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Highlights
The lack of effective therapies for DMG
stems from tumor location, complexmo-
lecular features, and immunosuppres-
sive tumor immune microenvironment.

CAR therapy can effectively elicit an im-
mune response in immunologically cold
diffuse midline glioma tumors.

Locoregional infusions of CAR T
cells minimize therapy related toxic-
ities, promote proinflammatory im-
Diffuse midline glioma (DMG) is a fatal pediatric cancer of the central nervous
system (CNS). The location and infiltrative nature of DMG prevents surgical re-
section and the benefits of palliative radiotherapy are temporary; median overall
survival (OS) is 9–11 months. The tumor immune microenvironment (TIME) is
'cold', and has a dominant immunosuppressive myeloid compartment with low
levels of infiltrating lymphocytes and proinflammatory molecules. Because sur-
vival statistics have been stagnant for many decades, and therapies targeting
the unique biology of DMG are urgently needed, this has prompted the clinical
assessment of chimeric antigen receptor (CAR) T cell therapies in this setting.
We highlight the current landscape of CAR T cell therapy for DMG, the role the
TIMEmay play in the response, and strategies to overcome treatment obstacles.
mune engagement, and may
reduce immunosuppressive re-
sponses.

Combinatorial targeting approaches
are crucial for addressing tumor het-
erogeneity.

Further understanding the tumor micro-
environment and complex biology of
DMG will be necessary to improve CAR
T cell efficacy to promote long-term re-
sponses.
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Diffuse midline glioma
DMG is a universally lethal pediatric and adolescent cancer of the CNS that is derived frommutant
oligodendroglial precursor-like cells (OPC-like) found in the pons (diffuse intrinsic pontine glioma,
DIPG), thalamus, midbrain, and spinal cord [1–10]. DMG accounts for 50% of all pediatric high-
grade gliomas (HGGs) and presents the highest mortality rate of any cancer (20–25% of all
pediatric cancer-related deaths), with a median overall survival (OS) of less than 1 year [1,11].

The molecular complexities of DMG are major contributors to poor outcomes, typically driving re-
sistance to conventional therapies [12–16]. Failure of conventional approaches is in part due to
the restricted drug delivery to the tumor site incurred by the blood–brain barrier (BBB) [1] and be-
cause the critical location of the tumor restricts surgical intervention (Figure 1) [17]. To date, the
standard of care management of DMG patients is limited to palliative radiotherapy (RT) with im-
munosuppressive corticosteroids to manage tumor-associated edema [1].

In 2021, the 5th edition of the World Health Organization Classification of Tumors of the Central
Nervous System aligned tumor classification with the hallmark epigenetic alterations seen across
patients – 'DMG, H3K27-altered' [18]. Global hypomethylation of histone H3 at lysine 27 (H3K27)
is the characteristic feature of DMG, and stems from recurring somatic mutations in the H3 genes
HIST1H3B/C (H3.1K27M) and H3F3A (H3.3K27M) [3,7,8,13]. In wild-type H3 (wt-H3) DMGs,
global hypomethylation is promoted by the overexpression of the Enhancer of zeste homologs
inhibitory protein (EZHIP) which represses the H3K27 methyltransferase activity of Polycomb re-
pressor complex 2 (PRC2) [3,7,13,19]. Additional recurring mutations are found in patient tumors
depending on the age of diagnosis and tumor location [10]. Together, thesemolecular lesions co-
operate to drive tumor heterogeneity and promote adaptation to the therapeutic pressures of RT,
chemotherapies, or precision therapies [14–16]. Although the age- and location-dependent mu-
tational profiles of DMG provide us with the beginnings of a unique therapeutic targeting toolkit
(Figure 1) [13], DMG tumors harbor a relatively low mutational burden [20]. Nevertheless, co-
occurring alterations in TP53, AVCR1, MYC, PDGFRA, and elements of the PI3K pathway are
common [2,12,13,15], and may play a role in the immunosuppressive (cold) tumor immune
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Figure 1. Diffusemidline glioma (DMG)microenvironment and treatment axis. (A) Glioma-associatedmacrophages
andmicroglia (GAMs) represent the largest proportion of immune cells in the tumor immunemicroenvironment (TIME) and are
characterized by the expression of CD11b+, IBA1+, CD163+, and CD206+. However, they do not fit the classical macrophage
M1 or M2 phenotypes. DMG tumors have a low mutational burden, and consequently a low amount of cancer neoepitopes
The cold TIME is characterized by limited infiltration of various lymphocyte populations including cytotoxic T lymphocytes
(CTLs) and natural killer (NK) cells, as well as low levels of proinflammatory cytokines. In addition, immune checkpoints are
downregulated or absent on the surface of cancer cells, limiting the application of immune checkpoint inhibitor (ICI
therapy. (B) Palliative radiotherapy is the only standard treatment and is largely used to manage cerebral edema and
neurological symptoms without significant improvement of overall survival. The blood–brain barrier protects the brain from
pathogens, although it can also prevent various drugs from reaching the tumor site. Surgical resection of tumors is no
possible owing to their critical location within the pons. Chimeric antigen receptor (CAR) T cell therapies are an emerging
therapeutic option for DMG.
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microenvironment (TIME) [15,21–23]. We explore here the cold TIME that is shaped by the unique to-
pography, genetics, and epigenetics of DMG, and the potential of CAR T cell therapies to provide a
piece of the complex puzzle of treatments necessary to improve patient outcomes. Specifically, we
discuss antigens, clinical efficacy, and the safety of CAR T therapies currently being assessed in
DMGclinical trials, as well as their limitations and potential strategies to overcome treatment obstacles.

