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Abstract: In 2021, the 5th edition of the WHO Classification of Tumors of the Central Nervous System
(WHO-CNS5) was published as the sixth volume of the international standard for brain and spinal
cord tumor classification. The most remarkable practical change in the current classification involves
grading gliomas according to molecular characterization. IDH mutant (10%) and IDH wild-type
tumors (90%) are two different entities that possess unique biological features and various clinical
outcomes regarding treatment response and overall survival. This article presents two comparative
cases that highlight the clinical importance of these new classification standards. The first clinical
case aimed to provide a comprehensive argument for determining the IDH status in tumors initially
appearing as low-grade astrocytoma upon histologic examination, thus underlining the importance
of the WHO-CNS5. The second case showed the implications of the histologic overdiagnosis of
glioblastoma using the previous classification system with a treatment span of 7 years that proceeded
through full-dose re-irradiation up to metronomic therapy. The new WHO-CNS5 classification
significantly impacted complex neurooncological cases, thus changing the initial approach to a more
precise therapeutic management.

Keywords: glioblastoma; IDH status; WHO-CNS5; glioma; re-irradiation

1. Introduction

Gliomas, the most common primary adult brain tumors, have an annual incidence
of 6 per 100,000 individuals; these rates are expected to increase by almost one-half in the
upcoming 30 years. Of these, glioblastoma (GBM) is the deadliest and most frequent (53.5%)
with an average survival of 15 months under the current standard of treatment (maximally
safe tumor resection followed by the Stupp protocol), which is a significant improvement
compared to the four months of survival without any postoperative treatment [1–8].

Accurate tumor classification is vital for correct diagnosis, accurate prognosis, and
maximally safe treatment. In 2021, the fifth edition of the WHO Classification of Tumors
of the Central Nervous System (WHO-CNS5) was published as the sixth volume of the
international standard for brain and spinal cord tumor classification. The update followed
the improved understanding of CNS molecular pathology and the recommendations of
the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy
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(cIMPACT-NOW) [9]. One innovation in the current classification involves grading gliomas
according to molecular characterization. Before the 2021 edition, the diagnosis of glioblas-
toma relied on histological findings of microvascular proliferation and necrosis and failed
to discriminate between IDH mutant (10%) and IDH wild-type tumors (90%), which are
two different entities that possess unique biological features and have different clinical
outcomes with regard to treatment response and overall survival (OS) [8,10,11].

The molecular distinction between the mutant and wild-type IDH entities has been
extensively studied for its impact on oncogenesis [12,13]. At first glance, these two en-
tities appear to be two sides of the same coin because both imply enzymatic alterations
of the Krebs cycle that affect critical metabolic processes, thereby leading to epigenetic
changes in the DNA and thus collectively affecting gene expression, cell division, and
differentiation [3,14]. However, IDH mutant tumors (most frequently through IDH1-R132H
mutation) produce high levels of D-2-hydroxyglutarate (D-H2G), consequently promoting
oncogenesis through the inhibition of key tumor suppressors. These processes disrupt DNA
and histone methylation patterns and exhibit a signature of global DNA hypermethylation
known as the Glioma CpG Island Methylator Phenotype, which can further promote the ac-
tivation of oncogenes [15–21]. The metabolic reprogramming caused by D-H2G can induce
further changes that promote gliomagenesis and render it more susceptible to radiation
and chemotherapy [22–29]. In contrast to the IDH mutant tumors, the wild-type phenotype
tumors overexpress IDH1, thereby leading to an excess of alpha-ketoglutarate, which
can lead to epigenetic changes such as DNA and histone demethylation and metabolic
changes that promote tumor progression and resistance to cell death, thus contributing
to the tumor’s aggressiveness and resistance to treatment [12,30–39]. To conclude, there
is an essential genetic distinction between IDH wild-type and IDH mutant tumors that
can explain the difference in overall survival between the two (14 months for wild-type
tumors versus 40 months for mutant tumors) and identify the crossroads in adult glioma
diagnosis [3,40].

