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1. Introduction

Glioblastoma multiforme is the most common primary central nervous system tumor,
with an incidence of 3.2 per 100,000 per year [1]. Patients with glioblastoma have a poor two-
year survival rate of approximately 17% [2]. Resection is usually the first step in treating
patients with glioblastoma. After the surgery, patients receive six weeks of radiotherapy
and concurrent temozolomide chemotherapy. The final step in the treatment protocol
consists of six adjuvant temozolomide courses. Temozolomide is an alkylating agent that
functions as a prodrug. Upon ingestion, temozolomide breaks into its active intermediary,
5-(3-methyl-1-triazeno) imidazole-4-carboxamide (MTIC). MTIC causes DNA methylation
at the O6 position on guanine in the DNA and eventually leads to cell death. The naturally
occurring enzyme O6-methylguanine-DNA methyltransferase (MGMT) can repair the
MTIC-inflicted DNA methylation, resulting in cell survival (Figure 1).

Approximately 50% of patients with glioblastoma have tumors with a methylated
MGMT promotor. These patients have less active MGMT and benefit the most from
temozolomide treatment. In contrast, patients with an unmethylated MGMT promoter do
not benefit much from adding temozolomide [3].

After disease progression, myelotoxicity is the most frequent cause of treatment
adjustment and abrogation [2]. Idiosyncratic drug reactions such as aplastic anemia and
treatment-induced myelodysplasia also occur in temozolomide-treated patients. These
rare reactions have a high fatality rate (up to 60%) due to an increased risk of internal
bleeding and septicemia [4]. At present, it is unclear which patients will develop severe
myelotoxicity during temozolomide treatment and subsequently need toxicity-dictated
adjustments to the treatment. A more systematic approach towards identification of
predictors of myelotoxicity may allow timely treatment modifications, reduce the severity
of myelotoxicity, and prevent treatment delays and abrogation.
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Figure 1. Schematic of the mechanism of action of temozolomide (panel A) and O6-methyl-guanyl 

methyltransferase (panel B) on DNA. Temozolomide (panel A) is broken down under acid condi-

tions (pH < 4) into 5-(3-Methyl-1-triazeno)imidazole-4-carboxamide (MITC). When pH raises in the 

gut (pH > 6) MITC is further converted into 5-aminoimidazole-4-carboxamide (AIC) and methyldi-

azonium. Methyldiazonum donates a methyl group to the O6-position of guanine resulting in DNA 

methylation. The enzyme methyl-guanyl methyl transferase (MGMT, panel B) is a protein that can 

remove the added methyl group on guanine. Thereafter, MGMT is broken down and inactivated. 

When replication occurs, guanine pairs with cytosine. Upon methylation, O6-guanine is paired with 

thymidine. This interaction leads to a mismatch signal and activation of mismatch repair enzymes. 

If the O6-methylated guanine is thoroughly removed and the DNA repaired, guanine can pair with 

cytosine without DNA damage. When O6-guanine is not repaired and thymidine is paired to this 

group, a mutation occurs through replacement by adenosine. When no bases are paired with the 

O6-guanine, the result is a break in the DNA that eventually leads to cell death. 

  

Figure 1. Schematic of the mechanism of action of temozolomide (panel A) and O6-methyl-guanyl
methyltransferase (panel B) on DNA. Temozolomide (panel A) is broken down under acid conditions
(pH < 4) into 5-(3-Methyl-1-triazeno)imidazole-4-carboxamide (MITC). When pH raises in the gut
(pH > 6) MITC is further converted into 5-aminoimidazole-4-carboxamide (AIC) and methyldiazo-
nium. Methyldiazonum donates a methyl group to the O6-position of guanine resulting in DNA
methylation. The enzyme methyl-guanyl methyl transferase (MGMT, panel B) is a protein that can
remove the added methyl group on guanine. Thereafter, MGMT is broken down and inactivated.
When replication occurs, guanine pairs with cytosine. Upon methylation, O6-guanine is paired with
thymidine. This interaction leads to a mismatch signal and activation of mismatch repair enzymes. If
the O6-methylated guanine is thoroughly removed and the DNA repaired, guanine can pair with
cytosine without DNA damage. When O6-guanine is not repaired and thymidine is paired to this
group, a mutation occurs through replacement by adenosine. When no bases are paired with the
O6-guanine, the result is a break in the DNA that eventually leads to cell death.
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2. Myelotoxicity Is Not a Rare Event and Leads to Significant Treatment Alterations