The tumor immune microenvironment
Advances in stereotactic biopsy have helped to elucidate the complex TIME of DMG, revealing
that DMGs are immunologically 'cold' (Figure 1) [17,24,25]. Poor immune cell infiltration is con-
served across patients [10], with sparse CD3+ lymphocytes and CD8+ cytotoxic subsets, few
natural killer (NK) cells, and a lack of cytokines and chemokines (namely IL-6, IL-1A, CCL3,
IL1B, and CCL4) [25,26]. Glioma-associated macrophages and microglia (GAMs) expressing
CD11b+, IBA1+, CD163+, and CD206+ represent the largest proportion of total immune infiltrates
in tumors located in the pons (i.e., DIPG) that is known to be less proinflammatory thanmost other
cancers [17,25]. Interestingly, despite similar phenotypic expression profiles, DMG GAMs dem-
onstrate divergent transcriptional signatures from glioblastoma GAMs, which show increased ex-
pression of genes associated with chemotaxis, cellular activation, and inflammatory activation
markers, and are therefore likely influenced by tumor-derived factors [25]. DMG GAMs, however,
show an enrichment for transcripts of genes associated with cell adhesion, angiogenesis, and ex-
tracellular matrix (ECM) remodeling that can be seen in an immunosuppressive microenvironment
[25,27]. Although macrophages cocultured with HGG can increase their expression of immuno-
suppressive markers, this may be less uniform in DIPG, and could be related to genomic sub-
group [17]. DIPGs of the H3.1 genotype express a more immunosuppressive phenotype than
the H3.3 genotype, which are typically more inert; interestingly, this does not dictate survival out-
comes [17,26]. DMG GAMs also demonstrate increased expression of MHC antigen-presenting
genes; however, they lack the supportive cytokines and chemokines to effectively engage the im-
mune network [17,25]. Ultimately, DMG GAMs may not fit neatly into the classical M1 versus M2
macrophage tumorigenic paradigm, particularly when compared to other HGGs.

The cold DMG TIME can be further exacerbated by the therapeutic use of corticosteroids such as
dexamethasone because they increase the expression of cytotoxic T lymphocyte-associated an-
tigen 4 (CTLA4), potentially disengaging the limited T cell infiltrate from initiating an immune re-
sponse [1,2]. RT may act as a double-edged sword in the local TIME, and the evidence
suggests that it drives immunosuppression by negatively impacting on local lymphocyte popula-
tions [28]. By contrast, it has also been demonstrated that RT promotes increased antigen pre-
sentation and antitumor immune recruitment through proinflammatory signaling [28]. Indeed,
the limited accessibility of biopsy tissues from DMG patients, particularly following RT, has played
a significant role in our lack of understanding of how RTmodulates the TIME, with important ram-
ifications for the selection of precision therapies thereafter.

CAR T cell therapy as a promising immuno-oncology (IO) approach for DMG
The use of IO approaches such as immune checkpoint inhibitors (ICIs) has been successful
across several types of solid cancers [21,29]. Disappointingly, efficacy has not been translated
to DMG patients, possibly owing to the dependency of ICIs on local immune networks for target
engagement [15,23]. Furthermore, the lowmutational burden of DMGs negatively impacts on the
expression of immune checkpoint proteins and cancer neoepitopes, thus rendering these ap-
proaches ineffective (Figure 1) [15,17,23]. Adoptive cell therapies such as CAR T cells offer an at-
tractive approach for immune cell engagement and proinflammatory responses (Box 1), and
studies indicate that the unique DMG TIMEmay support their use. We provide below an overview
of the current landscape of CAR T cell therapy in DMG, its challenges, and future directions.
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Box 1. CAR T cell design and mechanism of action

