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Abstract
Artificial Intelligence (AI) is the subject of a challenge and attention in the field of oncology and raises many promises for
preventive diagnosis, but also fears, some of which are based on highly speculative visions for the classification and detection of
tumors. A brain tumor that is malignant is a life-threatening disorder. Glioblastoma is the most prevalent kind of adult brain
cancer and the 1 with the poorest prognosis, with a median survival time of less than a year. The presence of O6 -methylguanine-
DNAmethyltransferase (MGMT) promoter methylation, a particular genetic sequence seen in tumors, has been proven to be a
positive prognostic indicator and a significant predictor of recurrence.
This strong revival of interest in AI is modeled in particular to major technological advances which have significantly increased
the performance of the predicted model for medical decision support. Establishing reliable forecasts remains a significant
challenge for electronic health records (EHRs). By enhancing clinical practice, precision medicine promises to improve
healthcare delivery. The goal is to produce improved prognosis, diagnosis, and therapy through evidence-based sub stratification
of patients, transforming established clinical pathways to optimize care for each patient’s individual requirements. The
abundance of today’s healthcare data, dubbed “big data,” provides great resources for new knowledge discovery, potentially
advancing precision treatment. The latter necessitates multidisciplinary initiatives that will use the knowledge, skills, and medical
data of newly established organizations with diverse backgrounds and expertise.
The aim of this paper is to use magnetic resonance imaging (MRI) images to train and evaluate your model to detect the presence
of MGMT promoter methylation in this competition to predict the genetic subtype of glioblastoma based transfer learning. Our
objective is to emphasize the basic problems in the developing disciplines of radiomics and radiogenomics, as well as to illustrate
the computational challenges from the perspective of big data analytics.
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Introduction

Brain cancer (tumor) is defined as aberrant and uncontrolled
synaptic growth. Because the individual skull is inflexible and
volume limited, any surprising growth in the brainmay impact a
human capability; moreover, it may swell into other body parts
and affect individual capacities.1 According to the WHO’s
cancer report, Brain Tumor (BT) accounts for fewer than 2% of
all cancers in humans; nonetheless, severe bleakness and
problems are observed. BTs are classified into 2 types: those that
grow inside the brain (primary brain tumors), which account for
70% of all BTs, and those that bulge into the brain from other
areas of the body (secondary brain tumors), which account for
30% of all BTs, the majority of which are malignant.2 The short
intervention required is determined on the tumor extent, its type,
and its location in the brain. Generally, brain surgery is seen to
be the best approach to treat tumors.3

The most common forms of brain tumors are gliomas, which
account for roughly 30% of all BTs andCentral Nervous System
tumors and nearly 80% of all dangerous BTs.4 magnetic res-
onance imaging (MRI), among other therapeutic advancements,
provides information regarding tumor location and size. Its
operation is based on the activity of protons enclosed in a
massive magnetic field, which is accomplished by moving
radiofrequency waves and recouping their stable condition.5

MRI, among other therapeutic advancements, provides infor-
mation regarding tumor location and size. Its operation is based
on the activity of protons enclosed in a massive magnetic field,
which is accomplished by moving radiofrequency waves and
recouping their stable condition.6 High precision MRI tech-
nology is fairly capable of separating delicate tissues decisively
and is more sensitive to changes in tissue firmness necessary for
pathological consultation. The MRI scans are classed as T1-
weighted (T1-w), which is commonly used in non-invasive
brain research.T2-weighted (T2-w) MRI slices, on the other
hand, are significant MRI slices that are appropriate for per-
ceiving the border structures of medical sequences.7 The O6

-methylguanine-DNA methyltransferase (MGMT) gene, which
codes for a DNA repair enzyme that can reverse the effects of
alkylating chemotherapy, is found on chromosome 10q26. The
MGMT gene is frequently inactivated in malignant gliomas due
to abnormal methylation of its promoter region. The methyl-
ation status of the MGMT promoter has gained therapeutic
significance as a biological marker combined to responsiveness
to alkylating treatment and longer survival in glioblastoma
patients.8 MGMT promoter methylation testing is also being
utilized as a patient selection marker in clinical studies, such as
the current CENTRIC study, which is concentrating on patients
withMGMT promoter-methylated glioblastomas.9 The primary
mechanism of MGMT gene silencing is promoter methylation,
which predicts a positive prognosis in individuals with glio-
blastoma. This biomarker is on the cusp of being used to stratify
or even select glioblastoma patients for clinical trials.10-12 In
some glioblastoma subtypes, such as anaplastic gliomas, the
importance of MGMT promoter methylation may go beyond

predicting chemosensitivity and may represent a unique mo-
lecular profile. The most widely used assays for determining
MGMTstatus, define the requirements for standardized testing,
and assess the causes for test repeatability issues.13 MGMT
promoter methylation status is being employed as an essential
stratification or selection criterion in ongoing clinical studies,
despite the fact that treatment decisions in the regular context are
not yet based on this marker.14

Despite the potential benefits of tumor genetic biomarker
testing, price and the requirement for direct tissue sample
remain barriers to its broad clinical usage. As a result, non-
invasive genetic biomarker status assessment using preop-
erative imaging has the potential to enhance glioblastoma
patient treatment.15

