
Citation: Vallejo, F.A.; Sigdel, G.;

Veliz, E.A.; Leblanc, R.M.; Vanni, S.;

Graham, R.M. Carbon Dots in

Treatment of Pediatric Brain Tumors:

Past, Present, and Future Directions.

Int. J. Mol. Sci. 2023, 24, 9562.

https://doi.org/10.3390

/ijms24119562

Academic Editor: Paola Manini

Received: 12 April 2023

Revised: 23 May 2023

Accepted: 27 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Carbon Dots in Treatment of Pediatric Brain Tumors: Past,
Present, and Future Directions
Frederic A. Vallejo 1, Ganesh Sigdel 2 , Eduardo A. Veliz 2, Roger M. Leblanc 2, Steven Vanni 1,3,4

and Regina M. Graham 1,5,*

1 Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace,
Miami, FL 33136, USA

2 Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
3 HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA
4 Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL 33328, USA
5 Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
* Correspondence: rgraham@med.miami.edu; Tel.: +1-305-321-4972; Fax: +1-305-243-3337

Abstract: Pediatric brain tumors remain a significant source of morbidity and mortality. Though
developments have been made in treating these malignancies, the blood–brain barrier, intra- and
inter-tumoral heterogeneity, and therapeutic toxicity pose challenges to improving outcomes. Varying
types of nanoparticles, including metallic, organic, and micellar molecules of varying structures and
compositions, have been investigated as a potential therapy to circumvent some of these inherent
challenges. Carbon dots (CDs) have recently gained popularity as a novel nanoparticle with theranos-
tic properties. This carbon-based modality is highly modifiable, allowing for conjugation to drugs,
as well as tumor-specific ligands in an effort to more effectively target cancerous cells and reduce
peripheral toxicity. CDs are being studied pre-clinically. The ClinicalTrials.gov site was queried
using the search terms: brain tumor and nanoparticle, liposome, micelle, dendrimer, quantum dot, or
carbon dot. At the time of this review, 36 studies were found, 6 of which included pediatric patients.
Two of the six studies investigated nanoparticle drug formulations, whereas the other four studies
were on varying liposomal nanoparticle formulations for the treatment of pediatric brain tumors.
Here, we reviewed the context of CDs within the broader realm of nanoparticles, their development,
promising pre-clinical potential, and proposed future translational utility.
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1. Introduction

Brain tumors are a significant source of morbidity and mortality within the pediatric
population [1]. The Central Brain tumor Registry of the United States estimates that 5260
new cases of both malignant and non-malignant tumors of the central nervous system
(CNS) will be diagnosed in children ages 0–19 during 2023 alone. Between 2014 and 2018,
there were an average of 539 deaths annually in children and adolescents aged 0–19 due
to tumors of the brain and CNS. Gliomas represented the majority of all CNS tumors
at just above forty percent, followed by tumors of the pituitary comprising more than
fourteen percent, and finally, embryonal tumors representing just under ten percent [2].
The other approximately thirty-five percent of tumors were comprised of many groups
of less-common tumors. Roughly forty-thousand children were noted to be living with
a diagnosed CNS tumor during 2022. Though the prevalence of pediatric leukemia was
also noted to be roughly forty-thousand, the recent advancements in the treatment of
hematologic malignancies have not been paralleled in the treatment of pediatric brain
and CNS tumors [3]. These pediatric patients often face extremely difficult treatment
regimens and often succumb to these devastating pathologies. Additionally, pediatric drug
development garners much less attention than adult drug development, resulting in fewer
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appropriately labeled pediatric drugs [4]. Therefore, expeditious development, refinement,
and assessment of novel treatment modalities are necessary to effectively combat these
malignancies in the future.

Many efforts have been undertaken to investigate novel therapies to circumvent many
of the challenges confronted in the treatment of pediatric brain tumors including, but not
limited to the blood–brain barrier, inter- and intra-tumoral heterogeneity, the development
of drug resistance, and tumor invasion into surrounding neurocritical structures [5]. The
blood–brain barrier (BBB) has been extensively characterized and studied [6–8]. This
network of pericytes and podocytes acts to selectively inhibit certain compounds and
molecules from passing into the brain itself, thereby limiting the ability for certain drugs
to reach their target. In addition to the selective permeability of the blood–brain barrier,
aggressive tumors have been shown to modify their expression profiles in response to
certain drugs, upregulating membrane pumps to remove cytotoxic therapies and silencing
pro-apoptotic cascades that would otherwise exist in normal tissue. Additionally, tumors
can evolve over time as susceptible cell populations are eradicated, and those that have
favorably mutated to resist the intervention survive and proliferate.

