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Abstract
Purpose of Review  To summarize the mechanisms of tumor angiogenesis and resistance to antiangiogenic therapy, and the 
influence on tumor microenvironment.
Recent Findings  Several clinical trials have investigated the activity of anti-VEGF monoclonal antibodies and tyrosine kinase 
inhibitors in glioblastoma, shedding the light on their limitations in terms of disease control and survival. We have outlined 
the mechanisms of resistance to antiangiogenic therapy, including vessel co-option, hypoxic signaling in response to vessel 
destruction, modulation of glioma stem cells, and trafficking of tumor-associated macrophages in tumor microenvironment. 
Moreover, novel generation of antiangiogenic compounds for glioblastoma, including small interfering RNAs and nanopar-
ticles, as a delivery vehicle, could enhance selectivity and reduce side effects of treatments.
Summary  There is still a rationale for the use of antiangiogenic therapy, but a better understanding of vascular co-option, 
vascular mimicry, and dynamic relationships between immunosuppressive microenvironment and blood vessel destruction 
is crucial to develop next-generation antiangiogenic compounds.

Keywords  Antiangiogenic therapy · Bevacizumab · Glioblastoma · High-grade glioma · Tyrosine kinase inhibitors

Introduction

Angiogenesis is the growth of new blood vessels, which is 
typical of high-grade gliomas (HGG) and glioblastomas 
(GBM), the most common primary malignant brain tumors 
in adults. The heterogeneous histopathologic appearance of 
GBM includes extensive proliferation of endothelial cells 
(EC), with glomeruloid vessel–like structures, that are sup-
ported by basal lamina and pericytes with a lack of astro-
cytic end-feets. Thus, given the poor prognosis of GBM 
following surgery and radiotherapy with concomitant and 

adjuvant chemotherapy with temozolomide [1, 2], antian-
giogenic therapy has been the most investigated strategy for 
GBM in the last decade. In this regard, the human mono-
clonal antibody (mAb) bevacizumab (Bev), that targets 
vascular endothelial growth factor (VEGF)-A, achieved the 
approval by the US Food and Drug Administration (FDA) 
for the treatment of GBM at first relapse after the standard 
chemoradiation based on the prolonged progression-free 
survival (PFS) and clinical benefit, such as relief of neuro-
logical symptom and reduction of steroids [3–5]. However, 
Bev did not prolong overall survival (OS) in patients with 
newly diagnosed or recurrent GBM in phase 3 clinical trials 
[5–7]. Nevertheless, a rationale for targeting neoangiogen-
esis still matters, since angiogenesis influences the immu-
nosuppressive tumor microenvironment (TME) in GBM. 
Hence, reducing the angiogenic pathways in the TME could 
increase antitumor immune response. On the other hand, the 
significant reduction of tumor vasculature following antian-
giogenic therapy causes hypoxia, leading to activation of 
alternative pathways to maintain tumor angiogenesis [8, 9]. 
Moreover, glioma neoangiogenesis results in tortuous blood 
vessels, that interfere with the blood–brain barrier (BBB) 
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permeability [10], resulting in unequal drug distributions 
into brain tumors [11, 12].

Angiogenesis and Mechanisms of Resistance 
to Antiangiogenic Therapy

Several cellular and molecular mechanisms are involved in 
tumor angiogenesis. The rapid tumor proliferation causes 
severe hypoxia and nutrient deprivation, and enhances 
the production of angiogenic cytokines and matrix metal-
loproteinases (MMP) by TME, causing an activation of 
EC, pericytes, reactive astrocytes, tumor-associated mac-
rophages (TAM), and neoplastic cells. This pro-angiogenic 
and pro-inflammatory TME favors the formation of leaky 
and abnormal blood vessels, that are not able to efficiently 
deliver nutrients, oxygen, and drugs.

