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Review Article

The Cognitive Framework Behind Modern
Neuropathology

José Javier Otero, MD, PhD

• Context.—In 2021 the World Health Organization
distributed a new classification of central nervous system
tumors that incorporated modern testing modalities in the
diagnosis. Although universally accepted as a scientifically
superior system, this schema has created controversy
because its deployment globally is challenging in the best
of circumstances and impossible in resource-poor health
care ecosystems. Compounding this problem is the
significant challenge that neuropathologists with expertise
in central nervous system tumors are rare.

Objective.—To demonstrate diagnostic use of simple
unsupervised machine learning techniques using publicly

available data sets. I also discuss some potential solutions to
the deployment of neuropathology classification in health
care ecosystems burdened by this classification schema.

Data Sources.—The Cancer Genome Atlas RNA se-
quencing data from low-grade and high-grade gliomas.

Conclusions.—Methylation-based classification will be
unable to solve all diagnostic problems in neuropathology.
Information theory quantifications generate focused work-
flows in pathology, resulting in prevention of ordering
unnecessary tests and identifying biomarkers that facilitate
diagnosis.

(Arch Pathol Lab Med. doi: 10.5858/arpa.2023-0209-RA)

The neuropathology community has overtly failed to
deliver a “deployable by general surgical pathologist”

workflow for the diagnosis of primary central nervous
system (CNS) tumors. This outcome is obviously uninten-
tional, but nevertheless represents a significant failure that
results in substandard neuro-oncologic treatment planning
and intraoperative neurosurgical management for our
patients. First, one must understand that at the founda-
tion of this failure lies the cold reality that brain tumor
classification suffers a high cognitive burden. Compound-
ing this challenge is the fact that in the United States, only
an estimated approximately 450 neuropathologists are
boarded by the American Board of Pathology.1 Despite
the fact that there is a massive shortage of trained
neuropathologists throughout the country, the neuropa-
thology community has maintained the requirement for a
2-year fellowship. In my own training program, the
second year of the research was a full-blown postdoctoral
fellowship tailored for a career in academic neuropathol-
ogy. Although this option may have made sense for me,
continuing to focus our training on efforts to generate
academic neuropathologists results in about one-third of
neuropathology fellows focusing on a research-intensive
career, be it in academics, government, or biotechnology.

One may thus consider continued insistence on this path
to be incongruent with society’s needs and a contribution
to the perpetuation of multiple inequities across our
various health care ecosystems.
The presence of a significant philosophical tension

within the neuropathology community further complicates
the upskilling of general surgical pathologists to meet this
challenge. In traditional perspectives, a neuropathologic
diagnosis indicated a unique clinical-pathologic syndrome,
where diagnoses/disease categories were segregated by
epidemiology and patient outcomes. For instance, a myx-
opapillary ependymoma is the neoplasm associated with a
clinical-pathologic entity with unique distribution of neuro-
anatomical location, morphology, and clinical outcome.
However, the notion of what a diagnosis encompasses has
progressed over time. In a highly progressive view, a diagnosis
represents a subtype of a neoplastic process, and such subtypes
can be categorized by objective and quantitative analysis of
genomic, epigenomic, transcriptomic, epitranscriptomic, lip-
idomic, and/or metabolomic pathways, with diagnoses often
aided by machine learning tools such as dimensionality
reduction and clustering analyses. It is critical for the general
surgical pathologist to understand that these 2 philosophical
viewpoints represent extremes of a spectrum, and that all
neuropathologists incorporate both philosophies when they
integrate diagnoses. Most neuropathologists will find them-
selves naturally on one side of the spectrum, and autocorrec-
tion to an appropriately nuanced center is required in surgical
neuropathology practice.
The lack of successful advocacy for neuropathology com-

pensation also represents a significant challenge. Despite the
key role that intraoperative consultation plays in tissue triaging,
current reimbursement rates for neuropathologic intraoperative
consultation are only $63.17 per consult (Current Procedural
Terminology code ¼ 88331), and charges for the cytologic
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Corresponding author: José Javier Otero, MD, PhD, Department of

Pathology, Division of Neuropathology, The Ohio State University
College of Medicine, 4169 Graves Hall, 333 W 10th Ave, Columbus,
OH 43210 (email: jose.otero@osumc.edu).