Several of the most-common pediatric brain tumors including pilocytic astrocytomas,
medulloblastomas, ependymomas, and high-grade gliomas (HGGs) including diffuse in-
trinsic pontine gliomas (DIPGs), or diffuse midline glioma, and glioblastoma (GBM) are
commonly found in extremely delicate areas of the brain. Both pilocytic astrocytomas
and medulloblastomas commonly arise in the posterior fossa, where growth may result
in severe cerebellar dysfunction, aqueduct obstruction and ensuing non-communicating
hydrocephalus, herniation, and drop-metastases in the setting of advanced disease. Ependy-
momas arise along the lining of the ventricular system, commonly arising in the fourth
ventricle and central canal, where expansion may result in increased intracranial pressure
and compression of surrounding structures. DIPGs, as their name suggests, are found
within the brainstem at the pons. These tumors are extremely difficult to treat, and their
growth commonly results in marked cranial nerve deficits, long tract signs, and ensuing
critical brainstem function failure. GBMs grow extremely quickly with cells invading sites
distant from the tumor’s site of origin, underscoring the difficulty in achieving complete
resections in these patients. Surgical resection remains a primary aim for many of these
tumors with subsequent radiotherapy and or chemotherapy in certain cases depending on
the pathology. Other tumors, such as DIPGs, are rarely considered candidates for surgical
resection, and contemporary treatment paradigms are insufficient to improve pediatric
patient prognoses.

For over a decade, effort has been aimed to minimize therapeutic toxicity in favorable-
risk tumor cohorts while attempting to improve outcomes and discover novel modalities
in poor-risk tumor groups [9]. Improvements in genomic and proteomic analysis have
rendered thorough descriptions of the expression landscape across several pediatric brain
tumor types, leading to more thorough classifications of tumor sub-types [10,11]. By
utilizing these data, researchers can investigate therapies targeted to the precise molecular
and genomic susceptibility of unique tumor groups.

Nanoparticles have been investigated as novel drug delivery systems by which con-
ventional therapy may be improved or modified. The term “nanoparticle” is an umbrella
term that encompasses metallic, organic, and micellar molecules of varying structures and
compositions. Broadly, nanoparticles refer to particles ranging from 1 to 100 nanometers
in size with varying biological, chemical, and physical properties. The more commonly
studied groups of nanoparticles, which have been investigated in preclinical studies, in-
clude liposomes, dendrimers, metallic nanoparticles, quantum dots, and carbon dots (CDs).
These categories of nanoparticles differ in their composition, preparation method, ability
to enter cells, toxicity profile, and proposed translational utility. Herein, we posit that
CDs are a novel and promising theranostic modality, which can be extensively modified
for targeted drug delivery systems, as well as employed for tumor imaging. The aim of
this review was to provide an introduction to pediatric brain tumors and CDs, discuss the
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relevant published literature, and propose a path forward for the use of CDs as a novel
drug delivery platform in the treatment of pediatric brain tumors.

2. Types of Nanoparticles

Liposomes are spherical lipid bilayers with inner aqueous compartments, whereas
micelles consist of a singular layer, which can encapsulate hydrophobic therapies. Both have
been employed as drug delivery platforms, encapsulating drugs that otherwise may not
readily enter hydrophobic environments. Dendrimers are three-dimensional polymers with
tightly controlled nanoarchitectonic properties, enabling them to have specific functional
groups exposed at the surface for gene therapy and drug delivery. Quantum dots are
nanoparticles with strong fluorescent properties, which have been under investigation
as a diagnostic imaging modality. Metallic nanoparticles most commonly refer to those
comprised of gold, silver, copper, iron, as well as zinc oxide, which may be used to deliver
drugs, as well as for their intrinsic tumoricidal and magnetic capabilities.

In a recent comprehensive review of nanoparticles for use in pediatric brain tumors,
each of the aforementioned categories was summarized with several strengths and weak-
nesses demonstrated across several preclinical studies [12]. For instance, metallic nanopar-
ticles offer the advantage of harboring anti-cancerous properties, potential sensitization to
radiotherapy, and the ability to induce magnetic hyperthermia, but have the disadvantage
of necessitating costly precursors, as well as peripheral accumulation and cytotoxicity.
Lipid nanomaterials are easily assembled and biocompatible, but have a high uptake in the
liver and spleen. The surface moieties on dendrimer nanoparticles can be tightly controlled
to load certain compounds, but may result in potential neurotoxicity. Finally, quantum dots
are highly florescent and can, therefore, be used for photodynamic therapy, but employ
heavy metals such as cadmium with complex formulations.

