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Simple Summary: Glioblastoma (GB) is characterized by a high level of resistance to radiotherapy.
Recent studies focused attention on the importance of cancer stem cells (CSC) as elements that
influence not only the growth of GB but also its resistance to available treatments. Therefore, stem
cells’ radiosensitivity has become an important area of investigation. In this context, biomarkers
of stemness (namely, the ability of a cell to perpetuate its lineage, give rise to differentiated cells,
and interact with its environment to maintain a balance between quiescence, proliferation, and
regeneration) seem to play an important role. The aim of this review is to summarize findings both
on stem cells’ radiosensitivity and on biomarkers of stemness, in order to evaluate their relevance in
this field.

Abstract: Despite countless papers in the field of radioresistance, researchers are still far from clearly
understanding the mechanisms triggered in glioblastoma. Cancer stem cells (CSC) are important to
the growth and spread of cancer, according to many studies. In addition, more recently, it has been
suggested that CSCs have an impact on glioblastoma patients’ prognosis, tumor aggressiveness, and
treatment outcomes. In reviewing this new area of biology, we will provide a summary of the most
recent research on CSCs and their role in the response to radio-chemotherapy in GB. In this review,
we will examine the radiosensitivity of stem cells. Moreover, we summarize the current knowledge
of the biomarkers of stemness and evaluate their potential function in the study of radiosensitivity.

Keywords: glioblastoma; radioresistance; cancer stem cells; biomarkers

1. Introduction

Glioblastomas (GB) are the most common primary malignant tumors of the central
nervous system (CNS) [1]. Due to GB aggressiveness and resistance to radio-chemotherapy
treatment (RTCT), the average survival of patients is just slightly longer than one year [2].
Radiotherapy in combination with temozolomide has been the standard postoperative
therapy since the success of a phase 3 study led by Stupp in 2005 [2]. Unfortunately, there
have been no improvements in the treatment of this tumor in the last 20 years, and all
phase 3 studies have failed in their intention to change the standard therapy [3,4]. To
date, the possible causes of underlying resistance to RTCT treatments are still not well
understood, and the development of biomarkers of radio- and chemoresistance that can
guide the development of new therapies is still ongoing [5–7]. Among the mechanisms
involved in the failure of GB control and the aggressiveness of its recurrence, in the last
decade, cancer stem cells are the subject of numerous studies [8]. In this descriptive review,
we will evaluate the role of cancer stem cells in influencing the biology, in the resistance
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to radiotherapy, and in the behavior of extracranial solid cancers, focusing our attention
mainly on glioblastoma [9]. Finally, we will discuss the development of new biomarkers
related to them.

1.1. Cancer Stem Cells

Cancer stem cells (CSCs) are derived from normal stem cells and/or progenitor cells
through genetic mutations and epigenetic changes. They represent a distinct subpopula-
tion of cancer cells with unique characteristics including self-renewal, unlimited division
potential, and the ability to differentiate in multiple directions. Initial detection of CSCs
was reported in leukemia in 1997 and, subsequently, in various solid tumors such as brain,
breast, colon, liver, and lung cancer [10–15]. CSCs are typically identified based on their
ability to form tumors in immunodeficient mice. Similar to normal pluripotent stem cells,
CSCs are long-lived and are able to remain quiescent in a dormant state [16]. They exert
their control over various cancer characteristics (for instance, the ability to resist radio and
chemotherapy) by interacting with tumor cells and the extracellular matrix (ECM) in their
surrounding environment [17]. The genetic background of gliomas, including mutations
such as IDH (Isocitrate Dehydrogenase) mutations, provides important insights into the
behavior, classification, and potential biomarkers of these brain tumors. For example,
IDH mutations, commonly found in lower-grade gliomas, have been a significant rea of
study due to their impact on glioma biology and patient outcomes [18]. Glioma stem cells
harboring IDH mutations evince molecular and genetic features relative to non-mutated
glioblastoma stem cells (GSCs). These variances can exert influence upon cellular pro-
liferation, viability, and differentiation pathways [19]. Moreover, IDH mutant gliomas
manifest metabolic transformations; for example, the mutated IDH enzyme engenders an
oncometabolite denoted as 2-hydroxyglutarate (2-HG), which is capable of impinging upon
cellular processes and contributing to tumorigenesis [20].