Deep Learning (DL) is a discipline of AI technology that
simulates the functioning of the human brain in data pro-
cessing and the generation of prototypes useful in making
appropriate decisions. DL computations make use of a variety
of non-linear layers that are well-organized for extracting
features from region of interest. DL is considered to be a
promising option to predict MGMT promoter methylation
status of glioma patients.16 The efficacy of the current standard
of care in glioblastoma patients is associated to the promoter of
the MGMT gene.17 Deep neural networks may learn hierar-
chical characteristics from the input sequences rather than
utilizing pre-defined hand-crafted features. Several previous
studies have shown that quantitative image characteristics
(such as tumor subcompartment ratios, difusivity values, and
image texture features) may be utilized to predict MGMT
hypermethylation on preoperative glioma imaging.18-20 Ar-
tificial intelligence and deep learning are 2 novel approaches
for automating difficult medical imaging procedures that have
recently developed. Deep convolutional neural networks
(dCNNs) in particular have proven the capacity to quickly and
accurately separate glioblastoma subcompartments from MRI
images.21,22 Image feature based in Radiomics extraction tools
and automated tumor segmentation provides an impartial
and repeatable approach for retrieving quantitative image
features.23,24 Deep learning methods need a massive training
data to prevent the over-fitting problem, as well as a lot of
processing power to speed up the training process. When used
in conjunction with proper weight initialization and opti-
mization techniques.25 Deep convolution neural networks
(CNNs), a recent innovation in deep learning, have shown
success in the categorization of pictures. Deep learning is
extremely effective for feature representation, thoroughly
displaying both low-level and high-level information, and
embedding the feature extraction and classification phases into
self-learning, although it often requires a large training
dataset.26 The training datasets for most medical imaging
scenarios are tiny, using deep learning and training CNN from
scratch on such a short dataset is a difficult undertaking. In
order to solve this challenge, we present a technique based on
transfer learning and a pre-trained deep CNN model in
Figure 1.27
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In this context, Big data has implications for predictive
analytical methods and machine learning platforms for
medical decision medical. The processing of massive medical
data including the training, test and prediction data impact
supports machine learning algorithms and predictive analyt-
ical approaches for the supply of long-term solutions for the
implementation of treatment plans and individualized medical
care.28,29 Predictive medicine aims the acquired knowledge
from analyses of clinical data, genomic medical data, and
multimodal imaging to better understanding of disease de-
velopment, therapeutic efficacy, and prevention in order to
create novel, individualized medicines and interventions (see
Figure 2).30 These developments include the creation of big
data analytics tools, research into precision medicine, stan-
dardization of the collection, storage, and open sharing of de-
identified patient electronic health records (EHR), as well as a
significant amount of patient involvement (self-assessment
and reporting).31

Radiomics, which involves the high-throughput mining of
quantitative image features from routine medical imaging, is
playing an increasingly important role in cancer research
because it makes it possible to extract data and use it to
enhance the diagnostic, prognostic, and predictive accuracy of
clinical-decision support systems. A useful tool for modern
medicine, radiomic analysis makes use of complex image
analysis software as well as the quick creation and validation
of medical imaging data using image-based signatures.32 The
difficulty comes from the need to integrate diverse data and
analyses it jointly in order to facilitate the discovery of new
knowledge. Genomic analysis for medical data is important
components of improvements in precision medicine. The

challenges presented by radiomics, which provide a large
number of quantitative scans features, are diverse. Simulta-
neously, there is a critical need to take into account compu-
tationally effective ways to enable the joint mining of
radiomics, genomes, and clinical data (see Figure 2) and to
promote the finding of Radiogenomics-related synergistic
patterns.33

Through the connotation of quantitative imaging features
for tumor phenotyping and genomic signatures, Radio-
genomics has grown significantly over the last 10 years and
shown significant potential for the development of non-
invasive prognostic and diagnostic methods, as well as the
identification of biomarkers for treatment, particularly for
cancer. Radiogenomics research benefits from the use of big
data programming models and deep learning paradigms,
which not only help to leverage computationally intensive
tasks but also significantly aid in the development of new
algorithms, methods, and workflows through effective data
acquisition, storage, sharing, and indexing. Deep learning
techniques train sophisticated classifiers to produce higher
classification results by utilizing enormous datasets. Unfor-
tunately, understanding how deep learning hidden layers work
is frequently is considered tough.34,35

This is particularly true when deep learning techniques are
applied for task of Brain Tumor Radiogenomics Classification
of MGMT promoter methylation in malignant gliomas-based
Transfer Learning presented in (Figure 2). Our work focuses
on the particular clinical aspects based on transfer learning
architecture, as indicated in Figure 1. The developing field of
Radiogenomics holds a lot of potential for precision medicine-
based transfer learning approach showing a promoter result for

Figure 1. Transfer learning architecture.
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the classification of MGMT methylation in malignant glio-
mas. The rest of the paper is organized as follows: In Related
Works, we will detail the description of our datasets as well as
the mathematical modeling.inMethods and Materials we will
designate our results based a comparative cases of transfer
learning algorithms and discuss the impact of the classification
of our approach of MGMT methylation in malignant gliomas
classification. Finally, Results provides concluding remarks.