Arch Pathol Lab Med Cognitive Framework in Modern Neuropathology—Otero 1

mailto:jose.otero@osumc.edu


preparation are not allowed if a frozen section is performed
on the same part. These issues render it financially unfeasible
to staff neuropathologists on call in community cancer
center clinical settings, ultimately leading to nonneuropa-
thologists fielding most neurosurgical intraoperative con-
sultations throughout the United States. Neuropathology
staffing problems are even worse worldwide. As stereotactic
targeting significantly improves with intraoperative consul-
tation, patients without neuropathologists reading intraop-
erative consults receive inferior care. Furthermore, treatment
planning by neuro-oncologists and radiation oncologists
requires time-sensitive integrated histopathologic/molecular
pathologic reports. As primary brain cancers are rare, glioma-
specific biomarkers are not commonly stocked in community
and academic pathology laboratories. In summary, we routinely
lose the opportunity to commence brain biopsy/resection tissue
triaging at the point of intraoperative consultation, at least in
part because the public policy framework surrounding neuro-
pathology does not facilitate neuropathology staffing.

HOW DID WE GET TO WHERE WE ARE NOW?

Throughout the world, the clinical practice guidelines that
set the neuropathology diagnostic standards arise from the
World Health Organization (WHO), which in 2021 pub-
lished a revised classification of CNS tumors. This publica-
tion further emphasized the need for molecular pathology
integration with diagnosis. It has been demonstrated
through numerous studies that integration of molecular
data with histology improves diagnosis and prognostication
for patients2–7 and represents a key component within the
neuro-oncologist’s toolbox. Unfortunately, in resource-
starved ecosystems, which represent approximately 60% of
the world’s cancer burden,8 molecular pathology workflows
are nonexistent. Even within the United States, neuropa-
thology staffing of non–comprehensive cancer center
tertiary care facilities rarely exists. As National Cancer
Institute–designated comprehensive cancer centers cover
only about 20% of US cancer patients, one can estimate that
the majority of primary brain cancer patients in the United
States do not obtain a first look at their pathology by trained
neuropathologists. This results in nonneuropathologists
fielding complex intraoperative consultation questions and
general surgical pathologists sending cases to external
experts, leading to increased turnaround times (TATs) that
ultimately delay treatment planning. Note that although
these excessive TATs may remain in line with chemo-
radiation therapy target of 4 weeks,9 scheduling logistics of
oncologic and radiation therapies are highly complex and
represent a key logistical challenge (see discussion in
Petrovic et al10). In addition to the TAT challenges, efficiency
is hindered by the well-known problem that diagnostic tests
change their predictive values when disease incidence
decreases in the sampling population. This phenomenon
most commonly occurs when increasing the number of
subjects being tested without regard to pretest probability
thresholds. For instance, 1p19q fluorescence in situ hybrid-
ization, a standard test for oligodendroglioma workup,
suffers a 5% false-positivity rate, and ordering this test on all
gliomas without consideration of pretest probabilities is ill-
advised. Of note, in some clinical paradigms, next-gener-
ation sequencing (NGS) has shown to be cost-effective as a
diagnostic modality only at specific pretest probability
thresholds.11 The net result of these challenges is delayed

treatment plan generation by neuro-oncologists and radi-
ation oncologists.
To understand how we arrived at this, let us consider a

thought experiment where we return to the ignorant state of
neuropathology circa the early 2000s. In this thought
experiment, we will consider the toolbox that neuropathology
possessed at that time and demonstrate how implementation
of applied mathematics and machine learning resulted in the
promise that objective quantification of genomic or tran-
scriptomic findings may be capable of providing solutions to
the shortage of trained neuropathologists.

WHAT DID WE KNOW BEFORE MOLECULAR
CLASSIFICATION?

In the early 2000s, our knowledge of clinical outcomes for
infiltrating glioma patients was based on some morphologic
biomarkers, chromosomal biomarkers, and epidemiologic
outcomes data. For instance, the morphologic markers of
high cellularity, nuclear pleomorphism, and infiltration
patterns across Scherer secondary structures were reported
in the neuropathology literature more than 90 years ago and
undergo extraction with a hematoxylin-eosin (H&E) stain.12