Therefore, the WHO-CNS5 classification illustrates the dichotomy between the two
subtypes by implying that to confirm GBM, the IDH wild-type status is required and
that all astrocytic tumors with IDH mutation will be excluded from being classified as
GBM. It is also worth noting that astrocytic tumors with IDH wild-type status and three or
more genetic parameters (such as TERT promoter mutation, EGFR gene amplification, or a
combined gain of the entire chromosome 7 and loss of the entire chromosome 10 (+7/−10))
will be classified as GBM even in the absence of histologic features suggestive of GBM, thus
supporting the superiority of molecular analysis over pathology examination [9,41,42].

Our overarching impetus was to showcase the importance of the new WHO classifica-
tion and the new definition of GBM. Two seemingly similar cases, however very different
in their outcomes, demonstrated the dichotomy between the IDH mutant and wild-type
GBMs, highlighting the importance of determining the IDH status as a primary step in the
diagnostic approach.

2. Case Presentation

This article presents two cases that highlighted the clinical importance of these new
classification standards. One clinical case provided a comprehensive argument for determining
the IDH wild-type status in tumors appearing as astrocytic on histologic examination, while the
other aimed to show the pitfalls of histologic overdiagnosis of glioblastoma using the previous
system of classification, thus underlining the influence of the WHO-CNS5.

2.1. A Case of Grade 2 Diffuse Astrocytoma Upstaged to Glioblastoma

The first patient was a 53-year-old woman without any significant comorbidities
who was admitted to a neurology clinic in September 2021 for loss of consciousness with
sphincter incontinence and amnesia of the episode. Afterward, the patient expressed pos-
tictal right brachial paresis and mixed (predominantly expressive) aphasia that remitted
30 min after the episode. The patient described episodes of language disorder (which the
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patient interpreted as being correlated with stress) and insomnia several months before
the episode. No focal signs of disease or abnormalities were observed in the neurological
exam. A brain MRI revealed an infiltrative lesion in the T2/FLAIR hyper signal and T1
hypo signal occupying the left temporal lobe with left insular and thalamic extension,
which was suggestive of diffuse glioma. Another lesion with a cystic appearance was
discovered with a discrete T2/FLAIR hypersignaling area; this was most likely benign
and representative of a perivascular space (Figure 1A1,A2). The patient was referred to
neurosurgery for biopsy and symptomatic treatment with 8 mg of dexamethasone twice
daily and 500 mg of levetiracetam twice daily was recommended. A percutaneous biopsy
from the left temporal tumor guided by neuro-navigation was obtained, and multiple tis-
sue samples were sent for pathological examination. A microscopic examination revealed
infiltrative astrocytic proliferation with a low rate of cytonuclear atypia and rare mitoses
arranged in high-density areas, which was associated with thin-walled blood vessels and
mild perivascular chronic inflammatory infiltrate. Immunohistochemistry tests for ATRX,
CD34, GFAP, Ki67 = 20%, and vimentin were positive, while p53 was negative, which was
suggestive of diffuse astrocytoma (WHO Grade 2). In the absence of IDH1/2 testing, which
at that time was unavailable in our country, the samples were sent for a next-generation
sequencing (NGS) analysis to a neuropathology department in Paris (Pitié-Salpêtrière
Hospital), and the patient was referred to our oncology clinic for treatment. Neoadjuvant
chemotherapy based on the procarbazine, lomustine, and vincristine (PCV) regimen was
administered for one cycle (from 27 October 2021 until 8 December 2021). NGS testing
showed a negative IDH1 and a positive EGFRvIII mutation, which corrected the initial
histopathology and immunohistochemistry results from diffuse astrocytoma (grade 2) to
an early glioblastoma (grade 4) (the brain MRI at re-diagnosis is shown in Figure 1B1–B3.
Consequently, concurrent radiotherapy (RT) with daily temozolomide (TMZ) (February
2022) was initiated followed by adjuvant chemotherapy with TMZ q5d/4w for six con-
secutive cycles. Treatment was monitored via serial brain MRIs conducted every three
months (Figure 1C1–C3,D1–D3). After completion of the adjuvant chemotherapy, an MRI
re-evaluation showed disease progression (Figures 1E1–E3 and 2), and the patient decided
against further treatment. The patient was still alive at the time of writing.
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showing hyperperfusion within the left temporal lobe). Results of the NGS testing corrected the 
initial diagnosis, and chemoradiotherapy was initiated. (C) Brain MRI 4 weeks after 
chemoradiotherapy ((C1)—T2 sequence showing mild reduction of the hypersignal; (C2)—T1 + 
contrast showing a nodular lesion with ring-shaped contrast enhancement with intralesional 
necrosis; (C3)—rCBV postprocessing showing reduction in perfusion in the enhancing area); (D) 
brain MRI showing pseudo-progression (3 months after starting TMZ and 4 months after 
completion of radiotherapy) ((D1)—T2 sequence showing mild reduction of the hypersignal; (D2)—
T1 + contrast showing 2 nodular lesions with contrast enhancement; (D3)—rCBV postprocessing 
showing complete decrease in perfusion in the enhancing area); (E) brain MRI from October 2022 (1 
month after she finished 6 cycles of TMZ and 7 months after radiotherapy completion) showing 
disease progression ((E1)—T2 sequence showing enhanced hypersignal and significant mass effect 
of a new lesion in the anterior temporal lobe with perilesional edema; (E2)—T1 + contrast showing 
a cystic lesion with ring-shaped contrast enhancement with intralesional necrosis and new extension 
within the anterior part of the temporal lobe; (E3)—rCBV postprocessing heatmap showing no 
apparent signs of hyperperfusion). 