CAR T therapies directed to tumor-associated antigens (TAAs) provide hope in overcoming the cold TIME of DMG and
promote increased response and survival. A CAR is a fusion protein incorporating four main components: an antigen-bind-
ing domain, typically composed of an antibody-derived single-chain variable fragment (scFv), tethered cytokine or ligand, a
flexible hinge region, a transmembrane domain, and an intracellular signaling domain derived from the CD3ζ subunit of the
T cell receptor (TCR) complex (Figure 3) [62]. The inclusion of an additional costimulatory domain such as 4-1BB (CD137)
or CD28 is commonplace in CAR design and has demonstrated increased persistence and more durable treatment re-
sponses [62]. Variations in these components can improve CAR T effectiveness and reduce treatment-associated toxic-
ities by influencing antigen recognition capabilities and CAR signaling efficacy [43,62,71]. To this end, novel CAR T designs
can include additional auxiliary genes, such as cytokine and chemokine receptors, to enhance CAR T cell adhesion, track-
ing, and infiltration into tumors and to induce a more favorable TIME [62]. In autologous CAR T cell development, patient T
cells are isolated from the peripheral blood by leukapheresis and transduced with CAR transgenes before expansion
ex vivo and reinfusion into the patient. Effective T cell engagement and tumor destruction occurs through recognition of
the TAA that is highly expressed on the surface of cancer cells in a MHC-independent manner. This results in the activation
of effector T cell signaling pathways, thereby prompting the release of cytotoxic granules perforin and granzyme B, as well
as proinflammatory cytokines IL-2, IL-6, IFN-γ, and TNF-α [62]. Selection of an appropriate TAA is crucial to ensure that
on-tumor/off-target (OT/OT) toxicities are minimized, and an ideal TAA is therefore expressed homogeneously across tu-
mor cells but is absent or poorly expressed in healthy tissues [92]. In addition, several factors beyond CAR T design influ-
ence therapeutic efficacy. These include T cell subset phenotypes, macrophage populations, and circulating cytokines
and chemokines [62,75]. Early results of CAR T cell therapies for DMG patients herald new promise of longer-term survival;
however, inter- and intratumoral heterogeneity may play a role in reduced response, and the TIME of DMG also influences
the therapeutic efficacy of these sophisticated therapies [39,43,58].

Trends in Cancer
The use of CAR T cells has been a breakthrough for the treatment of hematological malignancies.
The first therapy, tisangenlecleucel (commercially known as Kymriah), was approved by the FDA
in 2017 for the treatment of children and young adults with refractory/relapsed (R/R) B lineage
acute lymphocytic leukemia (B-ALL) [30]. Less than a decade later, six commercial products
are available for the treatment of various B lineage malignancies, including multiple myeloma
(Table 1) [31]. This has paved the way for extending the use of CAR T cells in the clinical assess-
ment of solid tumors, although few have delivered robust survival benefits [32]. Given the immu-
nological features of DMG, CAR T cell therapy presents a promising therapeutic approach, and
eight clinical trials in DMG are active at the time of writing (Table 2).
Table 1. FDA-approved CAR T cell products

Generic name Brand
name

Year
approved

Target
antigen

Clinical trial Disease Patient population

Tisangenlelcleucel Kymriah 2017 CD19 NCT02435849 B cell acute lymphoblastic
leukemia (ALL)

Children and young adults with relapsed or
refractory B cell ALL

2018 NCT02445248 B cell non-Hodgkin lymphoma
(NHL)

Adults with relapsed or refractory B cell
NHL

Axicabtagene
ciloleucel

Yescarta 2017 CD19 NCT02348216 B cell ALL Adults with relapsed or refractory B cell
NHL

NCT03105336 Follicular lymphoma (FL) Adults with relapsed or refractory FL

Brexucabtagene
autoleucel

Tarartus 2020 CD19 NCT02601313 Mantle cell lymphoma (MCL) Adults with relapsed or refractory MCL

NCT02614066 B cell ALL Adults with relapsed or refractory B cell ALL

Lisocabtagene
maraleucel

Breyanzi 2021 CD19 NCT03575351 B cell NHL Adults with relapsed or refractory B cell
NHL

Ideacabtagene
vicleucel

Abecma 2021 BCMA NCT03361748 Multiple myeloma Adults with relapsed or refractory multiple
myeloma

Ciltacabtagene
autoleucel

Carvykti 2022 BCMA NCT03548207 Multiple myeloma Adults with relapsed or refractory multiple
myeloma
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Table 2. CAR T cell clinical trials for DMG

Study title Target Delivery Phase Status Year Clinical trial number

HER2-specific CAR T cell locoregional immunotherapy for
HER2-positive recurrent/refractory pediatric CNS tumors (DIPG
excluded)

HER2 ICV 1 Recruiting 2018 NCT03500991

EGFR806-specific CAR T cell locoregional immunotherapy for
EGFR-positive recurrent or refractory pediatric CNS tumors
(DIPG excluded)

EGFR806 ICV 1 Active,
not
recruiting

2018 NCT03638167

Study of B7-H3-specific CAR T cell locoregional
immunotherapy for diffuse intrinsic pontine glioma/diffuse
midline glioma and recurrent or refractory pediatric central
nervous system tumors