Extracellular vesicles, including exosomes, as well as soluble factors such as in-
terleukins, cytokines, and other metabolites are found in the tumor microenvironment
(TME) [21–23]. These factors contribute to the establishment of a specialized tumor niche
by attracting stromal cells, modulating angiogenesis, promoting metastasis, conferring re-
sistance to anti-tumor treatments, and maintaining CSCs themselves through the secretion
of specific molecules like IL-6, VEGF, and TGF-ß [24–26]. In this way they are responsible
for inducing angiogenesis, displaying resistance to apoptosis, and exhibiting self-renewal
and differentiation capabilities [27]. These properties suggest that CSCs could play a crucial
role in tumor initiation, progression, metastasis, and treatment resistance [28]. For example,
concerning radiosensitivity of gliomas, CSC-like cells contribute to radiotherapy resis-
tance through activation of DNA damage response pathways and increased DNA repair
capacity [29]. Similarly, in breast and colorectal cancer, CSCs are responsible for resistance
to chemotherapy [30]. Moreover, the presence of CSCs in colon, breast, and brain tumors
correlates with increased tumorigenicity and metastatic potential [31,32]. Nevertheless,
the identification of these specific subpopulations has been challenging, and despite the
description of various markers, the complexity of tumor heterogeneity and inter-patient
variability makes it difficult to establish reliable and consistent markers [27]. Although the
precise mechanisms underlying the pathogenic effects of CSCs are not fully understood, it
is widely accepted that both intrinsic and extrinsic factors, along with mutations and epige-
netic regulations, are primarily responsible for the development of CSCs involved in tumor
initiation and progression. CSCs account for only a small proportion of the total tumor cell
population (0.05–1%) within a tumor mass, which consists of a heterogeneous collection of
tumor cells within the tumor microenvironment [28,33]. These CSCs that exhibit the expres-
sion of genes associated with stem cell markers, such as Oct4, Sox2, Nanog, c-kit, ABCG2,
and ALDH, possess the capacity for self-renewal, leading to uncontrolled expansion of
differentiated cell populations with altered molecular and cellular phenotypes. Ultimately,
this contributes to the heterogeneity of primary and metastatic tumor cells within a tumor
mass, which can display resistance to therapeutic interventions and contribute to tumor
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recurrence [34]. The discovery and characterization of CSCs in malignant diseases offer
valuable insights into potential strategies for targeted inhibition or elimination of CSCs
as a therapeutic approach to combat aggressive tumor phenotypes. Various stem cell
markers have been identified in CSC populations isolated from diverse malignant diseases.
Therefore, the identification of specific markers for CSCs, the isolation and characterization
of CSCs from cancerous tissues, and the development of targeted approaches to eradicate
CSCs present a promising avenue for advancements in cancer research.

Currently, the study of the role of CSCs in the radioresistance of gliomas is mainly lim-
ited to preclinical investigations. Moreover, with due limitations related to patient selection,
static data, and partial representation of the tumor as a whole, to date, the translational devel-
opment of biomarkers of CSCs in GB is linked to tumor tissue collected during surgery [7].
There is no exhaustive experience with the study of circulating biomarkers in CSCs [35].

1.2. Radiobiology of CSCs

Radiotherapy (RT) induces DNA damage, either directly or indirectly, through the
generation of water-derived radicals and reactive oxygen species (ROS), which interact
with macromolecules, lipids, and proteins [36–38]. Despite high rates of local tumor control,
a significant rate of treatment failure remains a major limitation in radiation oncology [39].
Because local recurrence is often followed by a fatal metastatic spread, insufficient response
to radiation (i.e., radiation resistance) represents a key driver of locoregional or distant
recurrence and, therefore, affects patients’ prognosis. Recently, increasing evidence demon-
strating the presence of multiple genetically diverse clones within various types of tumors,
including GB, has been reported [40]. Moreover, not all cells constituting a tumor exhibit
equal sensitivity to RT, including cancer stem cells (CSCs), which have been shown to be
resistant to conventional treatments, including ionizing radiation [41,42]. On these bases,
understanding the diverse radiosensitivity of different tumor cell subpopulations, partic-
ularly CSCs, is of great importance. The so-called “5Rs” or radiobiological determinants
(Repair, Redistribution, Repopulation, Reoxygenation, and Radiosensitivity) influence the
relative biological effectiveness of radiation in conventional radiotherapy (RT) [43]. CSC
radiation resistance is given by the impact on these five factors, resulting in recurrence
of the tumor and/or distant metastases [44–47]. Radiation therapy is known to induce
cancer cells’ death mainly through direct or indirect DNA damage. CSCs, on the other
hand, have certain intracellular molecular properties that help them avoid the cytotoxic
effects of treatments, such as a high-efficiency DNA damage detection system and a better
ability to fix damage. In fact, it is generally believed that CSCs are characterized by a
significant enhancement of DNA repair mechanisms compared to their non-tumorigenic
counterparts (NTC) [48–50]. This is linked to the induction of checkpoint-pathways in
response to RT, resulting in a postponed cell cycle advancement that allows for the restora-
tion of DNA damage [51–54]. Remarkably, CSCs have been found to repair DNA damage
using a more precise and error-free process, homologous recombination (HR), rather than
non-homologous end-joining (NHEJ) [55,56]. Regarding the redistribution of cancer cells,
several studies have highlighted a slower proliferative capacity of CSCs (quiescent or latent
cells) compared to further differentiated tumor cells [57]. Since rapidly dividing cells are
more sensitive to radiotherapy than quiescent cells, CSCs can survive and remain dormant
for a variety of times, ranging from weeks to decades. Once CSCs resume their ability to
self-renew, these cells can cause a recurrence [58]. Ionizing radiation repeatedly selects GB
CSC clones with genetic changes that protect them from damage and allow them to keep
functioning to maintain the tumor. [59]. In addition, RT has been found to induce non-CSC
reprogramming with the acquisition of functional CSC features in order to account for
cell loss in the stem cell pool in response to cellular injury [60,61]. Thus, CSCs radiation
resistance is linked to both intrinsic and acquired pathways. The heterogeneity of CSCs
appears to vary between different niches and as a function of oxygen tension. Thanks to
the unlimited self-renewal capacity, with a physiological concentration of oxygen, CSCs
have a role in tumor repopulation between the radiotherapy fractions [60,62]. In hypoxic
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settings, however, they persist as quiescent radioresistant CSCs. Furthermore, hypoxic
regions are distinguished not only by the absence of oxygen, which results in low ROS
levels but also by the overexpression of ROS scavengers [29]. The overproduction of ROS
scavengers in CSCs, through genes such as superoxide dismutase, superoxide reductase,
glutathione peroxidase, and catalase, defends them from ROS-induced injury, which may
increase tumor radioresistance [63]. Furthermore, CSCs’ improved mitochondrial respira-
tory ability stops ROS overloading, resulting in low levels of ROS and preserving CSCs
from RT-induced cell death [64]. Along this line, regardless of oxygen tension, it has been
shown that CSCs are equipped with an intrinsic radioresistance related to the lower ROS
production upon radiation compared to non-CSC [65]. Consistent with ROS being critical
mediators of radiation-induced indirect cell killing, CSCs develop less DNA damage and
are preferentially spared after irradiation compared to NTC.