Figure 1. Patient’s disease progression showcased through serial brain MRI imaging. (A) Brain MRI at
diagnosis ((A1)—T2 sequence showing diffuse hypersignal in the left temporal lobe; (A2)—T1 + contrast
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showing a slight nodular enhancement located in the anterior part of the temporal); (B) brain
MRI after completion of the first PCV cycle ((B1)—T2 sequence with nodular hypersignal with
CSF-like signal from the biopsy site; (B2)—T1 + contrast showing a slight increase in the size of
the contrast-enhancing nodule; (B3)—postprocessing rCBV (relative cerebral blood volume) image
showing hyperperfusion within the left temporal lobe). Results of the NGS testing corrected the initial
diagnosis, and chemoradiotherapy was initiated. (C) Brain MRI 4 weeks after chemoradiotherapy
((C1)—T2 sequence showing mild reduction of the hypersignal; (C2)—T1 + contrast showing a
nodular lesion with ring-shaped contrast enhancement with intralesional necrosis; (C3)—rCBV
postprocessing showing reduction in perfusion in the enhancing area); (D) brain MRI showing pseudo-
progression (3 months after starting TMZ and 4 months after completion of radiotherapy) ((D1)—T2
sequence showing mild reduction of the hypersignal; (D2)—T1 + contrast showing 2 nodular lesions
with contrast enhancement; (D3)—rCBV postprocessing showing complete decrease in perfusion
in the enhancing area); (E) brain MRI from October 2022 (1 month after she finished 6 cycles of
TMZ and 7 months after radiotherapy completion) showing disease progression ((E1)—T2 sequence
showing enhanced hypersignal and significant mass effect of a new lesion in the anterior temporal
lobe with perilesional edema; (E2)—T1 + contrast showing a cystic lesion with ring-shaped contrast
enhancement with intralesional necrosis and new extension within the anterior part of the temporal
lobe; (E3)—rCBV postprocessing heatmap showing no apparent signs of hyperperfusion).
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2.2. A Case of Glioblastoma Downstaged Due to the IDH Status