B7-H3 ICV 1 Recruiting 2019 NCT04185038

GD2 CAR T cells in diffuse intrinsic pontine gliomas (DIPG) and
spinal diffuse midline glioma (DMG)

GD2 IV/ICV 1 Recruiting 2019 NCT04196413

C7R-GD2.CAR T cells for patients with GD2-expressing brain
tumors (GAIL-B)

GD2 IV 1 Recruiting 2019 NCT04099797

CAR T cells after lymphodepletion for the treatment of
IL13Rα2-positive recurrent or refractory brain tumors in children

IL13Ralpha2 ICV 1 Recruiting 2020 NCT04510051

Study of B7-H3, EGFR806, HER2, and IL13-zetakine (quad)
CAR T cell locoregional immunotherapy for pediatric diffuse
intrinsic pontine glioma, diffuse midline glioma, and recurrent or
refractory central nervous system tumors

B7-H3,
EGFR806,
HER2, and
IL-13-zetakine

ICV 1 Not yet
recruiting

2023 NCT05768880

Leveraging chimeric antigen receptor-expressing T cells for
children with diffuse midline glioma

GD2 IV 1 Recruiting 2023 ACTRN12622000675729

Trends in Cancer
Disialoganglioside GD2
Disialoganglioside GD2 is an attractive CAR T cell target expressed on several solid andCNS tumors
[33–36] while remaining largely absent or poorly expressed in healthy tissues [33,34,37]. Screening
the cell surface of patient-derived DMG cells revealed high and uniform expression of GD2 in
H3K27M-mutant cells, and dramatic efficacy of GD2-targeting CAR T cell therapy in preclinical
models [38]. Thus, a Phase 1 clinical trial (NCT04196413) began evaluating intravenous (IV) infusion
of autologous GD2 CAR T cell therapy, followed by optional repeated intracerebroventricular (ICV)
dosing, for young adult and pediatric H3K27M-mutant DMG patients [39]. Preliminary data demon-
strated radiographical and clinical benefits in three of four patients, including marked tumor reduc-
tions and neurological improvement; the one non-responsive patient in this initial report exhibited
elevated immunosuppressive cytokines in cerebral spinal fluid (CSF), such as transforming growth
factor β (TGF-β) [39]. The addition of ICV dosing improved or stabilized responses and correlated
with significantly lower levels of cytokine release syndrome (CRS), promotion of proinflammatory cy-
tokine/chemokines in the CNS, and decreased immunosuppressive myeloid cells detected in the
CSF compared to IV infusions. Intratumoral inflammation can cause transient worsening of neuro-
logical symptoms attributable to the neuroanatomical location of the tumor, and intratumoral
edema in structures such as the brainstem can transiently obstruct CSF flow and cause hydroceph-
alus. Such tumor inflammation-associated neurotoxicity (TIAN) [40] was seen in each of these four
subjects to a variable degree, which was anticipated and managed with neurointensive measures
[39]. These preliminary results hold promise for continued targeting of GD2 in DMG and other can-
cers [39,41,42], and multiple active clinical trials for DMG patients are currently under assessment
(Table 2). Two additional Phase 1 clinical trials (NCT04099797, ACTRN12622000675729) are
also currently recruiting DMG (and DIPG) patients as well as patients with other CNS tumors.

B7-homolog 3 protein (B7-H3)
B7-H3, also known as CD276, is also an attractive therapeutic target because of its overexpres-
sion across multiple cancers, including DMG [43–48]. In an open, single-site, Phase 1 clinical trial
Trends in Cancer, Month 2023, Vol. xx, No. xx 5
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(BrainChild-03; NCT04185038) evaluating B7-H3 CAR T cells in DMG (among other CNS tu-
mors), CAR T cells were administered ICV on a repeated, outpatient, every-other-week dosing
regimen, and the first three treated patients received a total of 40 doses [43]. Evaluation of cyto-
kines in serum and CSF demonstrated increased immune engagement following localized infu-
sions and may represent local on-target immune activation. Furthermore, circulating CAR T
cells were detectable in the CSF of patients post-treatment, suggesting there is at least brief per-
sistence in the CNS compartment. Serial proteomic evaluations in two patients were feasible and
showed elevations in multiple immunomodulatory proteins, including CD14, CD163, CSF-1, and
PD-L2, that may lead to suppression of CAR T cell activity [43]. Preliminary tolerability of intracra-
nially delivered B7-H3 CAR T cells is consistent with two other brief reports [45,46] and holds
promise for patients with DMG.