1.3. Biomarkers Related to CSCs Radioresistance

In recent years, several stem cell-related biomarkers have been identified in various
solid and hematological tumors, although clinical translation has not yet been achieved
for the treatment of glioblastomas. Moreover, to make the development of stem cell-
related clinical biomarkers even more difficult, similar transcription factors and signaling
pathways are shared between CSCs and healthy stem cells. Listed below are reported the
most important CSCs biomarkers that could play a role in radio-resistance in glioblastoma
(Table 1 and Figure 1).

Table 1. Tumor stem cell-specific biomarkers involved in cancer biology and resistance to treatment.

Surface Biomarker Biological Action References

CD133 Antioxidant scavenger system
CD133-induced hypoxia [66]

CD44 CD44 interaction with extracellular domain activates a number of signaling
pathways implicated in tumor angiogenesis, proliferation and stemness [67]

TIM 3 Galectin-TIM-3 interaction causes canonical Wnt pathway and permits the
maintenance and enhancement of cancer stemness [68]

Notch-1 and
Jagged-1

Promote CSC’s invasiveness and white matter tropism, proliferation,
angiogenesisand glioma-initiating cells (GICs) [69]

Transcription Biomarker

NANOG Induces suppression of differentiation and cellular stamness [70–72]

SOX2 Increases white matter GSC tropisim, drug resistance, epithelial-mesenchymal
transition andangiogenesis [73]

OCT3/4
Drug efflux pump

Increases invasiveness, migration and cell proliferation
Induces tumor angiogenesis regulating the homologous recombination factors

[74,75]

EZH2

AKT/mTOR activation
Epithelial–mesenchymal transition (EMT)

Silences transcription through trimethylation of histone H3 lysine 27
Stabilizes DDB2 and promotes nucleotide excision repair

[74,76,77]

HIF1- alfa

Angiogenesis
Metabolic reprogramming (Warburg effect)

Increases the invasion of cancer cells
Immune system suppression

[78–81]

STAT-3
Proliferation

Immune evasion
Therapy resistance through upregulation of DNA repair proteins

[82–84]
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Table 1. Cont.

Surface Biomarker Biological Action References

Intracellular Biomarker

ALDH

Activates retinoid as well as β-Catenin/Tcf signaling pathways related to the
stemness of CSCs

Antioxidant activity
Expression of mesenchymal phenotype (MES)

Affect proliferation and migration of cells by inducing cell-cycle arrest and the
epithelial-mesenchymal transition

[85,86]

RAD51 and
BRCA 1-2

DNA repair through homologous recombination
Perpetuation of CSCs

Sensitivity to chemotherapy
[87]

Nestin
Enhances invasiveness

Generates transient populations of intensely proliferative cells
Angiogenesis

[88–91]