The second patient was a 60-year-old woman diagnosed in June 2015. The patient
was experiencing progressively worsening headaches and dizziness that debuted three
weeks before her admittance to the neurosurgery clinic. The patient had no significant
comorbidities; she underwent surgical resection for a lumbar herniated disc 10 years prior.
A neurological examination did not show any abnormalities. A brain CT showed a space-
occupying lesion in the left parietal lobe that was generating a mass effect on the ventricles.
A subsequent MRI described a significant (56.5/51.3/50.2 mm in length/width/height)
process situated in the left frontoparietal region with a heterogeneous signal and structure,
irregular margins, and both solid and cystic components surrounded by moderate edema,
which compressed and tractioned the trigon and body of the left lateral ventricle upward,
thereby determining the displacement of the median line toward the right by approximately
10.5 mm (Figure 3A).
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Figure 3. The patient’s disease progression showcased through serial brain MRI imaging ((A)—left
frontoparietal process with a heterogeneous signal and structure, irregular margins, and both solid
and cystic components surrounded by moderate edema, which compressed and tractioned the trigon
and body of the left lateral ventricle upward, (B)—left parietal postoperative cavity with discrete wall
contrast enhancement, minimal traction over the occipital horn of the left lateral ventricle, and midline
structures in normal position, (C)—vascularized tumoral tissue on the medial and superior wall of the
postsurgical resection cavity with perilesional edema, (D)—postoperative cavity and residual tumor
after second surgery, (E)—postoperative cavity after second surgery with progression of residual
tumor, (F)—further progression of residual tumor coupled with radiation induced changes).

Consequently, the patient underwent surgical resection without postoperative com-
plications with no residual contrast-enhancing tumor on postoperative imaging. The
pathologic examination concluded that the cancer was a high-grade glioma with histologi-
cal characteristics indicating GBM. Phenytoin at 100 mg three times/day was prescribed
to control her seizures, and she was referred a month later to our clinic for adjuvant treat-
ment. The brain MRI performed before radiotherapy showed a 21/20 mm left parietal
postoperative cavity with discrete wall contrast enhancement, minimal traction over the
occipital horn of the left lateral ventricle, and midline structures in a normal position
(Figure 3B). The Stupp protocol was initiated: 3D conformal radio-chemotherapy to a total
dose of 60 Gy (2 Gy/fraction for 30 fractions at 5 fractions/week) to the tumor bed and
temozolomide administration (75 mg/m2 during radiotherapy) followed by adjuvant 5-day
TMZ (200 mg/m2) every 28 days, which showed no significant adverse effects. After the ad-
juvant treatment, the patient was monitored every three months via brain MRI and clinical
examination. The disease was clinically stable until December 2019. The MRI identified vas-
cularized tumoral tissue on the medial and superior wall of the postsurgical resection cavity
that measured 26/25 mm in axial diameters and 28 mm craniocaudal with perilesional
edema (Figure 3C). Surgical reintervention on the parieto-occipital tumor was performed
on 22 January 2020, and the pathology report identified a relapse of glioblastoma not
otherwise specified. No further testing was performed, and the patient re-initiated therapy
with TMZ 150 mg/m2 for two cycles followed by conventionally fractionated re-irradiation
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to a total dose of 60 Gy (2 Gy/fraction for 30 fractions at five fractions/week) to the tumor
bed and residual tumor with concurrent TMZ (between 29 April and 16 June 2020) and
adjuvant TMZ (June–October 2020) (see the pre-Stupp brain MRI shown in Figure 3D). The
treatment was well tolerated. Following progression (identified through a re-evaluation
brain MRI in October 2020—Figure 3E), a second-line therapy with lomustine (CCNU) at
90 mg/m2 was attempted for two cycles between November and December 2020. During
the lomustine treatment, the patient developed a grade 3 thrombocytopenia in January 2021.
After correction with corticosteroid treatment, it was replaced with carboplatin (CBDCA,
which showed an area under the curve of 4 q3w) chemotherapy for seven cycles along
with bevacizumab (15 mg/kg q3w) for the first four cycles (bevacizumab is not reimbursed
for glioblastoma treatment in Romania, and the patient’s family could only afford the first
four cycles of treatment). The brain MRI before initiating the carboplatin and bevacizumab
regimen is shown in Figure 3F.