Currently the sine qua non for oligodendroglioma, 1p19q
codeletion was reported more than 20 years ago.13 Using
The Cancer Genome Atlas (TCGA),14 one can download
data on patient demographics such as sex, age, and clinical
outcome. As illustrated in Figure 1, A through C, by the
early 2000s neuropathology knew (1) that morphologic
biomarkers such as necrosis and microvascular proliferation
and proliferative biomarkers such as Ki-67, proliferating cell
nuclear antigen (PCNA), or PHH3 were elevated in tumors
of patients with poor prognosis, and (2) that younger age
was highly associated with low-grade morphologic bio-
markers, lower expression of proliferative genes, and
improved survival. However, as shown in Figure 1, A and
B, a significant overlap exists between these conditions. In
2010, the TCGA group and others discovered through gene
promoter methylation profiling that a subset of patients in
this group showed a concerted hypermethylation in several
genomic loci, a patient cluster initially referred to as glioma–
CpG island methylator phenotype, and that these patients
possessed mutations in IDH1, or less commonly in IDH2.15

Discovering IDH mutation in astrocytoma and oligoden-
droglioma represented a near-quantum shift in diagnostic
neuropathology, which culminated in the release in 2016 of
updated diagnostic guidelines for the classification of CNS
tumors. In this edition, the focus of the diagnostic nosology
was to emphasize objectivity through departing from subjec-
tive morphologic biomarkers. To illustrate how machine
learning approaches could be implemented in this modern
neuropathology construct, consider a potential workflow that
could identify through objective quantification a series of
cancer biomarkers that could segregate infiltrating gliomas. To
illustrate this, I downloaded the RNA sequencing data from
TCGA, which constituted 703 patients, with each bulk RNA
sequencing data set containing more than 22 000 genes. These
703 patients were distributed among 3 diagnoses: (1)
astrocytoma, IDH mutated, WHO grade 2; (2) oligodendro-
glioma, IDH mutated, WHO grade 2; and (3) glioblastoma,
IDH wild type, WHO grade 4. This data set’s dimensionality
was reduced through principal components (PCs) analysis
from about 22 000 dimensions (or genes) to 412 dimensions
(or PCs), with these 412 PCs capturing 91% of the data.
Figure 2, A and B, shows a plot where these 412 PCs are
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projected onto 2 dimensions using the uniform manifold
approximation and projection (UMAP) algorithm, with each
closed dot representing a biopsy from one patient. Note that
this scatterplot easily shows 3 broad groups that roughly
correspond to 3 patient clusters (Figure 2, A). Each point
is then pseudocolored based on diagnosis, which nearly
perfectly separate into clusters of oligodendroglioma; astro-
cytoma, IDH mutated; and glioblastoma, IDH wild type
(Figure 2, B). What has been achieved by this approach is a
major shift in how we can think of diagnostics. Specifically,
an algorithm, which has never dealt with data from these
patients, has clustered patients into clinically significant
diagnostic categories through only the following code in
Rstudio using libraries dplyr and UMAP.

#data importation from TCGA and data wrangling
hgg ,- read.csv(“,TCGA_GBM_TPM_counts.csv”)
lgg ,- read.csv(“,TCGA_LGG_TPM_counts.csv”)
df ,- left_join(hgg, lgg)
df2 ,- t(df) %.% as.data.frame
#identifying which genes low variance to exclude from

downstream analysis
df3 ,- apply(df2, 2, var)
#principal components analysis
my_pca ,- prcomp(df2[, which(df3.0)], scale ¼ TRUE)
#UMAP analysis
my_umap ,- umap(df_pca[, 1:412])
#Plotting the umap analysis
plot(my_umap$layout)

The key take-home message of this exercise is that
machine learning, and potentially artificial intelligence, are
tools that now are available in the neuropathologist’s
toolbox. The obvious next question would be, what is our
best candidate to perform such an objective, data-driven
approach to diagnostic neuropathology?

WHOLE-METHYLOME SEQUENCING AS A CANDIDATE
FOR MACHINE LEARNING–BASED NEUROPATHOLOGY

SIGN-OUT

The technical scope of methylation profiling is beyond this
review, and I refer the reader to excellent reviews on this
topic by others.16,17 Regardless of whether or not the
methylome is acquired via NGS or methylation-specific
microarrays, whole-methylome–based sequencing has shown
significant promise in CNS tumor classification.18 Specifically,
the potential to cluster patients into disease categories using
unsupervised hierarchical clustering represents a strong poten-
tial method of obtaining diagnoses directly from biochemical
inputs (ie, genomic DNA extraction). Here, I present 3
examples of methylation profiling from my practice at Ohio
State University (Columbus) that were performed at the
National Institutes of Health (NIH) that demonstrate the
promise and pitfalls of this methodology.
The first example comes from a patient with a recurrent

cerebellar lesion that was diagnosed in the electronic health
record as recurrent pilocytic astrocytoma (Figure 3, A
through D). The tissue sections demonstrated a glial prolifer-
ation admixed with hemorrhage. Mitoses were noted, as were
microvascular hyperplasia. Diffuse expression for OLIG2 was
noted in the tumor cells, and p53 and IDH1R132H were
negative. ATRX was negative by immunohistochemistry,
indicating a mutated ATRX locus. The Ki-67 labeling index
was estimated at 2% in the tumor cells. IDH1/2 and BRAF
V600E testing was negative. NGS did not show any mutations