Related Works

The diagnosis, prognosis, evaluation of the therapeutic re-
sponse, and follow-up of glioma patients are all significantly

influenced by conventional magnetic resonance imaging
(MRI). However, standard diagnosis of MRI images makes it
challenging to ascertain the status of MGMT promoter
methylation. The investigation of tumor biomarkers by ra-
diomics has grown in popularity as a result of the quick
development of molecular diagnostics and artificial
intelligence.36-38 In general, “radiomics” refers to the ex-
traction and high-throughput analysis of a wide variety of
sophisticated quantitative imaging data from medical scans.
Radiomics is the term used to describe the high throughput
extraction and analysis of several advanced quantitative im-
aging aspects.39,40 These characteristics, or radiomics fea-
tures, might highlight possible tissue and lesion traits

Figure 2. Radiogenomics system diagram.
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including tumor heterogeneity. Radiomics has been used
extensively to forecast glioma genetic indicators, such as
alterations in the enzyme isocitrate dehydrogenase.16,41,42

However, due to technical restrictions, such as the inability
to get tumor tissues, the high cost of detection, and the great
complexity of intralesional heterogeneity, determining the
MGMT methylation status using molecular approaches con-
tinues to be difficult. To get around these issues, we looked at
whether it was possible to forecast the MGMT methylation
status beforehand and noninvasively using a unique
radiomics-based machine learning (ML) model.

Han et al study’s43 using methylation data from TCGA and
MRI images of glioblastoma patients obtained from TCIA
showed an accuracy of 67% for the test data and 62% for the
validation data. Convolutional recurrent neural network ar-
chitecture was utilized (CRNN). Analysis was done on common
imaging characteristics such tumor location, midline crossing,
multifocality, necrosis, oedema, and enhancement. The cross-
validation findings showed that the GA-based wrapper model
had an excellent performance for predicting the MGMT
methylation status in GBM, with a sensitivity of .894, speci-
ficity of .966, and accuracy of .925 according to Duyen et al44

The performance of the XGBoost model was greatly enhanced
by the combination of radiomics feature extraction and F-score
feature selection, which may have consequences for patient
classification and treatment approach in GBM. Nine radiomics
characteristics that performed better than other classifiers, with
an area under the curve of .896, were reported.45

The most prevalent primary malignant brain tumor, glio-
blastoma multiforme (GBM), was discussed in relation to
deep learning, 1 of the developing applications of artificial
intelligence. VGG-19 CNN has an accuracy of 98.25%. The
feasibility of CNN in glioma grading is confirmed by this
work, despite the relatively small sample size.46 With an
accuracy of .849 and an area under the curve (AUC) of .970
(.939-1.000) in the training dataset and an accuracy of .886
and an AUC of .898 (.786-1.000) in the validation dataset, the
fusion radiomics model—which was created by concatenating
both series—displayed the best performance47 Table 1 present
a summary of various algorithms of deep learning for the
MGMT prediction in gliomas.

Glioblastoma with MGMT methylation exhibited mass-
like edema with irregular enhancement, whereas glioblastoma
without MGMT methylation exhibited infiltrative edema with
thick enhancement, according to some earlier studies.53 For
more than 10 years, numerous researchers created models to
forecast MGMT based on these radiological characteristics of
conventional MRI, including radiomics approaches using
high-throughput quantitative imaging features.54 However,
the majority of these studies either used a small dataset or did
not conduct any external validation, which is insufficient to
demonstrate generalizability.

The majority of these studies, however, used small datasets
or did not conduct external validation, which makes it im-
possible to assess generalizability. Additionally, success

hasn’t always been consistent. Wei et al (n = 31) exhibited a
validation accuracy of 77%, while Han et al26 demonstrated a
validation accuracy of 67%. Last but not least, the RSNA-
MICCAI Brain Tumor Segmentation (BraTS) 2021 Radio-
genomic Classification challenge, or task 2 of the BraTS 2021
challenge, was held.55 The winning solution displayed a test
AUROC of .62, demonstrating a significant difference in
performance from a prior study that reported a 3-fold cross-
validation accuracy of 94.73%,16,56,57 even when using a
subset of the same TCIA dataset. One of the biggest obstacles
to the use of artificial intelligence techniques in clinical ra-
diology practice is the generalization of models to various
datasets.13 To our understanding, there haven’t been many
prior reports involving extensive MGMTmethylation datasets
and outside validation. Our study’s objective was to test
whether the largest dataset (n = 985) could be used to forecast
the methylation status of the MGMT promoter using mpMRI.
Using sizable public and independent private datasets, we
thoroughly validated CNN-based prediction models. Table 2
present a summary of various algorithms of Transfer learning
for the MGMT prediction in gliomas.

Methods and Materials

The goal of this work is to use DL algorithms and a Transfer
Learning (TL) strategy to improve the accuracy of MGMT
identification. The task of using a pretrained system’s
knowledge to learn new models from new data is known as
TL. It is typically much quicker and easier to calibrate a
pretrained system with TL than to start from scratch. Pre-
trained DL systems enable us to pick up new tasks. Here, we
performed with database from Kaggle55 to evaluate 17 distinct
DL models, including (“Alexnet, ImageNet,Googlenet, Re-
snet18,Resne-
t50,Re-
snet101,vgg16,vgg19,Inceptionv3,Inceptionresnetv2,Squee-
zenet,,densenet201,mobilenetv2,shufflenet, Xception,nasnet-
mobile, nasnetlarge”) and TL approaches to the provided
dataset using Matlab-R022 was applied based on “Deep
Network Designer” and “Transfer Learning” Toolbox.