Figure 1. CSC-mediated mechanisms underlining radioresistance in GB. A high-efficiency DNA dam-
age detection system, improved ability to repair DNA damage, overexpression of ROS scavengers,
high plasticity associated to the epithelial mesenchymal transition process, capacity to maintain a
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quiescence state, neoangiogenesis, and hypoxia are factors that combine to create CSC radioresistant
phenotypes. In particular, CSCs express biomarkers, which play a crucial role in radioresistance.
These include cellular markers, such as surface, intracellular, and transcriptional, or extracellular
factors, implicated in the activation of proliferation, self-renewal, and invasiveness pathways of
CSCs: Surface Markers: CD44—cell surface adhesion receptor; CD133—prominin-1 transmembrane
glycoprotein; Notch-1—notch homolog 1 translocation-associated receptor; JAG-1—jagged 1 Notch-1
ligand; TIM3—T cell immunoglobulin and mucin-domain containing-3 transmembrane protein; In-
tracellular Markers: ALDH—aldehyde dehydrogenases; RAD-51—recombinase; BRCA 1/2—breast
cancer protein 1–2; Transcriptional Markers: EZH2—enhancer Of Zeste 2 Polycomb Repressive
Complex 2 Subunit; OCT3/4—octamer-binding transcription factor 3–4; HIF—hypoxia-inducible
factor; SOX2—SRY-Box Transcription Factor 2; Nanog—homeobox-containing transcription factor;
STAT-3—signal transducer and activator of transcription 3; Extracellular Markers: TSG101—tumor
susceptibility 101 protein; RAB GTPase—Ras-associated binding protein with GTPase fold; Annexins—
calcium- and phospholipid-binding proteins; Anti-MIR9—anti microRNA9. ROS—reactive oxygen
species. CSC—cancer stem cell. Created with BioRender.com, accessed on 16 September 2023.

1.3.1. Surface Markers

Membrane proteins known as the cluster of differentiation antigens (CD) play numer-
ous roles in cell adhesion, communication, and differentiation.

• CD 133, also known as prominin-1, is a glycoprotein with five transmembrane re-
gions first discovered as a hemopoietic cell biomarker. Chemoresistance has also
been associated with the presence of CD133+ CSCs in oral cancer, lung cancer, and
glioma (GB) (Table 1). Angelastro et al. propose that CD133 might contribute to the
observed apoptosis resistance of CD133+ cancer progenitor cells. They demonstrate
that ectopic overexpression of CD133 in rat C6 glioma cells results in significant resis-
tance to camptothecin- and doxorubicin-induced apoptosis. Despite the fact that p53
was upregulated in CD133-overexpressing glioma cells treated with DNA-damaging
agents, apoptosis appeared to be independent of p53. Tamura et al. obtained tumor
samples from both the primary and secondary surgery of glioma 31 patients treated
with postoperative RTCT [66]. The mean percentage of CD133-positive glioma cells
in sections obtained during recurrence was 12.2% ± 10.3%, which was considerably
higher than the percentage obtained during the initial surgery (1.08% ± 1.75%). The
findings of the authors indicate that CD133-positive glioma stem cells can survive
radiotherapy and chemotherapy, acquiring a proliferative cancer stem cell phenotype.
This causes recurrence in de novo glioblastoma cases. Park et al. (2021) demonstrated
that CD133 induces the PI3K/AKT-dependent activation of nuclear factor erythroid
2-related factor 2 (NRF2), an important transcription factor that protects the cell from
ROS [92]. High NRF2 levels in spheroid-cultured HCT116 cells and the CD133-high
subpopulation contributed to aggressive CSC phenotypes, such as anticancer radiore-
sistance, sphere formation, anchorage-independent colony formation, and migration
capability. Therefore, the NRF2 axis may be a promising target for inhibiting thera-
peutic radioresistance and enhancing survival capacity under stressful conditions in
CD133-high CSCs.

Bao et al. showed that the activation checkpoint kinases Chk1 and Chk2 help CD133+
glioma CSCs make gliomas less sensitive to radiation [93]. Therefore, CD133-positive cells
represent the cellular population that confers glioma radioresistance and may be the origin
of tumor recurrence after radiation treatment. The researchers found that CD133+ tumor
cells derived from human glioma xenografts and glioblastoma tissue collected after surgery
trigger the DNA damage checkpoint more efficiently than CD133-negative tumor cells.
Moreover, a specific inhibitor of the Chk1 and Chk2 checkpoint kinases may restore the
radioresistance of CD133-positive glioma stem cells.

• The cell surface glycoprotein CD44 is involved in cell adhesion, migration, and inter-
action [94]. CD44 plays a major role in both tumor neoangiogenesis and progression
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because of its affinity for messengers, such as growth hormones present in the tumor
microenvironment as well as extracellular matrix elements including hyaluronan (HA)
and osteopontin (OPN) [95]. According to a growing body of research, HA-CD44
interaction in the extracellular domain activates a number of signaling pathways,
such as receptor tyrosine kinases (ErbB2 and EGFR) and transforming growth factor-
receptor type 1 (TGF-R1) [96,97]. The study by Si et al. involving 62 patients with GB
indicates that high CD44 expression is an indicator of a poor prognosis for GB patients.
The median survival periods for those with high and low CD44 expressions were
3.5 and 18.5 months, respectively [67]. Liu et al. discovered, by analyzing primary cell
lines obtained from GB patients, that CD44 is more abundantly present in radioresis-
tant cells and acts a crucial role in stemness, cell proliferation, and angiogenesis. In
fact, CD44+ cells expressed higher levels of ATM, Rad51, and CHK2 kinase phosphori-
lation compared to CD44-. These proteins are part of DNA damage response signaling
pathway that is activated in response to cellular radiation damage [98].