Glioma stem cells (GSC) create tube-like structures 
devoided of vascular EC and containing red blood cells, 
therefore known as vasculogenic mimicry (VM). These 
vascular structures may merge with micro-vessels formed 
by angiogenesis to support blood and nutrient supply, as well 
as favor the passage of glioma cells directly into the blood-
stream. Different key players from TME trigger the VM, 
such as HIF1a, epithelial-mesenchymal transition (EMT), 
and VE-cadherin/EphA2/MMP signaling pathways, that 
enhance the hypoxic environment, while adenosine/STAT3/
IL-6 pathway, MAPK/ERK pathway, Wnt/b-catenin, Notch, 
Wnt, Hedgehog, and Hippo signaling pathway are primarily 
involved in increasing the GSC pool [13, 14].

Pro-angiogenic and pro-inflammatory cytokines, includ-
ing HIF1a, VEGF, IL6, and CX3CL1, induce the infiltration 
and differentiation of bone marrow–derived mesenchymal 
cells (BM-MC) into macrophages and pericytes, that modu-
late the balance between pro- and antiangiogenic cytokine 
production, and enhance the EC survival.

Activation of COX2 results in an overexpression of pros-
taglandin E2 (PGE2), thromboxane A2 (TXA2), and pros-
taglandin I2 (PGI2), that increases migration, sprouting, and 
proliferation of EC and glioma angiogenesis. Notably, the 
interaction of epidermal growth factor receptors (EGFR) 
with signal transducer and activator of transcription 3 
(STAT3) or the constitutive activation of EGFR variant III/
STAT3 pathway enhances the COX2 signaling and favors 
glioma angiogenesis.

Overexpression of some tyrosine kinase receptors is 
involved in glioma angiogenesis, such as VEGF recep-
tors (VEGFR), platelet-derived growth factor receptors 
(PDGFR), and Eph receptors. VEGFR-2 and VEGFR-3 
guide neoangiogenesis for blood and lymphatic vessels, 
respectively, while VEGFR-1 inhibits neoangiogenesis. The 
PDGFR regulate pericytes and smooth muscle cells activity 
to stabilize vascular wall, and Eph receptor defines arterial 

or venous identity. Additionally, the overexpression of mito-
gen-activated protein kinase (MAPK) and phosphoinositide 
3-kinase (PI3K)-Akt pathways supports angiogenesis, tumor 
proliferation, and escape from apoptosis [15].

Although targeted therapy with mAbs or tyrosine kinase 
inhibitors (TKIs) may provide a transient period of nor-
malization of tumor vasculature, different mechanisms of 
resistance to antiangiogenic therapy have been identified. 
Compensatory angiogenic signaling is activated by means of 
HIF1a, Notch, and Ang2/Tie2 signaling pathways within the 
hypoxic GBM TME. An immunological escape may occur: 
monocytes, TAM, reactive astrocytes, myeloid cells, neu-
trophils, and T helper-17 cytokines promote the infiltration 
of the pro-angiogenic clones of BM-MC resulting in tumor 
angiogenesis.

An increased pericyte coverage after antiangiogenic 
therapy contributes to sustain the survival of EC. Vessel co-
option consists in the migration of tumor cells toward and 
along the preexisting vasculature. Typically, a subset of GSC 
with pericyte differentiation under the production of brady-
kinin/bradykinin receptor-2 (B2R), CXCR4/SDF-1a, MDGI/
FABP3, EGFRvIII, and Olig2/Wnt7a increase pericyte cov-
erage in the co-opted blood vessels and support survival of 
EC by promoting an autocrine VEGF-A signaling pathway 
[16, 17]. Autophagy provides energy for neoplastic cells to 
survive under hypoxic conditions through HIF-1-dependent 
mechanisms.

