved surgery for brain cancer, the idea of it
becoming reality is not far-fetched. With setups like SERS
which require surface enhancers, the surface enhancer can be
made with a smart nanoparticle system thereby they become
either pH, temperature, or photosensitive so that interaction
with a laser can ablate the tumors. But, to attain these sooner,
there needs to be even wider human clinical trials considering
as many parameters as possible to bring it to the clinic for use.
Further, more accurate ML tools are necessary to interpret the
data precisely. So, the results can be used a step further to help
in personalized medicine and decide on a regime of treatment
based on the biomolecular signatures observed.

10. LIMITATIONS AND FUTURE PROSPECTS
A simple web-search on the FDA clinical trials site for the term
Raman spectroscopy shows about 108 clinical studies as of
mid-June 2023, including completed, withdrawn, currently
active, and recruiting. Of these, only 2 studies one completed
and one recruiting are related to the brain but that too not of
brain cancer.79 This clearly shows the need for more clinical
trials using Raman spectroscopy as different modalities. But
this is due to few practical hurdles, like the interference of
ambient light with/and fluorescence, Raman’s sensitivity to
water. The major hindrance is the portability of the instrument,
and real-time data analysis with minimal to no delay and high
complexity of the instrument for a clinician to handle instigates
the need for a Raman spectroscopy expert instead of an expert
neuropathologist. So, this does not make much of a difference.
And, of course, the cost of the setup has to come down many-
fold. The future research in the field must concentrate on the

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c01848
ACS Omega 2023, 8, 27845−27861

27858

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01848?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


miniaturization, simplification, and cost-effectiveness of the
instrument without compromising on the safety and efficiency.
Now, with the rise of AI, potent ML models should be
developed to increase the accuracy of the results. Recently,
Jiang et al. have come up with the first open data set of 1300+
clinical SRH images from more than 300 patients called
OpenSRH.80 This kind of open public data sets and
repositories, say a universal repository created by a consortium
including academic, industry, and hospitals, can lead to
enhanced collaborative research in Raman spectroscopy
leading to a quicker progression toward affordable, safe, and
efficient state-of-the-art Raman spectroscopy ready for clinical
use.
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