Quad CAR targeting: B7-H3, EGFR806, HER2, and IL-13Rα2
A world first Phase 1 quad-targeting CAR trial (BrainChild-04; NCT05768880) targeting B7-H3,
HER2, EGFR806, and IL-13-zetakine (IL-13Rα2) recently opened for children and young adults
(age 1–26 years) with DMG/DIPG patients as well as other R/R CNS tumors. Instead of a conven-
tional mono-antigen targeting CAR, patients enrolled in this study will receive a CAR T cell product
generated from pooled vector for a heterogeneous CAR T cell population expressing as many as
four CARs by different subsets as a means to address tumor heterogeneity.

Epidermal growth factor receptor (EGFR)
The EGFR is a well-documented therapeutic target implicated in tumor progression [49,50] and is
overexpressed in some DMGs [51]. Phase 1 clinical trials evaluating EGFR CAR T therapy against
various tumors including HGG, lung, and pancreatic cancer have been shown to be safe and fea-
sible with some clinical efficacy [52–54]. Non-pontine DMG patients have been enrolled in a
Phase 1 trial (BrainChild-02; NCT03638167) targeting the cancer specific epitope EGFR806
[55]; however, clinical data have not yet been published. In a Phase 2 trial in adults with HGG
(NCT01454596), patients demonstrated tolerable responses to EGFRvIII CAR T cells that were
given ICV [53,56]. In this study, CAR T cells were detectable via qPCR and flow cytometry in all
10 patients; however, CAR T cells could not be detected in peripheral blood 1 month post-
treatment. Encouragingly, there was no evidence of on-tumor/off-target (OT/OT) toxicities of IV
infused EGFR CAR products that have documented CAR+ trafficking to tumor sites [53]. Patients
also presented with varying degrees of CRS and immune effector cell-associated neurotoxicity
syndrome (ICANS), but did not display any evidence of OT/OT, which is consistent with other
EGFR CAR therapies [56]. Post-treatment decreases in antigen density, infiltration of immuno-
suppressive regulatory T cells, and upregulation of inhibitory pathways played a significant role
in stalling antitumor responses [53], which is also consistent with other EGFR-based therapeutic
approaches [57].

ERBB2 receptor tyrosine kinase (HER2)
HER2 has been investigated as a therapeutic target for non-pontine CNS tumors in both pediatric
and adult patients at progression (NCT03500991, NCT02442297), and demonstrated tolerability
and safety [58,59]. Both studies utilized either ICV or tumoral cavity infusions using a fractionated/
multi-infusion approach. The first study demonstrated an increase of proinflammatory molecules
CXCL10, CCL2, G-CSF, GM-CSF, IFN-α2, IL-10, IL12-p70, IL-15, IL-1α, IL-6, IL-7, and TNF-α
following treatment; however, CAR T cells were less frequently detected than in patients receiving
B7-H3 CAR T cells [58]. There were notable increases in non-CAR T cell populations following in-
fusions, whichmay suggest the ability of CAR T cells to influence immune engagement (directly or
indirectly), but how tumor location, CAR T cell engineering, or prior therapy may affect intracranial
CAR T cell persistence is still poorly understood. In the second study, the treatment was effective
6 Trends in Cancer, Month 2023, Vol. xx, No. xx
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in promoting tumor reduction, localized inflammation, and cytokine and chemokine signaling in
responding patients (6 of 17 evaluable patients) and few to no OT/OT related toxicities. The me-
dian overall survival post-treatment was 11.1 months (95% CI, 4.1–27.2 months), and 24.5
months (95% CI, 17.2 and 34.6 months) post-diagnosis; however, no conclusions could be
drawn on the overall survival benefit [59].

Interleukin 13 receptor subunit α2 (IL-13Rα2)
IL-13Rα2 is highly expressed in several CNS tumors including DMG [60,61] and is targetable
through membrane-bound IL-13 fused to the intracellular CAR signaling domains [62]. Minimal
expression of IL-13Rα2 is observed in healthy tissues, except for the testis, prompting the poten-
tial of therapeutically targeting IL-13Rα2 in DMG. A Phase 1 clinical trial (NCT04510051) for pe-
diatric patients with IL-13Rα2-positive brain tumors is currently recruiting, with clinical data yet
to be published. IL-13Rα2 directed CAR T cell therapy is also under investigation in adult patients
with glioblastoma (NCT02208362) where the treatment regimen consists of multiple doses of IL-
13Rα2 CAR, either ICV or intratumorally based on progression eligibility. Preliminary data for a
single patient demonstrated a transient complete response including elimination of metastatic
glioblastoma spinal tumors, clinical improvement, and discontinuation of adjuvant therapies
[61,63]. This correlated with detectable levels of CAR T cells and proinflammatory cytokines in
the CSF, although disease recurrence due to reduced IL-13Rα2 expression ultimately resulted
in poor responses to subsequent infusions. Preliminary data has so far supported the feasibility
and tolerability of IL-13Rα2 in glioblastoma with potential to be extended to DMG as a combina-
torial target [61,63]. A second Phase 1 clinical trial (NCT04003649) using IL-13Rα2 CAR T in
combination with monoclonal antibody (mAb) therapies nivolumab (PD1) and ipilimumab
(CTLA-4) is currently underway; however, low expression of checkpoint proteins could present
a limiting factor in DMG [15,17].