Clinical Trials on Antiangiogenic Monoclonal 
Antibodies (mAbs) in GBM

Overall, the main aim of antiangiogenic treatment for GBM 
is to regulate the permeability of tumor vasculature and 
reduce the growth of new tumor vessels. When the perme-
ability of BBB is normalized, a more effective delivery of 
antineoplastic compounds with adequate CNS concentra-
tions should be achieved. An ideal antiangiogenic drug 
should meet some characteristics, such as high selectivity, 
targeting multiple signaling pathways, low risk of drug-
induced resistance, enhancing the production of endogenous 
antiangiogenetic molecules, and limited systemic toxicity.

Antiangiogenic mAbs have been investigated in several 
clinical trials, showing some activity in terms of PFS, but 
disappointing results regarding OS. Bev, a human mono-
clonal antibody, which binds circulating VEGF-A, con-
ferred an advantage in 6-month PFS when associated with 
irinotecan (50%) as compared with Bev alone (42%) in the 
BRAIN trial [3], leading to the approval by FDA for the 
use at first recurrence. Similarly, in Europe, the BELOB 
trial has shown encouraging results for the combination of 
Bev and lomustine versus either agent alone [18]. How-
ever, the phase 3 trial investigating the combination of 
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Bev plus lomustine in comparison with lomustine alone 
failed to demonstrate an improvement of OS (median OS 
9.1 months versus 8.6 months) despite an increase of PFS 
from 1.5 to 4.2 months [5]. Other phase 2 trials have inves-
tigated Bev in association with several drugs, including 
temozolomide, fotemustine, irinotecan, temsirolimus, and 
erlotinib, but none has displayed a significant impact on 
OS [19–22]. Although some concerns regarding fertility 
arise when Bev is used in patients with GBM at childbear-
ing ages, in general it is well tolerated and serious adverse 
events, such as gastrointestinal perforation, thromboem-
bolic events, renal injury, impairment of wound healing 
process, posterior reversible encephalopathy syndrome, 
congestive heart failure, and uncontrolled hypertension, 
are rare. A post hoc analysis of the ARTE trial has shown a 
survival benefit from the addition of Bev to radiotherapy in 
comparison with Bev alone in elderly patients with newly 
diagnosed GBM. This effect could depend on the presence 
of large contrast-enhancing lesions, while the detection of 
non-contrast-enhancing tumor on amino acid PET scans 
was associated with inferior survival. These findings sug-
gest that Bev may work as a radiosensitizer in presence 
of dysfunctional vasculature in GBM [23, 24]. Some pre-
clinical and translational studies have displayed that the 
effect of VEGF-targeted therapy on tumor barrier perme-
ability is transient and dose-dependent [25, 26]. Notably, 
lower doses (< 10 mg/kg) of Bev may induce reduction of 
leakiness, improve oxygenation without inducing vessel 
destruction, and favor the up-regulation of angiopietin-2 
(Ang-2), a potent driver of vessel leakiness [27]. Hence, 
low dose of VEGF-targeted therapy in association with 
Ang-2-targeted treatment has been proposed to overcome 
resistance to antiangiogenic therapies by regulating GBM 
barrier permeability and modulating the pro-tumorigenic 
effects of endothelial cell destruction [28]. The Ang-2 neu-
tralizing antibody MEDI3617 was evaluated in combina-
tion with Bev in a phase 1b study in 116 patients with solid 
tumors, including 13 GBM patients, but unfortunately 
showed a poor activity (0% of radiological response in 
GBM) [29].

Aflibercept is a recombinant human fusion protein, that 
acts as a soluble decoy receptor for VEGF-A, VEGF-B, 
and placental growth factor, thus depleting circulating lev-
els of these growth factors. A phase 1 trial suggested that 
aflibercept in combination with temozolomide could confer 
moderate toxicities, including fatigue, hypertension, lym-
phopenia, ischemic stroke, and systemic hemorrhage. All 
patients stopped the treatment: 28 (47%) for disease progres-
sion, 21 (36%) for toxicities, 8 (14%) for other reasons, and 
2 (3%) patients only completed the full treatment course 
[30]. The phase 2 trial reported limited efficacy of afliber-
cept in both grade 3 astrocytomas (radiological response in 
44%, 6-month PFS of 25%, median PFS of 24 weeks) and 

GBM (radiological response in 18%, 6-month PFS of 7.7%, 
median PFS of 12 weeks) [31].