These pre-trained CNN models are used in TL to separate
out distinguishing and important features that may be seen.
Last but not least, the softmax layer is used to classify these
traits with the following parameters 1(S)*1(S)*1000(C)*1(B).
Collected and sliced into cancerous MRI images of the brain.
The suggested approach includes the following stages: pre-
processing, data division and augmentation, feature extraction
based on DL, and classification of MGMT promoter meth-
ylation in malignant gliomas.

Exprimental Dataset

Following is the structure of these 3 cohorts: Each individual
case has a unique folder with a five-digit number assigned to it.
Four sub-files, 1 for each of the structural multi-parametric
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MRI (mpMRI) images in DICOM format, are contained
within each of these “case” folders. These particular mpMRI
scans are included:

Fluid Attenuated Inversion Recovery (FLAIR)
T1-weighted pre-contrast (T1w)
T1-weighted post-contrast (T1Gd)
T2-weighted (T2)

The training data contains 585 values each corre-
sponding to a patient/subject. Each row is marked with
target MGMT_value for each subject (BraTS21ID) in the
training data (eg the presence of MGMT promoter meth-
ylation). From the training set 307 subjects reported
presence of MGMT promoter, and 278 reported absences.
The imbalance in the training data set is acceptable.

Mathematica Modeling

Extraction of Features Through Deep Learning. Convolutional
neural networks and deep learning networks are examples of

artificial neural networks. After being trained, CNN’s various
layers and the pooling layers are used to map multi-
dimensional MRI images in order to produce the best re-
sults.64 The advantage of utilizing DL is that the system learns
how to perform the feature extraction while it is being trained.
DL networks use their own kernels or convolutional filters to
extract features on their own. Furthermore, there are numerous
small size filters in the Convolutional Layers (CL). To gen-
erate a tensor of features, these filters are applied to each layer.
The number of steps the filter will take to advance from 1 point
to the next is referred to as a “stride.” Practically, 1 or 2 pixels
per step are sufficient; anything beyond this results in a
complete decline in CNN output.65 Understanding the con-
ditions that must be met and how the data is sent to the system
is necessary for structuring a CNN for a certain job. Addi-
tionally, it should be borne in mind when choosing the stride
that the output should always provide a whole integer and
never a fraction. If the filter in the convolution layer does not
cover all of the input images, zero padding may occasionally
be needed. To maintain equal spatial measurements, this is
done.ReLU in the activation layer determines the tensor of

Table 1. Comparaison of Deep Learning Algorithms for MGMT Prediction.

Approach Findings Model performance Limits

CNN48 In the BraTS 2021 competition, the winning
solution’s accuracy and test AUROCwere
56.2% and 54.8%, respectively

80.2% (337/420) and 60.0% (252/420) of
the 420 developed models with
unexpectedly poor outcomes
demonstrated no discernible difference
with a chance level of 50% in terms of
test accuracy and test AUROC,
respectively

Risk of overfitting

KNN49 The most important factors affecting the
level of MGMT promoter methylation in
GBM were the edema/necrosis volume
ratio, tumor/necrosis volume ratio, edema
volume, and tumor location and
enhancement features

73.6% and the KNN (k = 5) classifier Training samples was limited

k-means50 Molecular classification of glioblastoma may
predict response to targeted therapies

Likelihood ratio test of 21.6 compared to a
chi-square reference distribution with 3
degrees of freedom; P < .0001

Robust prognostic factors for
most of these tumors are
limited to tumor grade and
patient age

SVM47 MRI-based radiomics models, especially the
fusion radiomics model, could provide a
reliable noninvasive method for the
preoperative prediction of MGMT
promoter methylation

84.9% Limited studies have focused on
predicting MGMT promoter
methylation status

Decision
tree51

MGMT promoter methylation index
demonstrated a significant relationship
with a number of first-order radiomic
features from enhancing disease, however
models only gave a modest level of
accuracy for its prediction

57.12%/58.18% The cancer imaging Archive:
TCIA), which limits wider
clinical applicability

Logistic
regression52

Radiomics model were expected to be a
computer-intelligent, non-invasive,
accurate and personalized management
method for gliomas

Four models with accuracy of .660, .898,
.738, and .667, respectively

Invasiveness, sampling error and
difficulty in obtaining
satisfactory data during
clinical practice
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feature maps that are produced using a CL. The RLU is the
most commonly used activation function in DL systems, and it
is used to constrain all negative values in the feature map to
zero. In order to reduce the dimensions, the rectified features
are connected to the pooling layers, which create tiny, non-
overlapping areas as input and select a single value for each
region. The 2 well-known functions that the pooling layers
frequently use are average and pooling.66

After the activation layer, a batch normalization layer is
frequently used to standardize feature maps and normalize
feature maps. This layer of normalization governs the network
and quickens training. To outline the final result of the system,
the features obtained from the most recent pooling or con-
volutional layers are converted to a 1-D vector and connected

with at least 1 dense layer. A “soft” variation of the max
function is the softmax function. Instead of choosing just 1
maximum value, it divides the entire distribution (1) into
smaller halves, with the maximal element receiving the ma-
jority of the distribution and other smaller elements receiving
the remainder. The Softmax layer, which is used to classify
images and is often the last layer of the system, is formulated
as follows:3

yz ¼ ½ee�z
Σi
j¼1½ee�zj

(1)

The classification layer is next applied, which calculates the
cross-entropy loss due to classification and provides the final

Table 2. comparaison of Transfer learning algorithms for MGMT prediction.