Therapy-related toxicities
Achieving a localized inflammatory response is an important component of the therapeutic effi-
cacy of CAR T cell therapies, and is often an indicator of CAR T cell activation [64]. However, in-
flammatory responses and acute therapy-related toxicities can be harmful and life-threatening,
especially in the context of CNS tumors where expansion of the compartment is not possible
(Figure 2). Therefore, minimizing the incidence of toxicity or expertly managing it are crucial for
the advancement of such cellular therapies.

On-target/off-tumor toxicities
OT/OT toxicities are an important consideration in the development of CAR T therapies
(Figure 2A). B cell aplasia is a commonOT/OT toxicity observed in CD19-directed CAR T cell ther-
apies; however, it is effectively managed with IV immunoglobulin infusions. OT/OT toxicities have
also been observed in some EGFR-directed CAR therapies in other cancer types [52,54], al-
though there are only limited reports for DMG and other CNS tumors [39,53,58]. OT/OT toxicities
can be mediated through single-chain fragment variable (scFv) antibody modifications that target
cancer-specific epitopes or high tumor-associated antigen (TAA)-expressing cells [39,43,55,58];
however, it remains an important consideration when addressing tumor heterogeneity and iden-
tifying new TAAs.

Cytokine release syndrome
The onset of a potentially lethal CRS has been seen following various CAR T cell treatments, pro-
moting a systemic inflammatory episode resulting in fever, rigors, and in severe cases, organ fail-
ure [62,64,65]. Importantly, the onset of CRS is heavily mediated through the production of the
proinflammatory cytokines IL-6, IFN-γ, TNF-α, and IL-1, as well as inducible nitric oxide
Trends in Cancer, Month 2023, Vol. xx, No. xx 7
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Figure 2. Chimeric antigen receptor (CAR) T cell therapy-associated toxicities. (A) On-target/off-tumor toxicity
occurs when healthy cells express a tumor-associated antigen (TAA) on their surface and undergo apoptosis initiated by
CAR T cells. (B) Following engagement with TAA, CAR T cells produce inflammatory signaling molecules including
granzymes, perforin, IL-2, TNF-α, and IFN-γ that initiate cell recruitment and cytolysis of the cancer cells. Circulating
macrophages become activated and produce their own inflammatory cytokines such as IL-6, IL-1, IL-10, and TNF-α,
which creates an activation feedback loop. Increased production of IL-6 and IL-1 is implicated in the onset of systemic
inflammatory episodes cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome
(ICANS), which is potentially lethal in severe cases. (C) Tumor inflammation-associated neurotoxicity (TIAN) occurs in
patients with central nervous system (CNS) disease and results from localized inflammation of the tumor site, leading to
symptoms secondary to increased edema, or from neural circuitry dysfunction. TIAN is graded according to changes in
baseline deficits.

Trends in Cancer
(Figure 2B) [65]. These are predominantly secreted by circulating myeloid cells, mainly macro-
phages, in response to CAR T cell activation, and are thought to induce an activation feedback
loop (Figure 2B) [65–69]. As many as 90% of patients receiving IV CAR T cells experience
some degree of low-grade CRS, whereas 27–47% may develop more severe symptoms [65].
It is therefore crucial to ensure that therapeutic efficacy and therapy-related toxicities are bal-
anced and considered, particularly within the CNS compartment [64].

Immune effector cell-associated neurotoxicity syndrome
ICANS is another therapy-related toxicity seen in several IO approaches that can be associated
with CRS or can develop independently [65]. Patients can exhibit an array of neurological symp-
toms including headaches, tremors, aphasia, and can also result in intracranial pressure (ICP),
hemorrhage, and coma [65,70]. The pathophysiology of ICANS is not yet fully understood; how-
ever, it is suggested to involve a similar mechanism to CRS, resulting in damage to the BBB and,
subsequently, stimulation of the systemic immune system and CNS microglia populations that
drive a neurotoxic inflammatory response (Figure 2B) [65]. Notably, ICANS has not been reported
as a frequent occurrence in DMG CAR T cell trials.
8 Trends in Cancer, Month 2023, Vol. xx, No. xx
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Tumor inflammation-associated neurotoxicity
TIAN is a potential new syndrome that can be experienced by patients with CNS malignancy and is
distinct fromCRS and ICANS. TIAN involves localized inflammation at the tumor site, resulting in crit-
ical local edema that poses risks of neuronal dysfunction, post-treatment pseudo-progression, in-
creased ICP, herniation of tissue structures, and obstruction of CSF flow (Figure 2C) [40]. Grading
of TIAN has been proposed but has not yet been prospectively described in pediatric CNS CAR T
cell trials. Incorporation of individual neurologic changes, such as headache, cranial nerve palsies,
or weakness, into the context of a broader syndrome – as has been done with CRS and other
immunotoxic disorders – will hopefully better describe this distinct biologic indication and enhance
toxicity comparisons across trials. In turn, this will aid in treatment paradigms that can be crafted
to improve safety as more pediatric cellular therapy trials become available.