In a recent review of multiple clinical trials, including the original milestone study [2],
most patients experienced some form of myelotoxicity after temozolomide treatment [5].
Lymphopenia was most common and occurred in 81.2%, followed by anemia in 44.7% of
patients. Thrombocytopenia and neutropenia were observed in 26.5% and 18.9% of patients,
respectively. Severe myelotoxicity is defined as a grade 3 or higher in the Common Termi-
nology Criteria for adverse events (CTCAE) [6] and occurred in a considerable proportion
(16–23%) of patients [2,7–10]. Subjects enrolled in these clinical trials do not necessarily
represent the patients in clinical practice. For example, in an extensive population-based
Norwegian survey, only 43% of patients with newly diagnosed glioblastoma fulfilled the
original trial criteria [11].

Several studies describe the occurrence of myelotoxicity in practice-based populations.
The most extensive retrospective cohorts comprised 680 [12] and 300 [13] patients treated
with temozolomide. In these studies, 6–11% of patients developed severe myelotoxicity.
This proportion is close to that reported in the original trial [2]. In contrast to the ini-
tial trials, most myelotoxicity occurred during or shortly after the concomitant treatment
phase [14,15]. Half of the patients with severe thrombocytopenia are at risk of sustained,
prolonged, and potentially irreversible toxicity [14]. Up to 54% of these patients need blood
or platelet transfusions or growth factor treatment [14–16]. In addition, patients with severe
toxicity in one cell subset frequently have deficiencies occur in multiple cell subsets simul-
taneously [16,17]. Moreover, most patients (57–90%) have treatment interruptions [14,18]
and approximately 23% (95% CI, 13%–37%) [12,14,15] of patients stop treatment due to
myelotoxicity [11,14]. These studies show that severe myelotoxicity is a common event
during the treatment of patients with glioblastoma, that may impact treatment burden
of patients. However, these studies also included significant numbers of patients who
received prior chemotherapy [12]. Inclusion of such heterogeneous patient populations
should be considered with care as patients who develop severe myelotoxicity during first-
line treatment receive second-line chemotherapy, infrequently leading to potential selection
bias [14,18].

3. A More Systematic Approach towards Myeloxicity

Temozolomide, like most chemotherapeutics, is dosed based on Body Surface Area
(BSA). The mechanisms underlying myelotoxicity are still poorly defined and focus gener-
ally on identification of risk factors from retrospective patient cohorts or as part of clinical
trials. In most clinical trials, women have a much higher risk of developing temozolomide-
induced myelotoxicity than men [4,5,12,14–16,19,20]. These studies indicate that the risk of
temozolomide-induced myelotoxicity is modified differentially in men and women and
might benefit from a stratified analysis. Armstrong [12] performed such analysis and
observed that men with a BSA ≥ 2 m2 and age > 40 years had a higher risk on myelo-
toxicity. Meanwhile, for women, BSA < 2 m2 and age 31–40 years were independent risk
factors [12]. Other factors associated with increased risk of myelotoxicity included: serum
creatinine [16], baseline leukocyte, and platelet [3,21] and absolute lymphocyte counts [3].
Although these factors have been identified, they do not explain the mechanisms underly-
ing myelotoxicity. Considering the heterogeneity of drug response among patients, a better
understanding of the exposure–toxicity relationship is necessary.