Figure 1. Extent of knowledge regarding patient outcomes with
biomarkers commonly available in the year 2000. Data from The Cancer
Genome Atlas are downloaded and plotted as density curves for distribution
between low grade (blue) and high grade (black and gray) for age (A),
distribution of proliferating cell nuclear antigen (PCNA) expression (B), and
a Kaplan-Meier survival curve of low- versus high-grade infiltrating glioma
(C). Abbreviations: LGG, low-grade glioma; HGG, high-grade glioma.
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indicative of a high-grade glioma. The patient had received a
prior diagnosis of pilocytic astrocytoma 3 years previously from
another pathologist. We reviewed that original specimen, and it
showed several classic features of pilocytic astrocytoma, such as
the lack of infiltration and the presence of Rosenthal fibers. The
presence of proliferation and microvascular hyperplasia was
concerning, and we decided to obtain methylation profiling.
Methylation profiling demonstrated a high-grade astrocyto-
ma with piloid features, a diagnosis that provided crucial
information resulting in a change in radiation planning. Time
from initial specimen submission to NIH to result was 24
business days.
In example 2, we performed methylation sequencing on a

resection specimen with a right frontal lobe lesion (Figure 4, A
through C). The H&E-stained sections demonstrated abun-
dant eosinophilic granular bodies, Rosenthal fibers, and
occasional ganglion cells, some of which were binucleated.
Multiple synaptophysin-positive ganglion cells, some of which
were binucleated, were noted in the tissue sections. CD34
immunoreactive cells showing a complex dendritic arboriza-
tion, a finding commonly associated with ganglioglioma, were
identified. The Ki-67 labeling index was estimated at less than
1% in all tissue sections examined. Evaluation demonstrated a
BRAF V600E mutation. IDH1/2 sequencing was performed
and was negative. We rendered a diagnosis of ganglioglioma,
WHO grade 1.
Although we did not have a diagnostic conundrum in this

case, we opted to submit for methylation profiling to the
NIH as we considered this to be such a classical case that it
might be of interest to the NIH program. When classical
cases are submitted to the NIH, the NIH methylation
classifier improves and benefits all users. Methylation profile
revealed this specimen to pertain to the pilocytic astrocy-
toma class. We were surprised that the NIH methylation
profiler could not distinguish pilocytic astrocytoma from

ganglioglioma, and this case underscores some of the
limitations of whole-methylome profiling. The TAT from
ordering the methylation study to rendering the report was
26 business days.
My last example is of a right ventricular mass with a

challenging lesion (Figure 5, A through I). The H&E-stained
tissue sections demonstrated a fragment of tissue composed
principally of clusters of cells admixed with highly fibrillar
areas of low cellularity. This morphology was most consistent
with that of subependymoma. At the edge of the specimen,
however, cytologically atypical cells with elongate morphology
were noted, which were admixed with Rosenthal fibers. One
mitosis was identified. These cytologically atypical cells
showed permeation throughout the tissue section. No necrosis
and no microvascular hyperplasia were noted. The cells within
the well-defined clusters showed occasional dotlike EMA
immunoreactivity, IDH1 R132H was negative, and ATRX was
positive by immunohistochemistry (indicating an intact ATRX
locus). Throughout the tissue, elongate OLIG2 immunoreac-
tive cells were noted, and the Ki-67 labeling index was
estimated at 2% by manual assessment, with the majority of
the Ki-67 immunoreactive cells present in cytologically
abnormal glia; p53 showed intense immunoreactivity in an
estimated 2% of the tumor cell nuclei, and GFAP showed
diffuse expression. Neurofilament demonstrated background
axons, and NEUNwas negative. Additional testing for H3K27M
and H3K27ME3 was negative for H3K27 mutation, with intact
H3K27ME3 staining. Molecular analyses demonstrated that the
specimen showed no amplification of EGFR, no mutation in
IDH1/2, and no mutation in BRAF V600E. Overall, the
majority of the tissue section showed a morphology
consistent with subependymoma. The presence of bipolar
elongate glial cells at the periphery admixed with Rosenthal
fibers also raised a pilocytic astrocytoma within the
differential diagnosis. We felt that this did not fit any one