Tanibirumab is a fully human monoclonal antibody tar-
geting soluble VEGFR-2, that was investigated in a phase 
2 trial in 12 patients with recurrent GBM. The best radio-
logical response was a stable disease in 3/12 (25%) patients 
of whom 2 patients had a long-lasting response of 60 and 
40 weeks, respectively, and was correlated with the high-
est expression of VEGFR2 using immunohistochemistry on 
archival tumor [32].

Preclinical data on targeting VEGFR2 are emerg-
ing. Chen et al. have shown that the anti-VEGFR2 mAb 
MSB0254 inhibits the invasion and migration of U251 and 
primary glioma cells in vitro. Moreover, MSB0254 also sig-
nificantly inhibits the expression of CD34, VEGFR2, Ki67, 
MMP2, and MMP9 and reduces the VM formation, resulting 
a compound to be further investigated for the treatment of 
GBM [33•].

As VEGF-targeted mAbs have failed to control disease 
in GBM, we argue that vascular normalization is not the 
sole factor to overcome treatment resistance of GBM, and 
other mechanisms may co-exist or even prevail upon target-
ing neoangiogenesis.

Targeting Vessel Co‑option

Wnt-7 has been identified as a driver of vessel co-option in 
a subpopulation of GSC with features of oligodendrocyte 
precursor cells. Wnt-7 is secreted by the membrane-bound 
O-acyl transferase porcupine, that can be targeted by the 
BBB penetrating small molecule inhibitor LGK974. In a 
glioblastoma xenograft model, LGK974 reduced vessel co-
option and VEGF expression, but data on clinical activity 
on human GBM, as well as the ability to cross the BBB, 
are lacking [34••, 35]. CXCR-4 positive GSC are up-reg-
ulated following Bev [36] and can be targeted by the small 
molecular CXCR4 inhibitor, plerixafor. In a phase 1 trial of 
plerixafor with Bev in patients with recurrent HGG, remark-
able concentrations of the small molecular inhibitor were 
identified in the CSF and brain tumor tissue, as well as bio-
marker changes consistent with VEGF and CXCR-4 inhibi-
tion. Unfortunately, despite the demonstration of adequate 
drug penetration and downstream effects, the efficacy of 
this combination in disease control was limited [37]. The 
mammalian target of rapamycin (mTOR) promotes ana-
bolic metabolism of GSC, invasiveness, and poor sensitiv-
ity to chemo- and radiotherapy [38]. However, the mTOR 
inhibitor temsirolimus failed to prolong OS when associated 
with radiotherapy versus radiotherapy plus temozolomide 
in patients with newly diagnosed unmethylated O6-methyl-
guanine-O-methyl-transferase (MGMT) GBM. Interestingly, 
a small subgroup of patients with Ser2448 phosphorylation 
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of mTOR derived a strong benefit from temsirolimus [39]. 
Whether temsirolimus may overcome resistance to Bev by 
specifically targeting GSC has not been studied thus far.

In summary, some preclinical studies suggest that target-
ing vessel co-option could provide a synergic activity with 
antiangiogenic therapy, but efficacy of such an approach is 
far to be demonstrated.