A re-evaluation brain MRI (October 2021—Figure 4A) identified further changes
within the left parietal lobe that were suggestive of recurrence and radiation-induced
necrosis. These measured 43/44 mm, extended medially from the postoperative cavity,
and entirely circumscribed the subependymal space adjacent to the posterior horn of the
left ventricle. Because the images showed structural progression of the contrast-enhancing
lesions, without the possibility of undergoing a further biopsy, the patient was prescribed
metronomic TMZ (50 mg/m2 daily). Since then, the disease has been clinically stable, and
the last MRI in September 2022 showed minimal changes. Treatment was administered
without any toxicity issues and was only interrupted for a brief period (two weeks) due to
COVID-19 infection. However, compared to the previous MRI 11 months prior, a probable
recurrence was visible in the posterior part of the cystic cavity (Figure 4B).
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Figure 4. The patient’s last 2 MRI scans, T1 + contrast sequence (October 2021 and September 2022):
(A)—changes within the left parietal lobe suggestive of recurrence and radiation-induced necrosis,
extending medially from the postoperative cavity, around the subependymal space adjacent to the
posterior horn of the left ventricle; (B)—discrete changes towards a probable tumor recurrence in the
posterior part of the cystic cavity.

Considering the disease’s clinical evolution and treatment response, we considered
re-challenging the initial diagnosis. We also sent pathology samples collected from the
surgical re-intervention to Pitié-Salpêtrière Hospital in Paris for NGS analysis. The result
was positive for an IDH1 R132H mutation (October 2022), thus correcting the diagnosis
from GBM to an astrocytoma IDH mutant (grade 4).
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3. Discussion

This case review was intended to serve as a precise argument for the distinction
between IDH mutant gliomas and IDH wild-type glioblastomas. Our cases were common
with regard to the age, sex, and risk factors for gliomas: two female patients aged 53 and
60 years, respectively, with neither patient having any significant comorbidity or exposure
to risk factors associated with gliomas [8,43–47]. Both patients had clinical manifestations
consistent with the semiology described in the literature [46,48–53]. As in most cases, a
brain MRI was the imaging standard that confirmed the clinical suspicion of brain neoplasia,
and both patients presented typical MRI semiology for glioma [5,8].

The current standard for GBM treatment is maximally safe surgical resection that is
continued with the Stupp protocol, which consists of concurrent RT and TMZ for six weeks
followed by six months of adjuvant TMZ [1,2,8,54]. The initial therapeutic step in glioma
treatment is the neurosurgical intervention aimed at mass effect relief, cytoreduction,
and adequate tissue sampling for histologic and molecular tumor characterization [5].
Furthermore, it is well established that an extent of resection of over 90% (with a ≤5 cm3

residual non-contrast enhancing tumor) significantly improves the overall survival (OS) of
GBM patients [8,55–57]. In our report, only the second patient was a candidate for tumor
reduction, while the first patient was a candidate only for biopsy. However, a survival of
over 14 months (the patient was still alive at the time of writing), which was close to the
median survival of all treated GBM patients, was achieved with chemoradiotherapy, thus
underlying the benefit of the Stupp protocol.

According to the new classification, GBM is defined by histological features such as
predominant nuclear and cellular atypia, a frequent mitotic index, necrosis, and vascular
proliferation; as well as by molecular markers such as the IDH wild-type, the gain of
chromosome 7 and loss of chromosome 10, amplification and rearrangements of tyrosine
kinase receptors such as EGFR (50% of cases), aberrant telomere maintenance through TERT
promoter mutations, alterations of the p53 pathway, and the mutation and deletions of
PTEN (40%) [58]. On the other side, IDH mutant gliomas originate in low-grade tumors and
show a progressive accumulation of genetic alterations and a progressive increase in the
tumor grade. At the molecular level, an IDH mutation is associated with a loss-of-function
mutation in tumor protein TP53 and ATRX [59].

In the light of WHO-CNS5 classification, the accurate detection of genetic variants
such as single substitutions (IDH1/2 and TERT), chromosomal abnormalities (1p/19 q
deletions, CDKN2A, and EGFR), or promoter methylation (MGMT) is critical for the correct
diagnostic and treatment of gliomas. Next-generation sequencing (NGS) performed in
reference genetic laboratories, rather than immunohistochemical assessment, is the most
reliable method for evaluating the IDH status [42].

The pathology and molecular report that followed the tissue sampling represented the
branch point between the two cases.

Our first case was initially considered to be a grade 2 diffuse astrocytoma. In contrast,
our second case was initially considered to be a grade 4 GBM following the microscopic
and immunohistochemistry tests and according to the 2007 WHO Classification of Tumors
of the Central Nervous System [60].