Figure 2. Unsupervised machine learning approaches capable of identifying glioma subtypes from bulk ribonucleic acid sequencing (RNAseq). A,
Uniform manifold approximation and projection (UMAP) of only bulk RNAseq data from The Cancer Genome Atlas without pseudocoloring shows 3
clusters. B, Pseudocoloring based on diagnosis shows clear association to visual clusters for the diagnoses tested. Black is oligodendroglioma
isocitrate dehydrogenase (IDH) mutant 1p19q codeleted; red, astrocytoma IDH mutant 1p19q noncodeleted; and green, glioblastoma, IDH wild
type.
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tumor entity, and so we rendered the following diagnosis:
primary CNS glial neoplasm.
Methylation profiling at the NIH indicated no match. In this

example, the unusual histologic architecture and biomarker
workup demonstrated a biphasic tumor, and based on our
interpretation, this neoplastic process was not classifiable in the
current grading system. For this reason, we used principally a
descriptive diagnosis. This tumor may represent a unique tumor
class, as the NIH methylation classifier was unable to identify a
cluster to which it could designate its methylome. TAT from
ordering to receiving the methylation was 34 business days.

In these 3 examples we can conclude that (1) methylation
profiling has the potential to identify tumors with poor
outcomes when traditional histology and genomic sequenc-
ing cannot, as seen in the example of the high-grade
astrocytoma with piloid features; (2) methylation profiling is
incapable of differentiating all tumor types, as shown in the
example of ganglioglioma; (3) the methylation classifier is
only as good as its training data, and (4) the NIH system
that is performing the bulk of the methylation classifications
suffers from long TAT and is not reliable for rapid clinical
decision-making. In the defense of the NIH program, it is

Figure 3. Pertinent histologic images of example 1. A and B, Hematoxylin-eosin–stained images; A is captured from a whole slide image and
selected by Philips IMS region of interest. C, Olig2 immunohistochemistry. D, Ki-67 (original magnifications320 [A] and340 [B through D]).
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performing these services free of charge and is focused on
developing the methylation classifier rather than serving as
the preferred site for methylation, and when its performance
is evaluated in the context of this scope it has performed in a
stellar fashion, making a real difference to the patients in our
practice. Nevertheless, distribution of this classifier through-
out the United States for computational modeling should
represent a tangible objective of this program, potentially
through advances in distributed web3-based technologies.
This would enable cancer centers to perform the methylation
testing locally and obtain the class model predictions of the
nation’s neuropathology computational model.

HOW CAN WE HANDLE THESE CHALLENGES TODAY IN
RESOURCE-POOR HEALTH CARE ECOSYSTEMS?

The state of Ohio represents in many respects a microcosm
of the United States, with a mixed economy generating $695.4
billion, contributing about 3.2% of the GDP of the United
States. Despite this economic output, Ohio has significant
health care disparities. Note that 5-year survival is worst in
the southeastern portion of Ohio, which correlates with
predominantly rural and poor counties. Ohio State University
Medical Center/James Comprehensive Cancer Center has
significant penetrance in central Ohio and the rural portions
of our state. The logistics of transporting these rural and poor
patients from rural areas to Ohio State University for a clinical
service that spans the boundaries of neurosurgery, neuro-
oncology, radiation oncology, radiology, and pathology make
efficient turnaround of diagnoses even more critical. This
scenario of a tertiary care medical center serving an expanded
catchment area of patients who are poor and rural and for
whom logistics is challenging represents a common problem
facing the brain cancer population in the United States and
globally. However, cutting-edge molecular pathology work-
flows, including NGS and whole methylome, typically require
extensive batching to reduce the per-patient cost, not to
mention that the majority of patients worldwide suffering
from CNS tumors do not have access to these workflows.
Furthermore, treatment plans often require actionable deci-
sions earlier. As a community, we therefore must accept that
the current diagnostic framework with which we approach
CNS tumors must adapt to this reality.