The observed differences are likely based on differences in the pharmacokinetics (PK)
and pharmacodynamics (PD) of anticancer therapies. Temozolomide has a short half-life
(2 h) with predictable linear pharmacokinetics. Gender and BSA independently influ-
ence the clearance of oral temozolomide. Men have a faster temozolomide clearance than
women, and patients with a higher BSA have a higher clearance than those with lower
BSA [22,23]. Including variables such as age and BSA in a validated PK-myelotoxicity
model for temozolomide provides a more mechanistic approach towards myelotoxicity,
in which both patient characteristics and drug properties are considered simultaneously.
Friberg [24] developed the PK-PD model to describe chemotherapy-induced myelosup-
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pression. This semi-mechanistic model has been frequently used in the development of
anticancer drugs [21] and specifically for temozolomide [25] (Figure 2). Using a similar
PK-PD model, Panetta et al., found that, rather than just blocking stem cell production,
temozolomide was cytotoxic in the bone marrow [25]. This mechanism is further supported
by studies that show that non-proliferative blood cells were not susceptible to the damage of
temozolomide [26]. Using these models, the area under the curve (AUC) of temozolomide
appeared to explain the reduction, the nadir, and the rebound effect of absolute neutrophil
count after temozolomide dosing in children < 16 years old [25]. Such models can be
expanded to adult populations and when combined with extensive covariate analyses, may
improve our understanding of contribution factors of PK and PD (Figure 2 top). When
appropriately validated, models can be used to predict the additive myelotoxic effect of new
drug combinations, such as the promising combination treatment of temozolomide and
veliparib [27]. Furthermore, the association between toxicity and efficacy can be included
in these analyses. Models as described above could not only aid decision-making on dosing
regimens to decrease treatment interruptions due to severe myelotoxicity, but could also
expand the treatment options for severe myelotoxicity that are currently limited to dose
delays, reductions of temozolomide, and administration of growth factors [28,29].
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Figure 2. Schematic of proposed mathematical model for myelosuppression after TMZ treatment.
This pharmacokinetics–pharmacodynamics model can be expanded to describe the reduction of
different cell lineages such as platelets, red blood cells, and white blood cells. Variables: ka, absorption
constant rate; Vd, apparent distribution volume; CL, apparent clearance; ETMZ, Temozolomide drug
effect; ktr, maturation rate constant; kprol, proliferation rate constant; Tr1, transition compartment 1;
Trn, transition compartment; kcirc, degradation rate constant; Circ0, circulating blood cells at baseline;
Circ, amount of circulating blood cells; MTT, mean transit time; and γ as the inverse feedback loop
parameter. The model consists of a proliferating compartment that is sensitive to TMZ, transit
compartments represent maturation, and a compartment of circulating blood cells. The contributing
covariates known to affect TMZ treatment.

4. Should MGMT Be Included in the PK-PD Model for Myeloxicity?

Preclinical studies show that MGMT-deficient glioblastoma cell lines have significantly
enhanced cytotoxicity during concurrent radiation and temozolomide compared to MGMT-
proficient cells [30]. When MGMT is depleted, cells become more sensitive to the toxic
effects of temozolomide. Upon restoring MGMT function through transfection with cDNA,
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this cytotoxic effect is reversed [31]. These data are confirmed in daily practice as patients
with low MGMT activity within their tumors have improved prognoses [3].

There is high variability in MGMT activity among and within different tissues; the
highest activity levels are observed in the liver, and low levels in the brain and bone marrow
are precursors [31,32]. MGMT activity within peripheral blood mononuclear cells (PBMC)
is considered a good surrogate for MGMT activity in bone marrow-residing progenitor
cells [31]. MGMT activity in PBMCs in a healthy population shows a considerable inter-
individual variation, but only a moderate intra-individual variation over several weeks [33].
The differential MGMT activity among individuals may rely on recently identified single
nucleotide polymorphisms (SNPs) in the MGMT gene that modify the enzymatic activity
of MGMT [34–36].

Clinical studies showed that MGMT activity in PBMCs can decline with more than 50%
during temozolomide treatment and patients with lower pretreatment MGMT expression
in PBMC more often experienced severe myelotoxicity [19,37–40]. In particular, patients
that carry certain SNPs within the MGMT gene, of which some were linked to lower MGMT
activity, had an increased risk of myelotoxicity when treated with temozolomide [12,41].
Patients carrying multiple risk alleles of MGMT had an increased risk of myelotoxicity of
up to 240% [41]. Taken together, these data suggest that inclusion of MGMT activity in
PBMCs in a PK-PD-model is attractive and may serve as promising a biomarker to predict
and monitor the individualized risk of myelotoxicity.

5. Conclusions

Individualized comprehensive PK-PD-based models can aid identification of patients
at risk for severe myelotoxicity and give clinicians tools for individualized dosing regi-
mens to reduce the occurrence of severe myelotoxicity, while maintaining temozolomide
efficacy in selective patient groups. PK-PD models use both knowledge of temozolomide’s
pharmacokinetics and dynamics and patients’ characteristics and may provide a more
mechanistic base for understanding temozolomide toxicity. MGMT activity in PBMCs
forms an promising biomarker for prediction and early detection of myelotoxicity, and its
relation to myelotoxicity should be defined.
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