• TIM-3 (T-cell immunoglobulin mucin-3) is a type 1 cell-surface glycoprotein known
to be expressed on the surface of leukemic stem cells and in more than 70% of patients
with GB [68]. Through interaction with its ligand Galectin-9, TIM-3 causes aberrant
catenin accumulation and constitutive activation of the canonical Wnt pathway. This
phenomenon permits the maintenance and enhancement of cancer stemness [47].
Zhang et al. examined Tim-3 expression and MGMT promoter methylation in 84 GBs [68].
Therein, 62 patients out of 84 (73.81%) demonstrated mesenchymal Tim-3 expression
in GB tissues, which was classified as low 15.48% (13/84), moderate 7.14% (6/84), or
strong 51.14% (4/84) expression. The tumors of 48 patients tested positive for MGMT
promoter methylation, while the tumors of 36 individuals tested negative. Tim-3
expression and MGMT promoter methylation status were found to be an independent
risk factor for survival in GB patients. Strong expression of Tim-3 in conjunction with
an unmethylated MGMT promoter was substantially linked with shorter OS in each
of the four categories (p 0.05). Patients with no or low Tim-3 expression experienced
a median survival of 16.9 and 16.4 months, respectively, but those with high Tim-3
expression and MGMT promoter nonmethylation had a median survival of 7.6 months.
The average survival time for patients with low Tim-3 expression and methylation of
the MGMT promoter was 21.8 months.

1.3.2. Intracellular Markers

Nestin (neuroepithelial stem cell protein) is an important intermediate filament con-
stituent that the cellular cytoskeleton usually presents in neuronal stem cells [88]. Increasing
experiences have shown that it is expressed in several types of cancer including high grade
glioma. Ishiwata et al. studied nestin activity in A172, a human high-grade glioma cell
line, and in KG-1-C, a human low-grade glioma cell line [89]. Inhibition of nestin in A172
cell lines induced a reduction of cell growth rate and an inhibition of cellular invasiveness.
Conversely, nestin overexpression, induced through the nestin expression vector in KG-1-C
cells, caused the opposite effects. Nestin has been implicated also in radiochemoresistance
by Chen et al. who demonstrated that nestin+ glioma stem cells are responsible for sustain-
ing long-term tumor growth by generating transient populations of intensely proliferative
cells after the exposure to TMZ [90]. In 2008, Zhang et al. observed, through Immuno-
histochemical analysis, that nestin expression levels were correlated with higher glioma
grade (p < 0.05) [99]. The lower expression was significantly correlated with a better OS
(p < 0.05). Patients with Nestin+/CD133+ expression had the lowest survival rate (p < 0.01).
This finding was also confirmed at multivariate analysis (p < 0.01). In 2016, Guadagno et al.
obtained the same results [91]. Furthermore, recent studies reported that Nestin has also
been involved in neoangiogenesis [100]. Calabrese et al. demonstrated that Nestin+ glioma
stem cells’ interactions with endothelial cells are fundamental for stem cell self-renewal
and angiogenesis. Moreover, a retrospective study that analyzed nestin-expressing cells in
102 patients with glioma observed that proliferating endothelial cells expressing nestin cor-
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relate to histological grade and clinical outcome [101]. Hambardzumyan et al. highlighted
that nestin-positive CSCs localized to the perivascular niche in medulloblastoma exhibited
radioresistance through the activation of the AKT/PI3K and p53 signaling pathways.

• The Notch pathway controls cell division, differentiation, proliferation, and death
and plays a fundamental role in central nervous system development. Protein con-
vertases at site 1 (S1) cleave Notch receptors after they are synthesized, controlling
their trafficking and signaling function. The intensity and timing of Notch activity
are regulated by posttranslational changes of the receptors and ligands to generate
context-specific signals [69]. The expression Pattern of Notch Signaling in Glioblas-
toma has been widely studied in the recent years. Wang et al. demonstrated that the
synthesis of SOX2 induced NOTCH1 expression with consequent increasing of the
GSCs’ invasiveness, making it extremely difficult for radiotherapists to cover effec-
tively the radiotherapy target [102]. On the other hand, inhibition of Notch signaling
reduced GSCs’ affinity towards white matter tropism. Han et al. analyzed Notch1
using immunohistochemistry in 69 glioma tissue specimens and 8 normal brain tis-
sue specimens [103]. Multivariate analysis revealed that Notch1 expression was an
independent adverse prognostic factor for survival. The effect of NOTCH1 down
regulation, investigated on two glioma cell lines (U87MG and U251), was correlated
with the reduction of GB proliferation. Moreover, Notch1 downregulation affected
clonogenicity of GB cells and increased the number of γH2AX foci at 30 min and 24 h
after irradiation at the dose of 8 Gy enhancing radiosensitivity. Notch1 inhibition also
reduced angiogenesis, VEGF, and the hypoxic response RT.