Our research group recently published a new framework
from which to consider moving forward based on informa-
tion theory.19 Information theory rests on the notion that
information can be objectively quantified into units called
bits (or nats, where 1 nat ¼ log2(e)*bit). In this cognitive
framework, information is defined as the reduction of
uncertainty. We specifically apply information theory in the
neuro-oncology context as follows: if one patient-derived
variable provides information about a patient diagnosis/
prognosis, then knowing the state of that one variable, on
average, would allow one to better predict the patient’s
diagnosis/prognosis. This permits the objective quantifica-
tion of so-called mutual (or conditional) information by
calculating the extent to which one variable reduces the
uncertainty of the second variable. As a conceptual example
to illustrate our application of information theory, consider a
patient whose differential diagnosis includes an infiltrating
low-grade glioma. The numerical unit implemented in
information theory is entropy (H). Entropy measures the
uncertainty contained within a variable (our differential
diagnosis) and is provided by the following equation:

H Xð Þ ¼
X
x2X

p xð Þlog2
1

p xð Þ
� �

where x ∈ X refers to all possible states that x can take. In our
example, X represents the patient’s differential diagnosis and x
is the patient’s actual diagnosis, with p(x) being the individual
probability of each element of X. Therefore, the entropy (H)
would describe the level of uncertainty regarding the patient’s
actual diagnosis. From this equation, one can also derive the
conditional entropy, that is, the average uncertainty in a
variable given the state of another variable.

H XjYð Þ ¼
X

x2X;y2Y
p x; yð Þlog2

1

p xjyð Þ
� �

Y may be the expression of a patient biomarker or clinical
feature, with X referring to a patient’s differential diagnosis
or genomic alteration. Conceptually, the total entropy of X
must be equal to the entropy that remains in X after Y is
learned plus the information provided by Y about X, which
may be determined as follows:

Figure 4. Pertinent histologic images from example 2. A, Hematoxylin-eosin–stained image with eosinophilic granular bodies. B, Olig2
immunohistochemistry. C, CD34 immunohistochemistry. All images captured by Philips IMS region of interest (original magnification 340 [A
through C]).
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I X;Yð Þ ¼ H Xð Þ � H XjYð Þ ¼
X

x2X;y2Y
p x; yð Þlog2

p x; yð Þ
p xÞpðyð Þ

� �

where I(X;Y ) is the information provided by Y (a biomarker)
about X (the patient’s differential diagnosis). The output of
information theory is a continuous number that quantifies
this relationship between the data. For instance, how much
information on the diagnosis (actual diagnosis ¼ x, with
the possible diagnoses present in the differential diagnosis
X ) is gained if you know the value of the biomarker
(biomarker ¼ Y ).
Continuing with the above conceptual example, given a

patient with the aforementioned differential diagnosis, the
mutual information formula above would calculate, on
average, the information gain that a biomarker such as
“TP53 mutation–positive” status, a Boolean result, would
inform on the actual patient diagnosis. In this case, diffuse
expression of p53 by immunohistochemistry may reduce the
probability that the tumor represents an oligodendroglioma,
and therefore p53 contains a significant value of informa-
tion. Using information theory, we would also be able to
quantify the information gain of TP53 status to other
biomarkers such as proportion of tissue necrosis identified
on H&E-stained sections, or Ki-67 proliferation indices,
both of which are continuous numeric data types. Information
theory is also capable of producing meaningful measurements
when the data are continuous, such as patient age or tumor
Ki-67 proliferation index; discrete, such as neuroanatomical
locations; or Boolean, such as the presence or absence of
contrast enhancement in the magnetic resonance image.
Information theory is by nature multivariate and thus
optimally suited as a measure of clinical decision-making.
All data are also generated in units of bits or nats, and
therefore straightforward comparisons between diagnostic
biomarkers are possible, as is specific quantification of health
care cost investment as it relates to diagnostic information.
This capacity for across-the-board comparison between data
is a central feature as to how we could compare distinct
workflows to reduce costs.
I posit that approaches based on information theory

calculations can be used to plan succinct workflows, can
maximize biomarker information, and can accelerate TATs
in neuropathology. In this context, focusing the workflow
on rapid, single-assay biomarker analyses (be it immuno-
histochemistry, in situ hybridization, computer vision–based
in silico biomarkers, or single-assay molecular tests) is
sufficient to generate the majority of neuropathology
diagnoses and usually is sufficient to commence treatment
plan generation. In my own practice, I have used this
combined approach of performing high-information bio-
markers and single-assay molecular tests prior to ordering
multiplexed sequencing assays.
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