Although management protocols have been developed for CRS and ICANS, there may be vari-
ability in their effectiveness depending on the tumor location and across potentially distinct bio-
logic syndromes such as TIAN [30,66]. As the field continues its rapid advance, multi-
institutional collaborations will surely begin to describe the roles of immunosuppressive treat-
ments that have been well described in patients with hematologic malignancies.

Future directions
Locoregional infusions and the TIME
Traditionally, CAR T cells have been administered as a single bolus IV infusion [31]. Repeated,
fractionated, locoregional infusions have recently demonstrated tolerability and preliminary re-
sponsiveness across patients, while also abrogating severe systemic toxicity [39,43,58,71].
This is supported by lower levels of IL-6 and IL-1 following locoregional infusions compared to
IV, lower serum cytokine levels compared to CSF, and a lower incidence of acute toxicities
[39,58]. Furthermore, increases in immunosuppressive myeloid cells and TGF-β cytokines were
greater in patients following IV infusions, suggesting that the infusion approach may impact on
myeloid populations [39]. Therefore, it could be suggested that the immunologically cold TIME
of DMG could positively (or not negatively) contribute to toxicity and tolerability, and this requires
further investigation. DMG GAM populations may also play a role in CAR T cell efficacy that ex-
tends beyond therapy-related toxicities, and studies suggest that tumor-specific subsets can
play distinct roles eliciting pro- and antitumor responses [72]. For instance, divergencies in the im-
munosuppressive TIME of pediatric DMG patients compared to adolescents and young adults
also requires consideration [10]. Although microglia are the dominant brain-derived immune
cells in pediatric DMG, macrophages predominate in adults [10], which may therefore influence
CAR T treatment selection, antigen density, T cell fitness, and inflammatory responses
[25,73,74]. Furthermore, patients who present lower absolute macrophage populations have
shown greater durable responses than those who do not [75].

Effective T cell trafficking is reliant on an adequate native signaling network (CCL3, CCL3, IL-1A,
IL-6) to recruit CD8+ cytotoxic T cells to the tumor site [76], which is potentially problematic in the
cold TIME of DMG. Locoregional infusions can effectively deliver CAR T cells directly to the tumor
site, and in turn engage a localized inflammatory response capable of promoting immune cell in-
filtration [77–79]. The possible recruitment of immunosuppressive myeloid populations which
may in turn inhibit CAR T efficacy is a factor requiring consideration as these pathways are inves-
tigated further.

Engineering CAR T strategies
Novel engineering strategies to improve the biological activity of CAR T cells may also benefit CAR
T cell persistence and efficacy in DMG. Variations in CAR T cell persistence can stem from several
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factors including CAR T cell design (Box 1), manufacturing procedures, T cell subsets, and the
influence of the TIME [79–82]. Therapeutic efficacy is highly dependent on T cell fitness, which
is characterized by the presence of exhaustion markers such as PD-1, TIM-3, CTLA-4, TIGIT,
and LAG-3 [82]. The expression of these markers can result from constant activation of CAR sig-
naling domains, mainly due to repeated exposure to its target antigen [79,83]. However, it can
also be influenced by CAR T cell designs that promote tonic signaling [5]. For instance, CD28 co-
stimulatory domains are typically more potent in terms of cytotoxic activity, but are more prone to
exhaustion, whereas 4-1BB domains are associated with more long-term, sustained responses,
with lower rates of T cell expansion and a reduced incidence of toxicities [2,4]. In the context of
DMG, tumor burden, antigen density, and scFv affinity are important factors to consider in the de-
sign of CAR T cells because they will influence CAR T cell activation thresholds, and therefore the
expression of exhaustion markers [2,4]. In addition, with the increased use of multi-fractionated
dosing strategies, an interesting question is presented – what level of persistence is required in
these settings? (see Outstanding questions).