For the first patient, the molecular diagnosis change was pivotal because the neoad-
juvant PCV chemotherapy (administered per current guidelines for diffuse astrocytoma
WHO Grade 2) was stopped immediately after the first cycle, and the Stupp protocol was
promptly commenced [2,8,61].

Regarding EGFR alteration in glioma, the most frequent is the deletion of exon 2–7 in the
extracellular domain of EGFR, which results in the truncated mutant variant III (EGFRvIII);
this was found in patient 1, which altered the prognostic and treatment plan. Activated
EGFR may engage several signaling pathways that include PI3K/Akt, Ras/Raf/Mek/ERK,
STAT3, and phospholipase C, thereby stimulating proliferation, invasion, angiogenesis,
and resistance to apoptosis [62].
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A recent study evaluated the prognostic factors and impact of treatment within molec-
ular subgroups in 120 IDH wild-type former grade II diffuse astrocytomas and reported
that patients with EGFR amplification had a worse outcome than those without EGFR
amplification–median PFS 8 vs. 18.3 months and median OS 23.5 vs. 28.4 months compared
to EGFR-intact subgroup (p = 0.040). No patient with an EGFR mutation was alive at five
years, which emphasized the critical prognostic role [63].

In our second patient, the IDH mutant status could explain the dichotomy between
GBM and astrocytoma (IDH mutant; WHO Grade 4). After gross total resection and the
Stupp protocol, the patient had a prolonged progression-free survival (PFS). Even after
relapsing, the disease was much easier to control by using full-dose re-irradiation and
chemotherapy (the patient was still alive at the moment of writing—seven years after the
initial diagnosis and three years after the disease progression was first documented) and
showed an excellent response to both adjuvant and metronomic TMZ (PFS > 12 months for
metronomic TMZ).

There is no standard of treatment for recurrent glioma, and a multimodal approach
consisting of surgical reintervention, irradiation, and multiple lines of chemotherapy is
essential for obtaining a more prolonged survival in a glioma patient [54,64].

The data on the use of lomustine for recurrent GBM is controversial. In 1979, Hochberg
published a retrospective study of the quality and length of survival of 74 patients treated
with lomustine following craniotomy and irradiation. The results were discouraging and
showed an mOS of 11.5 months (no benefit added compared to irradiation alone) but
with an added benefit for the quality of life [65]. Phase III studies added further data
on lomustine use for other drugs in the same setting but showed the same comparative
results. It is also important to note that grade III-IV thrombocytopenia was a reported side
effect [54,66–68].

The addition of bevacizumab to lomustine showed a significant improvement in
oncologic outcomes in several studies by significantly prolonging PFS (4 months compared
to 1 month for lomustine monotherapy). However, the combination did not confer a
survival benefit over lomustine monotherapy, and as such, it is not reimbursed in many
countries [54,69–71]. It is important to note that in our case, the lomustine + bevacizumab
regimen was proposed to our patient as the first-line treatment for recurrent GBM. However,
due to a lack of reimbursement and other drug access challenges, treatment with lomustine
was started without bevacizumab and continued until intolerable toxicity occurred (grade
III thrombocytopenia). Afterward, lomustine was switched to carboplatin, which was
administered with bevacizumab, a combination that has been proven effective [72,73].
Despite the lack of OS benefit, the role of bevacizumab in recurrent GBM treatment might
be underrated. Several studies have shown that the antiangiogenic effect of bevacizumab
impacts the quality of life by limiting brain edema and radiation necrosis, which are very
common in patients treated for glioma, especially in the setting of re-irradiation. As such,
further evidence is needed to support the added benefit of bevacizumab in oncologic
outcomes [54,74]

Metronomic temozolomide was tested in many phase I and II clinical trials with
different results [75–77]. A study that included 37 patients with recurrent GBM and grade
III glioma reported a 36% clinical control rate and a median overall survival of 7 months [76].
Worth noting is the exceptional compliance that the patient had under metronomic TMZ
treatment; the administration was only postponed after a COVID-19 infection (the patient
was unvaccinated for COVID-19) for two weeks [78]. In our institute, advanced-stage
patients undergoing chemotherapy recorded increased mortality rates due to COVID-19
infection [79]. However, our patient managed to clear the infectious episode in good
condition and resumed metronomic chemotherapy.