Architecture of
Transfer learning Database Accuracy (%) Limits

ResNet5058 T1-weighted images (T1WI), T2-weighted images
(T2WI), and contrast-enhanced T1WI images
in the TCIA database

93 Few cases and only tomographic MRI

Alexnet Magnetic resonance imaging scans) 55.68 Tune the hyperparameters for a larger variant
when the amount of data available is limitedMobilNet 52

Resnet10 57
Resnet50 56.81
EfficientNetB0 70
Efficient59NetB0 66.92
EfficientNet-B0 FLAIR-T1wCE-T2w-T1w 49.8 ± 1.3

(48.5-
51.5)

Risk of overfitting

SEResNeXt50 51.9 ± 3.4
(47.5-
55.6)

SEResNet50 50.4 ± 3.3
(47.3-
54.6)

3D-ResNet48 54.8
FLAIR-T1wCE
T2w
T1wCE

AlexNet T1-C and T1+C, T1-weighted images (T1WI), T2-
weighted images (T2WI),FAIR, contrast
enhanced (DCE) MRI, diffusion weighted
imaging (DWI) and arterial spin labeling (ASL)

85.5 Training data are limited
GoogLeNet60 90.9

DensNet61 Glioma type is primarily judged using T1, T1C, T2,
and Fluid attenuation IR(FLAIR) sequence
images

67.55% Only can process 2D volume MRI; second, it needs
to select pictures with obvious tumor occupancy
and require the assistance of experts to manually
label the training set

VGG1962 T1-weighted (T1) and T2-weighted (T2) MRI,
fluid-attenuated inversion recovery (FLAIR)

98.25 Single-omics data analysis has limits, and it is not
apparent which data types should be used to
reflect clinical characteristics

Inception-v463 260 subjects based on the available genomic
information, MRI data, preoperative status, and
lack of image artifacts on the T2w images. 461
subjects in the TCIA, 292 were preoperative.
And 22 subjects did not have T2w images

64.20 Lack of image artifacts on the T2w images

Sakly et al. 7



expected clear-cut labels for each MRI images. One often used
substitute for squared error is the cross-entropy measure.
When the output is a probability distribution, or when node
activations can be regarded as expressing the likelihood that
each hypothesis would hold, it is employed. At neural net-
works with softmax activations in the output layer, it is
therefore employed as a loss function. Equation (2), where “s”
denotes the labels sent to the target and “r” denotes the output
from the softmax layer, provides the estimation of loss.

Hðs, rÞ ¼ �
X

ðsðxÞ*logðrðxÞÞÞ (2)

Regularization and Optimization Techniques. During training, a
regularization function is used to prevent overfitting. It sug-
gests use a function solver properly to prevent network
overfitting. Overfitting has been avoided using a variety of
techniques throughout preprocessing and training phases.
Image data is initially supplemented to prevent overfitting.67

Different system structures are then tested to prevent system
irregularity. After that, dropout layers are used, to exclude
hidden weights randomly. Finally, in some situations, the
“early stop approach” is used to protect the system while it is
being trained and validated and to halt the training process
before all epochs have been completed. This prevents the
system from being overfit.68

The widely held of DL algorithms use various optimization
techniques for either maximizing or minimizing a function f
(x) by varying x. The function is known as the cost function or
loss (error) function once it has been minimized. In order to
optimize an objective function J (?) categorized by a model’s
constraint θ 2 R d, we use Gradient descent technique to
reverse path of the objective function =θ J (θ). Based in these
parameters (w.r.t). ‘η’ provides the step size needed to reach
the (local) minimum and is the learning rate. SGDM is a
method that quickens the descent in the right direction and
lessens oscillations. This is accomplished by adding of the
update vector from the previous step to the current update
vector.

vt ¼ γvt�1 þ η=θjðθÞ
θ ¼ θ � vt

�
(3)

where mt and vt are approximate values for the first instant of
the gradients (the mean) and the second moment (the vari-
ance), respectively.

Metrics for Assessment. Calculating important findings that are
used to validate the performance of the classifier is used to
evaluate the feasibility of the proposed BT detection and
identification framework. Following is how the suggested
framework performance is determined:

1. Accuracy: This refers to a system’s capacity to accu-
rately identify the kind of BT and is determined by:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(4)

2. Specificity is the system’s capacity to accurately rec-
ognize the authentic BT, and it is calculated as:

Specificity ¼ TN

TN þ FP
(5)

3. Sensitivity is the ability of a model to accurately
categorize the BT, and it is quantified as:

Sensitivity ¼ TP

TP þ FN
(6)

where TP stands for the positive cases that are anticipated to be
positive. The projected negative case, TN, is 1 that is negative.
The expected negative situations that turn out to be positive
are known as FN. These situations are known as type 2
mistakes. The anticipated positive situations that are really
negative are referred to as FP. These situations are known as
type 1 errors.