• There is evidence that JAG-1 is implicated in radioresistance. KIM et al. irradiated
JAG1-depleted LN18 cells with 3 and 5 Gy. The results showed colony survival was
significantly reduced compared to LN18 cells that normally expressed JAG1 [104].
Another interesting protein in the NOTCH pathway is Jagged1 (JAG1) that is able
to promote glioma-initiating cells (GICs) in HGG. Several studies demonstrated that
JAG1 staining was strongly expressed only in glioma tissue. Meanwhile, no evidence
in nearby normal brain tissue were found [105,106]. Hai et al. observed that high
expression of Jagged1 was correlated with poor prognosis [6]. It was also evidenced
in vitro that Jagged1 improved the invasiveness of glioma cells through the stimulation
of the Nf-kb pathway. This study also demonstrated in vivo that the suppression of
Jagged 1 inhibited the tumorogenis of Glioma cells improving the OS of mice compared
to the control group. According Jubb et al., high JAG1 expression is also associated
with type I microvascular pattern (MVP) that is notoriously associated with poor PFS
and OS [107,108]. This finding was later confirmed by X.X Qui et al., who reported
the Jagged1 expression in tumor and endothelial cells (EC) was correlated at the
multivariate analysis with shortened time to progression (p < 0.001 for TC, p < 0.001 for
TC) and OS (p < 0.001 for TC, p < 0.001 for TC). Lastly, there is evidence that JAG1 is
also implicated in radioresistance. Kim et al. irradiated JAG1-depleted LN18 cells with
3 and 5 Gy. The results showed colony survival was significantly reduced compared
to LN18 cells that normally expressed JAG1 [104].

• Aldehyde dehydrogenase (ALDH) is a class of NAD(P)+-dependent enzymes that
play an important role in the detoxification process catalyzing the oxidation of alde-
hyde substrates [109]. ALDH is implicated in several cellular pathways which con-
tribute to cancer cells’ radio- and chemoresistance; for example, it is involved in
retinoid as well as β-Catenin/Tcf signaling pathways, which have been related to the
stemness of CSCs [110]. Furthermore, high ALDH activity is correlated with low ROS
cellular concentration, suggesting a strong antioxidant activity [109]. In HGG glioblas-
toma CSCs (GCC), ALDH expression is correlated with expression of mesenchymal
phenotype (MES) and radio-chemoresistance. Conversely, ALDH- GCC was correlated
with a pro-neural phenotype (PN) and a better prognosis. Mao et al. analyzed the
40 specimens collected from high-grade glioma patients. Transcriptome array analy-
ses showed that ALDH genes were the most significantly expressed with an higher



Biology 2023, 12, 1295 9 of 17

glycolytic activity in Mes GSCs (p = 0.000315), compared with PN GSCs (p < 0.01) [85].
ALDH expression was also more expressed in HGG specimens compared to low-grade
glioma or normal brain tissue. Moreover, this study showed that radiotherapy induces
transition of PN GSCs into a Mes-like GSC phenotype (PMT) that is highly resistant to
radiation treatment. At the same time, the inhibition of ALDH attenuates the transfor-
mation in the radiation-resistant phenotype of Mes GSCs. Another study analyzed
30 surgical specimens (n = 30) collected from adult patients with histopathologically
confirmed diagnosis of GB. High ALDH mRNA expression was associated with the
poorer OS (p < 0.01, HR = 3.170, 95% CI: 1.328–7.566) and higher grade of peritumoral
edema compared to the low expression group. In addition, Wang et al. demonstrated
that ALDH3B1 and ALDH16A1 affect proliferation and migration of HGG cells by
inducing cell-cycle arrest and the epithelial–mesenchymal transition [86].

• Research into DNA repair pathways, particularly involving RAD51 and BRCA1/2,
has shed light on their critical roles in glioblastoma. These pathways are central to
maintaining genome stability and influencing the behavior of CSCs. A pivotal in-
vestigation conducted by Balbous et al. assessed the expression of RAD51 within
glioblastoma stem-like cells and its consequential association with resistance to radia-
tion [87]. This underscored the pronounced role of RAD51 in the realm of treatment
resistance. Furthermore, RAD51 holds the potential for involvement in the perpetu-
ation of glioblastoma stem-like cells, entities speculated to underlie tumor growth,
recurrence, and resistance to therapeutic regimens. The prospective targeting of
RAD51 could potentially disrupt the processes of self-renewal and survival within
these stem-like cells.

• STAT3 (Signal transducer and activator of transcription 3) has been reported to be
permanently activated in a variety of tumors, including GB, resulting in raised radio-
resistance [82]. Masliantsev et al. demonstrated in 2018 that inhibiting STAT3 prior
to cell irradiation reduced the surviving fraction of CSCs, implying that this tech-
nique could amplify radiation effects [83]. In addition, they used clinical specimens to
evaluate STAT3 activation status in 61 GB patients, discovering a preferential phos-
phorylation of STAT3 on Serine727 (pS727). Furthermore, the investigators discovered
that pS727 was linked to a significantly worse overall patient survival and was free
of progression time. Taken together, these findings imply that pS727-STAT3 could be
a prognosis marker as well as a therapeutic target for sensitizing highly radioresis-
tant GSCs. Sherry et al. discovered in 2009 that treating GB-SC with two chemically
separate small molecule STAT3 DNA-binding inhibitors reduces cell growth and the
generation of new neurospheres from single cells [84]. STAT3 governs the proliferation
and regeneration of GB CSCs, suggesting that it could be a viable target.