Co‑regulation of Angiogenesis 
and Immunosuppressive TME in GBM

Tumor microenvironment of malignant gliomas is immuno-
logically “cold” as it is dominated by immunosuppressive 
and pro-angiogenic cells, including 80% of macrophages, 
monocytes, and neutrophils, with < 10% of dendritic cells, 
T cells, and natural killer cells [40]. Furthermore, tumor-
derived soluble factors contribute to the immunosuppressive 
microenvironment [41•]. In this regard, interferon (IFN)-γ or 
lipopolysaccharide promotes a pro-inflammatory phenotype 
of macrophages (phagocytic “M1”), while autocrine and 
paracrine stimulation by IL-4, IL-6, IL-10, or TGF-β induce 
an immunosuppressive “M2” phenotype of macrophages. 
Importantly, hypoxia and HIF-1 favor M2-polarization of 
perinecrotic macrophages in experimental gliomas [42, 43]. 
VEGF exerts an immunosuppressive activity by inducing 
down-regulation of antigen presentation through the inhibi-
tion of dendritic cell maturation: involved mechanisms are 
the inhibition of nuclear factor-κB (NF-κB), and up-regu-
lation of PD-L1 on myeloid and endothelial cells, that lead 
to inhibition of T cell extravasation and activation, inhibi-
tion of T cell differentiation in the thymus, expansion of 
inhibitory regulatory T cells (Treg), and inhibition of cyto-
toxic CD8 + T effector cells, such as PD-1, CTLA-4, T cell 
immunoglobulin mucin receptor 3 (TIM3), and lymphocyte 
activation gene 3 protein (LAG3).

TGF-β has been considered a master of immunosuppres-
sion of TME, but inhibiting TGF-β signaling with the tar-
geted therapy with galunisertib was unsuccessful in a phase 
2 clinical trial in patients with GBM [44]. Moreover, the 
combination of galunisertib with anti-VEGF treatment did 
not confer any significant benefit [45].

VEGF and hypoxia can drive the expression of chemoat-
tractants, such as the CC-chemokine ligand 2 (CCL-2), via 
CC-chemokine receptor 2 (CCR2) and CCR4, leading to a 
higher level of CSF-1, that stimulates a subpopulation of 
pro-angiogenic macrophages expressing the Ang-2 recep-
tor Tie-2, and co-opts micro-vessels and enhances M2 mac-
rophages [46, 47]. The small molecule CSF-1 R inhibitor 
BLZ945, which is a CSF-1 R inhibitor, can enhance a pro-
inflammatory M1 phenotype of macrophages and prolong 
survival in platelet-derived growth factor (PDGF)–driven 
genetic glioblastoma models, as well as reduce VEGF-driven 

proliferation of macrophages. In this regard, a phase 1/2 trial 
of BLZ945 in association with the PD-1 antibody spartali-
zumab in solid tumors, including GBM, has completed the 
enrollment in December 2022, and the analyses for the pri-
mary outcomes (dose-limiting toxicities, maximum tolerated 
dose, incidence of adverse events, and PFS) are ongoing 
(NCT02829723).

The low mutational burden and the immunosuppressive 
TME explain the failure of anti-PD1 compounds in phase 3 
clinical trials on GBM [48]. However, some lymphocyte-inde-
pendent macrophages can be stimulated by targeting the PD-1 
pathway [49], and be active also in genetic glioblastoma mod-
els with low antigen expression [50]. Notably, the use of an 
oncolytic virus, designed to reprogram macrophages, induced 
an up-regulation of VEGF; thus, the administration of a VEGF 
antibody enhanced the antitumor activity of viral therapy [51]. 
Similar results were reported by Saha et al. who demonstrated 
that T cell–independent cooperation can be increased by a viral 
therapy in combination with the VEGF inhibitor axitinib in a 
transplantation-based hypoimmunogenic glioblastoma model 
[52], supporting the concept that targeting VEGF can support 
macrophage repolarization.

Although preclinical and clinical studies have shown the 
feasibility of chimeric antigen receptors (CAR) T cell immuno-
therapeutic approach in GBM, tumor heterogeneity, and anti-
gen loss remain one of the upmost challenges to be addressed. 
Rousso-Noori et al. have identified the p32/gC1qR/HABP/
C1qBP as a specific tumor-associated antigen expressed on the 
surface of glioma cells, resulting a feasible target for CAR T 
cell therapy with ability to control tumor growth in orthotopic 
syngeneic and xenograft mouse models. Therefore, further 
investigation on such a dual antitumor and antiangiogenic p32 
CAR T cells will be warranted [53••].