Results

Model Perfermance

In this paper, MGMT promoter methylation in malignant
gliomas is classified according to brain tumor Radio-
genomics subtypes using a Transfer Learning-based deep
learning system. To achieve the system’s highest level of
accuracy, the system is trained utilizing a variety of deep
learning pretrained networks, including AlexNet, GoogLe-
Net, Vgg19, ResNet50, ResNet101 and others. By fine-
tuning the characteristics, softmax layers of pretrained net-
works are used to identify images. Here, the skilled viewers
can discern each detail by sight.The softmax layer performs
BT classification by adding the number of neurons to 2
classes and adjusting DL networks to the objective dataset.
As a result, it is crucial to adjust the optimal parameters in
accordance with the results of training MRI images for
performance improvement because these fine-tuned param-
eters are not self-trained. To achieve the best trained system
possible, the system is trained multiple times for each of the
aforementioned pretrained networks using a variety of well-
known optimizers, including Stochastic gradient descent
with momentum (SGDM). The training progress and loss of
the pre-trained networks of each transfer learning analogue in
our modeling system are shown in Figure 3(A-Q).

The original data with image seize (random) 512*512*3
with 4 classes composed of included the following scans:
Fluid Attenuated Inversion Recovery (FLAIR),T1-weighted
pre-contrast (T1w),T1-weighted post-contrast (T1Gd) and T2-
weighted (T2).The number of original image is 498 while the
training image is 348 and the validation dataset is composed of
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150 Sans. The pre-trained -model of each neural network is
depicted in Table 2. We have proceeded with pre-trained
model with 70% training data and 30% for the validating
data for the classification MGMT promoter methylation. The
confusion matrix is widely used to show how a certain
classification network is performing on a test dataset where the
real values are already known. The confusion matrix that
summarizes the effectiveness of the method for classifying
MGMT promoter methylation in malignant gliomas is shown

in Figure 7. The Target class is shown on the X-axis of the
provided matrix, while the Output class is shown on the
Y-axis. The training outcomes of several pretrained DL net-
works employing the SGDM optimizer listed in the table,
along with training time, are shown in Table 2. It is clear from
the data listed above that, when compared to the other net-
works described, the pretrained network Resnet50 has pro-
duced the best results in the shortest amount of computing
time. The provided training curves make it obvious that

Figure 3. Perfermance of models -based transfer learning.
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Resnet50 and densenet201 attained 100% accuracy after
complete iterations. The performance of each models of
Transfer Learning is depicted in Figure 3 as follows:

Statistical Analysis

After normality testing, the statistical differences between
quantified APTw parameters for methylated and unmethylated
GBMs were analyzed using Mann-Whitney U-tests. The di-
agnostic performance was evaluated using Receiver Operating
Characteristic (ROC) curves for the important different APTw
parameters. Statistical software was used to conduct the

studies (SPSS, Version 23; Chicago, IL). Statistics were
deemed significant for P values under .05.

Retrospective analysis was performed on 18 patients (aged
20-67) who met the eligibility requirements according to their
medical data. From all subjects who underwent gross total re-
section (n = 15) or subtotal resection (n = 3) tumor tissue samples
were provided for MGMTanalysis. In 10 instances (55.6%, 47.3
14.3 years), a methylated MGMT promoter was discovered, and
in 8 cases (44.4%, 51.1 12.4 years), an unmethylated MGMT
promoter was established. Three of the subjects in this retro-
spective study had already discussed in this work.69

The APTw value metrics (mean, variance, 50th percentile,
90th percentile, and width10-90) were significantly different
between the 2 groups based on quantitative analysis and
comparison (P .05), and lesions with an unmethylated MGMT
promoter displayed higher values than did MGMTmethylated
lesions, as shown in Table 3.

The whole-tumour APTw histograms for GBMs with meth-
ylated and unmethylated MGMT promoters are shown in
Figure 4(A). Comparatively to methylated GBMs, the GBMs with
an unmethylated MGMT promoter contained more voxels with
APTw hyperintensity. Table 1 lists the histogram-based APTw
measures for 2 groups of GBMs. The MGMT unmethylated
GBMs had significantly higher Mean (2.54 .41 vs 2.01 .42; P =
.022), Variance (1.01 .34 vs .59 .24;P = .011), 50th percentile (2.54
.36 vs 1.99 .41; P = .012), 90th percentile (3.71 .45 vs 2.93 .53

The median and 10th percentile readings demonstrated an
upward tendency in the MGMT. In comparison to the MGMT
methylated group, the 10th percentile and Mode values
demonstrated a stronger tendency in the MGMTunmethylated
group (P = .186 and .086, respectively). Skewness and
Kurtosis did not vary between the 2 groups (P = .963 and .934,

Figure 3. Continued.

Figure 4. Comparison of O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation levels in
glioblastomas (GBMs) with unmethylated (n = 8) and methylated
(n = 10) histograms of typical tumour mass.
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respectively), indicating that the 2 groups’ histograms’ nearly
similar shapes.