ArmoredCARdesigns aim to boost the function of CART cells by incorporating coexpressed immu-
nomodulatory domains to improve cell persistence, cytotoxic capabilities, and/or the ability to pos-
itively influence the TIME. These can include additional secreted cytokines to create amore favorable
TIME, chemokine receptors for greater tumor homing, and coexpression of additional ligands such
as 4-1BBL and CD40L for engagement of other immune populations, as well as knockdown, or in-
hibition of exhaustion markers [2]. For instance, a second-generation GD2 CAR T cell coexpressing
IL-15 demonstrated superior engraftment and antitumor control compared to a third-generation
CAR T cell in mice with glioblastoma and DMG [7]. In addition, coexpression of IL-15 in CAR T
cells used in the treatment of glioblastoma demonstrated greater antitumor responses and in-
creased engagement of other immune entities, including CD8+, NK, and B cells [84]. Furthermore,
myeloid cells expressing IL-15Rα were simultaneously killed, thus negating their immunosuppres-
sive signaling [84]. As such, an increased understanding of DMG GAM populations may elucidate
similar engineering strategies that could be exploited for DMG and other CNS tumors.

Target selection and tumor heterogeneity
Although CAR T cell therapies have been successful in other cancers, tumor heterogeneity, and
consequently the identification of pan-cancer antigens, remains one of the most crucial chal-
lenges. Studies evaluating CAR T cells across almost all cancer types have demonstrated loss
of effectiveness owing to antigen escape or treatment-resistant populations arising from intratumor
heterogeneity (Figure 3A). To address this, several novel strategies are being developed
(Figure 3B). Coadministration of CD19- and CD22-directed CAR T cells has shown promising clin-
ical efficacy in pediatric B-ALL patients with R/R disease [85]. Encouragingly, this combinatorial
strategy has improved complete response rates and lowered the incidence of relapse compared
to single-target CD19 CAR T cells [85]. Topically, the clinical introduction of quad-targeting CAR
T cell therapy aims to extend the engineering limits of multi-antigen targeting.

Adaptor CAR technology is an emerging therapeutic strategy with potential in DMG and many
other cancers (Figure 3C). In principle, it improves flexibility of CAR targeting through multiple
adaptor molecules that bind to different TAAs and engage CAR T cells through a CAR-specific
binding tag [86–89]. These adaptor molecules allow targeting of heterogeneous populations,
while also serving as activation/inhibitory modulators to mediate acute toxic events [86–89].
Adaptor molecules may circumvent some barriers to the development of CAR approaches for
DMG and other CNS tumors because they are typically no larger than an IgG molecule, and
are thus BBB permeable [86]. Further preclinical assessment will be necessary to understand
whether this approach can address DMG heterogeneity and the management of toxicities.
10 Trends in Cancer, Month 2023, Vol. xx, No. xx

CellPress logo


TrendsTrends inin CancerCancer

Figure 3. Chimeric antigen receptor (CAR) T cell design and treatment strategies to address tumor
heterogeneity. (A) A conventional CAR comprises an antibody single-chain variable fragment (scFv) for antigen recognition,
a transmembrane domain, a costimulatory domain, and a CD3ζ signaling domain. Activation of the CAR is initiated via
recognition of a tumor-associated antigen (TAA) expressed on cancer cells and results in cell death. Heterogeneous
expression of TAA can result in selection of antigen-negative populations and relapse. (B) Multi-antigen CAR approaches aim
to address tumor heterogeneity by targeting two or more antigens simultaneously. This involves the production of multiple,
mono-target conventional CAR products, or a single product designed to express multiple scFvs. (C) Adaptor CAR
technology employs the use of antibody-like molecules that bind to TAA and engage CAR T cells through an adaptor
molecule-specific tag. Adaptor CAR T cells can be used to control CAR T cell activity. Abbreviation: DMG, diffusemidline glioma.

Trends in Cancer

Outstanding questions
Can intracranially delivered CAR T cells
induce sustained responses in children
and young adults with CNS tumors, in-
cluding DMG?

What degree of CAR T cell persistence
is required in the CNS, and can re-
peated fractionated dosing overcome
this barrier?

Are multi-antigen targeting engineering
strategies sufficient to overcome tumor
heterogeneity?

How can we more efficiently identify
novel TAAs for CAR T cell development
in DMG?

What other elements of the local
immune TIME can influence antitumor
effects, treatment resistance, and
CAR T cell engagement?

Can CAR T cells be combined with
other emerging therapeutics?

How can we most safely deliver
intracranial CAR T cells to preserve
quality of life while we aim for a cure?

How does divergent TIME in children
versus adults with DMG affect CAR T
cell selection and responses?
Concluding remarks
Although these approaches hold promise for DMG, the limited accessibility of living tumor sam-
ples for TAA phenotyping and treatment stratification remains a significant challenge [17,24]. In
addition, the production of multiple CAR constructs per patient introduces economic challenges
given the financially demanding production costs associated with therapy development [90,91].
Importantly, several questions around the impact of the TIME and unique DMGGAM populations
on CAR T cell efficacy remain unanswered, and the best CAR T strategies to overcome tumor
heterogeneity and enhance CAR T cell persistence remain to be established (see Outstanding
questions). Nonetheless, the novel developments in CAR T technology hold promise for the ex-
ploration of this strategy in cold TIMEs, particularly in DMG.
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