Our patient in the second case enjoyed a prolonged survival that was partially justified
by the IDH mutant status. One consequence was the administration of two complete-dose
radiotherapy cycles within a 5-year time frame. Although there are no treatment stan-
dards for a recurrent GBM, re-irradiation coupled with surgery is a frequently described
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local treatment option despite the increased risk of radionecrosis to previously irradiated
brain tissues [80]. The optimal re-irradiation dose and radiotherapy technique is still a
matter of debate. The cumulative EQD2 administered to GBM patients (the cumulative
total dose from the two radiotherapy cycles normalized to 2 Gy fractions) was signifi-
cantly associated with survival; cumulative doses ≥90 Gy provided a superior benefit
compared to <90 Gy [81]. According to the literature, there is a 2–12% estimated risk of
radiation necrosis at one year for cumulative EQD2 > 96.2 Gy and up to 17% for cumulative
EQD2 > 137 Gy [80]. Concerning intracranial organs at risk, Niyazi et al. analyzed the
long-term toxicity in 58 patients re-irradiated for malignant glioma and found no toxicity
even at a cumulative EQD2 of 80.3 Gy, 79.4 Gy, and 95.2 Gy to the optic chiasm, optic
nerves, and brainstem, respectively [82]. We considered our patient’s case to be favored by
the intra-cranial parietal position of the tumor bed and residual tumor, which was relatively
far from critical organs at risk, and the five years that elapsed after the first radiotherapy
cycle; as such, a second 3D conformal, conventionally fractionated radiotherapy cycle was
deemed feasible. In our patient’s case, the cumulative EQD2 was 120 Gy. Additionally,
following re-irradiation, our patient completed four cycles of adjuvant bevacizumab, which
may have proven to play a protective role because studies revealed its association with
reduced treatment toxicity [83].

After a thorough review of the literature, we can also retrospectively remark on the
considerable impact of the second surgery on our second patient. The re-intervention
provided new tissue for histopathologic and biomarker analysis, prevented cranial hy-
pertension, and positively impacted the patient’s outcome as shown by a 2021 study by
Pasqualetti et al. [84].

These results aligned with data from the literature and highlighted the prognostic
importance of the IDH status. In the future, new emerging biomarkers alongside IDH could
improve the diagnostic and therapeutic management of GBM. A classic example would
be the methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter,
which correlates to a better response to TMZ [85–87]. Other biomarkers include inflam-
mation indexes (neutrophil x platelet x leukocyte/lymphocyte x monocyte—NPW/LM;
or neutrophil x platelet x monocyte/lymphocyte—NPM/L) which proved to be valuable
prognostic markers in a 2022 study [88]. Furthermore, biomarkers that predict the response
to radiotherapy would be beneficial for managing GBM patients. Novel biomarkers such
as the temporalis muscle thickness correlate to lower response and survival rates for radio-
or radio-chemotherapy [89]. No less critical is the use of clinical prognostic factors (perfor-
mance status, tumor dimension < 4 cm, gross total resection, and number of TMZ cycles),
which is essential in order to stratify and delineate the following treatment options for the
patient [90]. Further studies are needed to develop and validate new biomarkers to achieve
the goal of a personalized and precise medicine.

4. Conclusions

The WHO-CNS5 classification significantly impacted two complex neuro-oncology
cases, thus changing the approach to a more precise therapeutic management. The scope
of our case series was to provide a powerful argument for using the new WHO-CNS5
definition of GBM as the gold standard for diagnostic management in the era of precision
medicine. The new classification provides a comprehensive redefinition of GBM while con-
sidering the evidence on the intrinsic differences between IDH mutant and IDH wild-type
tumors. In the future, we expect to see IDH status determination in all GBM-suspected
patients for diagnostic and prognostic purposes. We also look forward to seeing updated
clinical data from emerging clinical trials that validate the differences in oncological out-
comes of the distinct subgroups.
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