Challenges of BraTS Project Radiogenomic
Classification of MGMT Promoter Methylation in
Malignant Gliomas

The dearth of data access and reporting, which obstructs
clinical validation, is a significant obstacle to the therapeutic

application of multimodal DL methods. It’s important to note
that 2 included studies left out crucial details about the choice
of data as well as the creation and assessment of models,
leading to ambiguous assessments of the risk of bias. When
evaluating the written literature, researchers and clinicians
should always take the possible risk of bias into cautious
consideration. The various degrees of bias risk found in the
included studies emphasizes the need for uniform reporting
standards to guarantee the accuracy and repeatability of
findings.71

Figure 5. The ROC curve.

Figure 6. The confusion matrix.

Sakly et al. 11



Although the BraTS database was used by many of the
computers in this research, they also used other institutions’
imaging, genetic, and clinical data—some of which have not
yet been published. Institutional patient groups tended to be
tiny. Additionally, the majority of the used code and models
were not published, which made it difficult for other re-
searchers to evaluate those models using various data. Large
amounts of extra data are needed for multimodal DL tech-
niques, particularly in research involving triple and quadruple
fusions. Because the BraTS dataset does not contain all of this
information, academics must depend on data from their own

organizations, which can be inaccurate and result in a dearth of
training and testing data.The BraTS collection has been crucial
in the creation and improvement of DL for glioma research.
The MGMT promoter methylation status can be predicted
using their imaging dataset using novel techniques (many of
them DL), according to the annual BraTS challenge request
for entries. Expanded information about elements that are well
known to play a significant role in clinical outcomes, such as
the histological type of tumors, thorough surgical, chemo-
therapeutic, and radiotherapeutic data, as well as the molecular
characteristics of tumors, may be added to databases in the

Figure 7. Minimum classification error.

Table 3. Quantitative APTw Intensity Values and Associated Diagnosis Efficacy for Unmethylated and Methylated MGMT
(O6-Methylguanine-DNA Methyltransferase) Glioblastomas (GBMs).70

Unmethylated Methylated
P

Value
AUC (95% Confidence

Interval)
Cut-Off
Value Sensitivity, % Specificity, % Accuracy, %

Mean 2.54 ± .41 2.01 ± .42 .022* .825 (.626-1.000) 2.26 87.5 80 83.3
Variance 1.01 ± .34 .59 ± .24 .011* .837 (.649-1.000) .94 62.5 90 77.8
Skewness .04 ± .52 .06 ± .87 .963
Kurtosis 4.67 ± 1.93 4.80 ± 3.48 .934
10th

percentile
1.40 ± .53 1.06 ± .45 .186

50th
percentile

2.54 ± .36 1.99 ± .41 .012* .850 (.672-1.000) 2.25 75 80 77.8

90th
percentile

3.71 ± .45 2.93 ± .53 .006* .856 (.674-1.000) 3.25 87.5 70 77.8

Width10-90 2.31 ± .42 1.87 ± .41 .049* .763 (.537-.988) 2.15 62.5 80 72.2
Mode 2.45 ± .38 2.05 ± .47 .086
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future. More high-quality data sources like these can signif-
icantly improve the data shortage and promote the application
of new advancements in DL to these issues.

Discussion

In order to predict the methylation status of MGMT from brain
MRI data, we built a jointly trained, convolutional neural
network-based Transfer Learning in this study. To better
understand the pathogenesis of cancer, we examine the po-
tentially linked MGMT methylation status of millions of MRI
parameters. Using a deep learning framework, we integrated
imaging data with Radiogenomics data. Additionally, to help
clinicians and biomedical researchers better understand
models, we propose a generalizable platform for displaying
the various layers and filters of deep learning architectures for
brain MRI data. On the validation and test data, the Resnet50
and densenet201 obtained the highest patient level accuracies
on the test data with 100% accuracy, the precision and recall
were both presented in Table 4. Our data had almost similar
percentages of positive and negative patients, showing that our
classifier does not rely on label distributions for generating
predictions; instead, it balances accuracy and recall. The
general consistency in performance suggests there are probably

certain aspects that are connected with MGMT methylation, as
has been reported in earlier studies, even though the patient
level performance does decline from the validation to the test
data set.72,73

Comparatively, Xception, Inceptionresnetv2 and vgg16 the
classifier shows the lowest accuracy respectively: 41.33%,
48.67%, and 66.67% mentioned in Table 4. This implies that
there is some important information stored in the individual
pixels, but that repeatability and performance are probably
enhanced by adopting a technique that can better capture
spatial information. We primarily focused on patient-level
outcomes, using many MRI images for each patient to pro-
duce an ensemble forecast. Since being able to predict
methylation status from a singleMRI scan would be extremely
useful to physicians and patients, we also evaluated the
findings of MRI scans. In the test set, the findings at the MRI
scan level were equivalent to those at the patient level, but the
performance dropped in the validation set. This is probably
because our classifier is less certain about the MRI scan level,
which leads to more variation in the outcomes and prediction
probabilities. The discrepancy in confidence between patient
level and MRI scan findings shows that MGMT methylation
prediction benefits from pooling data from many MRI scans.
In other classification challenges, deep learning models have

Table 4. Comparison of Transfer learning CNN Architecture for the Classification of MGMT Promoter Methylation in Malignant Gliomas.