Vascular Characteristics Among Glioma 
Subtypes

Proneural GBM has been reported to express a predomi-
nance of vascular co-option [34••], while mesenchymal 
GBM has a higher abundance of macrophages, vascular 
abnormalities, hypoxia, and necrosis [54]. The post hoc 
analyses of the phase 3 AVAglio trial on radiation plus temo-
zolomide with versus without Bev reported an OS advantage 
for the proneural GBM [55]; however, such an association 
was not confirmed in other studies [23, 56].

The vasculature of IDH-mutated GBM has a lower fre-
quency of vascular abnormalities and necrosis as compared 
with IDH wild-type GBM [57]. The F3 gene, which encodes 
the key prothrombotic protein tissue factor, is downregu-
lated in IDH-mutated GBM [58], resulting in an increased 
cerebral blood flow [59], reduced angiogenesis, and abnor-
mal tumor vasculature due to the inhibition of mesenchymal 
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GSC phenotypes [60]. Furthermore, IDH-mutated GBM 
escape from adaptive immunity by down-regulating major 
histocompatibility complex I to prevent antigen presentation 
by tumor cells [61], and suppressing chemotaxis-associated 
gene expression programs for T cell activity [62]. IDH 
inhibitors stimulate T cell infiltration and activity of a pep-
tide vaccine against IDH-mutated gliomas in vivo [62, 63]: 
however, the influence on the altered vasculature remains 
unknown. In a phase 2 clinical trial of Bev in combination 
with temozolomide compared to temozolomide alone in 
IDH-mutated astrocytic brain tumors, no efficacy of Bev 
was observed [64].

Clinical Trials of Antiangiogenic Tyrosine 
Kinase Inhibitors in GBM

Axitinib is an oral small multi-TKIs targeting VEGF1-
3, c-KIT, and PDGFR, that was investigated in different 
clinical trials, showing frequent grade 3/4 adverse events, 
including fatigue, diarrhea, and oral hyperesthesia. In a 
phase 2 trial in recurrent GBM, axitinib showed an ORR and 
6-month PFS of 28% and 34%, respectively, as compared 
with 23% and 28% of patients treated with Bev or lomus-
tine [65]. Another phase 2 trial has investigated whether the 
association of axitinib and lomustine could improve ORR 
and PFS in recurrent GBM, but the combination therapy 
did not show any advantage compared with axitinib alone 
(ORR 38%, 6-month PFS 17%, OS 27.4 weeks in the axi-
tinib plus lomustine arm; ORR 28%, 6-month PFS 26%, 
OS 29 weeks in the axitinib arm) [66]. Unfavorable results 
of another phase 2 trial on the efficacy and tolerability of 
axitinib plus avelumab led to a discontinuation of further 
investigations [67].

Cabozantinib is a multi-kinase inhibitor of VEGFR2, 
c-MET, AXL, and RET, which was evaluated in a phase 
1 trial in association with chemoradiation in newly diag-
nosed GBM, showing a manageable profile [68], and is 
under investigation in association with the anti-PD-L1 ate-
zolizumab in a phase 1/2 clinical trial on recurrent GBM 
(NCT05039281).

Nintedanib is an oral, small-molecule TKI of PDGFR α/β, 
FGFR 1–3, and VEGFR 1–3, that may overcome resistance to 
anti-VEGF therapy. Although nintedanib was well tolerated, 
two different trials did not display any activity against recur-
rent GBM regardless of prior Bev therapy [69, 70].