1.3.3. Transcription Factor as Biomarker

• Transcriptional regulator Sox2 (SRY-Box Transcription Factor 2) is responsible for the
maintenance of an undifferentiated cellular phenotype [111]. SOX 2 is also linked
to resistance to anti-tumor therapy through SOX2-mediated activation of ABC trans-
porters, which can efflux drugs across the cell membrane [112]. According to an
in vitro study conducted by Wang et al., Sox2 induced the dedifferentiation of differ-
entiated glioma cells cultured in 1% of O2 [73]. Other studies also showed that SOx2 is
implicated in white matter GSC tropism and also in the development of temozolomide
resistance [113].

• The HIF-1 (Hypoxia-Inducible Factor 1-alpha) pathway plays an important and nu-
anced function in glioblastoma, particularly in response to the neoplasm’s hypoxic
condition [114]. Under hypoxia, HIF-1 can be persistently expressed and works as an
essential molecule in regulating the production of CSCs; however, the exact method is
still unknown [114]. HIF-1 has been linked to the development of CSC markers such
as OCT4, SOX2, NANOG, and KrÃ1⁄4ppel-like factor 4 (KLF4) [70,71,115]. Further-
more, suppressing HIF-1 can slow tumor progression by reducing the production of
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CSC biomarkers. For instance, HIF-1 has been found to attach directly to the CD47
promoter, facilitating gene transcription, assisting in the avoidance of macrophage
phagocytosis, and maintaining the stem phenotype of breast CSCs [71]. Activation
of HIF-1 in response to a hypoxic condition activates several genes that may increase
the radioresistance of irradiated tumors (reducing the response to treatment) and is a
negative prognostic factor [72].

• EZH2 (Enhancer of zeste 2 polycomb repressive complex 2 subunit) is a part of a
multimeric proteic complex called PRC2 consisting of three other subunits termed
EED, SUZ12, and RbAp46/4. EZH2 has also been implicated in radio-resistance.
Kim et al. assessed the impact of ionizing radiation on three glioma sphere sam-
ples (GB83, GB1123, and GB528) and detected a significant increase in both mRNA
expression and protein levels of the EZH2/MELK–FOXM1 axis [76]. The effect of
radiation on mice xenografted with spheres of GB with EZH2/MELK–FOXM1 axis
genes silenced. The mean OS was longer in these mice compared to that of the control
animals with activated EZH2/MELK–FOXM1 axis genes. These data demonstrated
that EZH2/MELK–FOXM1 axis protein upregulation could promote tumorigenesis
in vivo models (162). Wang et al. also evidenced the role of EZH2 in radioresistance;
the expression of NEK2 expression, a protein that protectsprotect EZH2 from ubiquitin
degradation in GCSc, can induce radioresistence in animal models [116]. EZH2 cat-
alyzes the trimethylation of H3K27 which is associated with transcriptional repression
and heterochromatin formation. This enzyme has been associated also with poor prog-
nosis in HGG. A preclinical study demonstrated that EZH2 expression is significantly
upregulated in the U87 and U251 glioma cells compared to HA-1800 human astrocytes.
In glioma tissues EZH2 expression is grade dependent. In fact, higher expression
levels have been detected in GB cells. Finally, the analysis of the Chinese Glioma
Genome Atlas (CGGA) data set revealed that patients in the high-EZH2 group had a
worse prognosis compared to those in the low-EZH2 group [117]. A possible role of
E2F7−EZH2 axis on AKT/mTOR activation through PTEN suppression emerged from
in vitro and in vivo experimental models. Another study demonstrated that EZH2
promotes M2 macrophage polarization in HGG resulting in macrophage-dependent
disease development [118]. EZH2 also enhances the surface NKG2D ligands suppres-
sion on NK cells thus preventing immune response against GCSc [74]. Furthermore,
EZH2 enhances chemoresistance to TMZ through stabilization of PARP1 protein [119].