CNN
Architecture Input Size Type

Number of
layers

Number of
Classes

Parameters
(millions)

Number of Iterations
per Epoch

Elapsed
Time Accuracy

Alexnet 277*2777*3 Series 25 1000 61 108 3 min 57 sec 86.67%
Googleet 224*224*3 DAG 144 365 7 144 6 min 57 sec 93.33%
ImageNet 224*224*3 144 1000 7 129 5 min 57 sec 86.67%
Resnet18 224*224*3 72 11.7 57 3 min 52 sec 90.67%
Resnet50 224*224*3 177 25.6 117 19 min

39 sec
100%

Resnet101 224*224*3 177 44.6 99 22 min
47 sec

83.33%

Vgg16 224*224*3 Series 41 138 51 15 min
20 sec

66.67%

Vgg19 224*224*3 47 144 213 64 min
44 sec

99.33%

Xception 299*299*3 DAG 71 22.9 33 11 min
43 sec

41.33%

Squeezenet 227*227*3 68 1.24 129 3 min 6 sec 72%
Shufflenet 224*224*3 50 1.4 123 5 min 46 sec 96%
Inceptionv3 299*299*3 316 23.9 129 21 min

54 sec
96.67%

Inceptionresnetv2 299*299*3 825 55.9 144 49 min 48.67%
Mobilenetv2 224*224*3 155 3.5 93 10 min 8 sec 81.33%
Nasnetmobile 224*224*3 * 5.3 177 26 min

20 sec
83.33%

Nasnetlarge 331*331*3 * 88.9 339 512 min
13 sec

98%

Densenet201 224*224*3 709 20 108 31 min
24 sec

100%
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proved effective in learning several representations of the
same object. However, we think it is more reliable and
practically applicable to combine many representations of the
same tumor to arrive at a forecast for each patient. We achieve
this by majority vote. The performance of our model might be
further enhanced by adding further layers that mix MRI
scans.74,75

—Table 1 our classifier Resnet50 and densenet201 is
overfitted to the training set since it has an accuracy for the
training set that is almost 1.0. We used L2 regularization,
dropout layers, and data augmentation to prevent overfitting.
Regularization had only a little impact on reducing overfitting
and raising performance, and additional regularization in-
creases had a negative impact on validation set performance.
Even if data augmentation was able to significantly slow down
the rate of model overfitting, with enough training epochs, we
can still achieve virtually flawless classification. The amount
and variety of photos used for training also rose significantly
as a result of data augmentation, which enhanced our model’s
robustness and performance. The training based optimizable
ensemble based Adaboost hyperparameters was performed
with a 14 total cross validation and accuracy of 78.5%. The
ROC curve, confusion matrix and the error classification are
described respectively in Figure 6, Figure 7 and Figure 8:

Conclusion

In this paper, our work is within the goal for Brain Tumor
Radiogenomics Classification of MGMT promoter methyla-
tion in malignant gliomas-based Transfer Learning. The task
of using pretrained Deep Learning systems enable us to pick
up new tasks. Here, we performed with database from Kag-
gle36 to evaluate 17 distinct DL models, including (“Alexnet,
ImageNet Googlenet, Resnet18,Resnet50,Resnet101,vgg16,
vgg19,Inceptionv3,Inceptionresnetv2,Squeezenet,,dense-
net201,mobilenetv2,shufflenet, Xception,nasnetmobile, nas-
netlarge”) and we apply TL approaches to the provided
dataset. This work seeks to predict the methylation status of
MGMT from brain MRI data, we built a jointly trained,
convolutional neural network-based Transfer Learning in this
study. The second contribution is to depict the best classifier
for the identification of MGMT which are Resnet50 and
densenet201 with 100% accuracy Comparatively, Xception,
Inceptionresnetv2 and vgg16 the classifier shows the lowest
accuracy respectively: 41.33%, 48.67%, and 66.67%.

A brain tumor that is malignant poses a serious threat to
life. Glioblastoma is the most prevalent type of adult brain
cancer and also has the poorest prognosis, with a median
survival time of less than a year. It has been demonstrated that
the presence of a certain genetic sequence in the tumor known
as MGMT promoter methylation is a positive prognostic
factor and a reliable indicator of treatment responsiveness.

Currently, obtaining a tissue sample for genetic study of
cancer requires surgery. The process of identifying the tumor’s
genetic makeup can thereafter take many weeks. A later

operation can be required, depending on the outcomes and the
initial therapy method used. The number of surgeries and the
type of therapy needed may both be reduced if a reliable
approach for predicting the genetics of the cancer by imaging
alone (ie, radiogenomics) could be created.

In conclusion, contrary to predictions, even in a deep
learning method with a sizable multicenter dataset, MGMT
methylation cannot be predicted using only conventional
structural MRI. Radiogenomics has the potential to change
how patients with brain tumors are treated in the future, but in
order to enhance the noninvasive diagnostic performance of
MGMT methylation, additional tumor features from ad-
vanced MRI, such as cellularity and angiogenesis, should be
explored.
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