Regorafenib is an oral inhibitor of several kinases 
involved in tumor angiogenesis (VEGFR1-3 and TIE2), 
oncogenesis (KIT, RET, RAF1, and BRAF), and in the 
interaction between tumor and microenvironment (PDGFR, 
FGFR), and tumor immunity (colony-stimulating factor 1 
receptor [CSF1R]). In the randomized, open-label, phase 
2 REGOMA trial, GBM patients at first recurrence were 

treated with either regorafenib or lomustine displaying an 
OS of 7.4 vs 5.6 months, as well as 6-month PFS of 16.9% vs 
8.3%, respectively [71]. Of note, the OS of patients treated 
with lomustine from REGOMA trial was remarkably short 
(5.6 months) as compared with that of patients included in 
the lomustine single arms of other randomized controlled 
trials (median OS 7.1–10.4 months [5, 72, 73], which could 
imply an overestimation of regorafenib efficacy. Few other 
studies have shown similar impact on survival [74–79], but a 
higher rate of adverse events than in REGOMA, thus raising 
concerns over tolerability. A lower intensity regimen proved 
as effective as the standard 160 mg daily schedule used in 
REGOMA trial (median PFS and median OS of 2.0 months 
and 7.4 months), but with lower adverse events [80]. The 
AGILE trial (NCT03970447) will help to clarify the role of 
regorafenib in patients with newly diagnosed GBM without 
MGMT promoter methylation.

Other VEGF multi-kinase inhibitors have been evaluated 
in recurrent GBM, such as sunitinib, sorafenib, ponatinib, 
and vandetanib, and all showed minimal or absent activity 
or raised major concerns for serious adverse events [81•].

Conclusions

Angiogenesis is a crucial mechanism for tumor cell sur-
vival, providing nutrients and oxygen, and promotes tumor 
immunosuppression. Significant efforts have been made to 
develop and evaluate the efficacy of novel antiangiogenic 
drugs for HGG, especially mAbs and drugs. The efficacy of 
an anti-VEGF mAb presents different barriers, ranging from 
low penetration into tumor tissue to failure to adequately 
cross the BBB due to the large size of the compounds. Con-
versely, TKIs have smaller size and target angiogenesis via 
different pathways but have low selectivity resulting in major 
systemic toxicities, as well as increased risk of acquired 
resistance.

Next-generation antiangiogenic therapies aim to overcome 
these limits. In this regard, small interfering RNA (siRNAs) are 
potent effective silencers of tumor angiogenic gene expression 
in GBM when loaded in tumor-targeted nanoparticles. These 
compounds display several advantages, including minimal rec-
ognition by the immune system, blood stability, high specificity, 
and low systemic side effects [82•]. Hence, nanotechnology is 
working on the development of novel delivery systems that can 
improve delivery of siRNAs and protect them from degrada-
tion and systemic clearance. To date, two different studies have 
explored carriers for siRNA delivery in GBM. A phase 1 study 
examined the side effects and best dose of DOPC-encapsulated 
EphA2 siRNA in the treatment of patients with metastatic solid 
tumors or recurrent GBM and demonstrated that this compound 
is able to slow the growth of tumor cells (NCT01591356). 
Another phase 0 study has evaluated a potential treatment for 
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GBM with the use of RNA-interfering spherical nucleic acids 
(SNAs), that consist of nuclei of gold nanoparticles covalently 
bonded to Bcl2L12 siRNA oligonucleotides, that can penetrate 
the brain. In this study, patients with recurrent GBM were 
treated with intravenous administration of siBcl2L12-SNAs 
revealing remarkable gold enrichment in the tumor-associated 
endothelium, macrophages, and tumor cells, as well as reduction 
in tumor-associated Bcl2L12 protein expression [83••]. Overall, 
numerous nanoplexes are being tested in preclinical setting, and 
could serve as potential next-generation antiangiogenic thera-
peutics for GBM [84–88].

Lastly, it is unclear whether and how antiangiogenic ther-
apy and immunotherapy should be combined with radio-
therapy and/or chemotherapy. Given that radiotherapy may 
favor antigen release from tumor cells, apoptosis of EC, and 
promote the influx of monocytes into TME, the combina-
tions with immunotherapy and antiangiogenic therapy may 
enhance this effect and should be evaluated preclinically in 
the context of current standard treatments.
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