1.3.4. Extracellular Biomarkers

Exosomes are extracellular vesicles (30–160 nm in size) released from different type of
cells, including GB cells, and are one of the main cell-to-cell communication tools. In recent
years, thanks to the development of bioinformatics and, thus, the possibility of studying the
content of the exosomes produced by tumor cells using a computational approach, these
vesicles have assumed an increasingly important role in the study of glioblastomas. Their
contents in terms of DNA, mRNA, miRNA, other non-coding RNA, proteins, lipids, and
metabolites play critical functions in cancer progression [88–90] regulation of oncogene
expression, mediation of signaling pathways, remodeling of tumor related fibroblast, regu-
lation of cell radiosensitivity, and so forth [120–122]. Genetic materials can be delivered
via exosomes in order to regulate gene expression with protein and miRNA [123]. Tumor
cells secrete a much higher number of exosomes than normal cells [90] and, in some cases,
have been demonstrated to have a direct correlation between the exosomes quantity and
malignancy [124]. The composition and quantity of exosomes, as well as their biological
effect on recipient cells, are affected by cellular stress. Exosomes are a significant environ-
mental factor for cellular stress, and radiation can increase the release of exosomes and affect
exosome-based intercellular communication, as observed in numerous normal and tumor
cell lines [125]. It has recently been shown that radiations change the composition of re-
leased exosomes in both tumor and normal cells and also increased the uptake of exosomes
by cells [77]. These released exosomes are capable of transferring radio-induced effects
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to non-irradiated cancer cells and even distant tissues and organs (mediating radiation
bystander effects) [77,126]. Recent experiences have revealed that there are discrepancies
between exosomes derived from CSCs and those derived from other cells of GB. Exosomes
derived from CSCs contain multiple proteins, such as TSG101, Rab GPTase, annexins, and
signal transduction molecules, which may be associated with their biogenesis, targeting,
and putative immunological function [127]. For instance, Munoz et al. demonstrated that
CSC-derived exosomes could deliver anti-miR-9, which inhibits miR-9, involved in the
expression of pgb (P-glycoprotein) and the inhibition of multidrug transporter, enhancing
the response of GB cells to temozolomide [128]. Moreover, Dai et al. in 2019 demonstrated
that exosomes derived from low-level AHIF GB cells suppressed viability, invasion, and
radioresistance, whereas exosomes derived from AHIF-overexpressing GB cells promoted
viability, invasion, and radioresistance [129]. Sun et al. conducted an intriguing inves-
tigation into the effects of CSC-produced exosomes on GB cells in 2020 [130]. Non-CSC
glioma cells were treated with GB CSC-released exosomes in the assumption that these
exosomes could alter the phenotype of all GB cells. The Notch1 signaling pathway was
activated in GSCs; Notch1 protein was highly enriched in GSC exosomes; Notch1 signaling
pathway and stemness-related protein expressions were increased in GSC exosome-treated,
non-GSC glioma cells and tumor tissues generated by these cells. The results of this study
indicated that CSC exosomes function as information carriers, mediated the dedifferentia-
tion of non-GSC glioma cells into GSCs by delivering Notch1 protein via Notch1 signaling
activation, and increased the stemness and tumorigenicity of non-GSC glioma cells.

2. Conclusions and Future Directions

One of the most important weapons in the treatment of glioblastomas (as well as other
solid tumors) is represented by radiotherapy. Unfortunately, due to a series of aspects that
are still poorly understood, the radio-sensitivity of these tumors is not satisfactory, and, to
date, we have few biomarkers that can help identify the most appropriate approach able to
overcome the radioresistance of GB.

Over the past 20 years, despite the development of new radiotherapy techniques and
several successes achieved in the treatment of various solid tumors, the survival of glioblas-
toma patients has remained essentially the same, just a little more than a year. In order to
break the impasse, increasing evidence is showing that CSCs, a limited proportion of tumor
cells, may play an important role in the failure of cancer therapies and, above all, in tumor
progression following radiotherapy treatment. For that reason, the study of CSCs to fight
the radioresistance exhibited by GB represents a pivotal research frontier with profound
potential implications. Research conducted in preclinical models has demonstrated that
radiation therapy has a selective effect on eliminating differentiated tumor cells while
preserving cancer stem cells. Furthermore, it has been observed that radiation exposure
induces the upregulation of certain genes, including SOX2, OCT4, and NANOG. These
genes encode transcription factors that play a crucial role in the acquisition of a cancer stem
cell phenotype by differentiated tumor cells.

As we reported in this review, there are several biomarkers related to CSCs that have
been associated with an increased radio- and chemoresistance of glioblastoma cells. How-
ever, unfortunately, to date, there are few translational studies conducted on glioblastoma
patients, and the available literature consists mainly of in vitro studies. Translational stud-
ies conducted on glioblastoma patients might be more useful in the real world, where
GBs have a lot of genetic and phenotype variation. These studies could also look at the
connection between cancer stem cells and the tumor microenvironment, which is becoming
more and more important in discussions about why some therapies do not work. Further
impulse for the characterization of stemness biomarkers will come from the introduction of
bioinformatics in translational research. Studying the individual gene may give insight into
its potential to limit the effectiveness of ionizing radiation; however, each gene must be
embedded in a network of genes that are activated or suppressed in response to a stimulus
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or insult, making the application of bioinformatics essential to characterizing the role that
multiple biomarkers of stemness may play together.

In the end, the study of CSCs and the numerous biomarkers associated with them may
enable researchers in the near future to plan prospective translational studies and identify
radioresistance factors. This approach could provide researchers with targets we need to
improve the activity of ionizing radiation and, at the same time, to be able to develop an
innovative personalized therapy for each GB patient.
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