3. Pediatric Nanoparticle Clinical Trials

A query of ClinicalTrials.gov with the search terms brain tumor and nanoparticle
or liposome, micelle, dendrimer, quantum dot, or carbon dot revealed 36 studies in total.
Of those 36 studies, only six included pediatric patients. Two of the six studies were on
convection enhanced delivery of MTX110, a Panobinostat nanoparticle formulation, in the
treatment of midline gliomas or DIPGs. The other four studies were on varying liposomal
nanoparticle formulations including liposomal doxorubicin, Marquibo, which is Vincristine
Sulfate in a liposomal package, liposomal cytarabine, and liposomal irinotecan for the
treatment of pediatric brain tumors. At the time of this study, results had only been posted
for one of the six studies in which seven patients had been enrolled (NCT03566199). This
phase I study demonstrated that the Convection Enhanced Delivery (CED) of Panobinostat
produced a serious adverse effect of R-sided musculoskeletal weakness and vagus nerve
disorder in 1/7 patients. Additionally, 85.7% of the participants were alive at 12 months
after diagnosis (95% CI 63.3 to 100). Notably, all studies were phase I-phase I/II clinical
trials. At the time of this review, no studies were available on CDs in pediatric brain tumors.

4. Carbon Dots

CDs are a new class of fluorescent and zero-dimensional (0D) carbon nanomaterials
typically <10 nm in size. They have been studied extensively since their initial description
in 2004 [13]. The identification of CDs was serendipitous when “fluorescent impurities”
were observed during the synthesis of carbon nanotubes. Subsequently, an explosion of
research pertaining to their synthesis, properties, and applications has occurred. CDs
are analogous to semiconductor quantum dots in regard to size and photoluminescent
properties, but unlike quantum dots, which contain heavy metals, CDs are largely non-
toxic [14]. CDs demonstrate good water dispersibility and high bio-compatibility [15].
In addition, CDs’ tunable fluorescent properties and abundant surface functional groups
allow for easy modifications [16]. Combined with the low cost of synthesis, eco friendliness,
and good stability, CDs have attracted research focused on optical, energy, and bio-medical
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applications [14]. The biomedical uses of CDs have been studied extensively in recent
years. CDs can be used in various biomedical applications such as bioimaging [17,18],
nanomedicine, drug delivery, photodynamic [19] and photothermal [20] therapies, as well
as antibacterial agents (Figure 1).
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and as antibacterial agents.

5. Bioimaging

Bioimaging includes fluorescent imaging, magnetic resonance imaging (MRI), pho-
toacoustic imaging, and multimodal imaging. CDs exhibit bright photoluminescence
and good photostability. Red-emissive tumor-selective CDs (wavelengths between 600
and 700 nm) are desirable for bioimaging and fluorescence-guided surgery due to the
reduced autofluorescence and better contrast between tumor and non-tumor tissue [21,22].
Photoluminescence in the red region of visible light was achieved by our group by im-
plementing o-Phenylenediamine (o-PDA) as a precursor and conjugating the resulting
CDs to the transferrin ligand [23]. This has been achieved by other groups as well and
utilized for imaging in high-acidity environments, analogous to those that might be found
in the hypoxic microenvironment at tumor cores [24,25]. NIR-emissive CDs (700–1400 nm)
are ideal for in vivo bioimaging applications because NIR light can penetrate deep into
tissues [26]. Gadolinium-doped CDs are the most-popular in magnetic resonance imaging
(MRI) applications due to their strong contrast enhancement and rapid elimination from
the body after MRI examinations [27]. Similarly, highly biocompatible iodine-doped CDs
proved to be superior to the conventional computed tomography (CT) contrast agent for
contrast-enhanced CT imaging [28].

6. Carbon Dot Synthesis

A wide variety of precursors with strong chemical inertness and numerous surface
carboxylic groups can be used to synthesize CDs. The presence of carboxylic moieties results
in excellent water solubility. The presence of these groups allows for functionalization with
organic, polymeric, inorganic, or biological species. Two synthetic approaches “top-down”
and “bottom-up” are common for the preparation of CDs (Figure 2). In the top-down route,
a larger carbon structure such as graphite and carbon nanotubes is broken down into CDs
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using laser irradiation or electrical discharge. In the bottom-up route, small precursors such
as carbohydrates and citrate are used to produce CDs through various synthetic techniques
such as hydrothermal/solvothermal, microwave, and sonication processes.
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The most-popular synthetic approach to prepare CDs is microwave irradiation due
to short reaction time, uniform heating, and high yield. Zhu et al. (2009) applied this
method for the first time to prepare CDs from polyethylene glycol (PEG) and sucrose [29].
Citric acid is a common precursor in the microwave synthetic process because of its bio-
compatibility and low cost. Citric acid is often paired with various dopants such as
ethylenediamine [30], phenylenediamine [31], and urea [32] to produce a variety of carbon
dots. Another popular method to prepare CDs is the hydrothermal/solvothermal method.
A wide variety of carbon-containing precursors have been used to synthesize CDs using
the hydrothermal or solvothermal method, such as carbohydrates, proteins, and many
organic acids including amino acids and citric acids. Zhao et al. used a coplanar com-
pound called 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide
hexafluorophosphate (HATU) to prepare CDs using a one-step solvothermal method [33].
This method is easy to replicate, and the optical properties can be tuned by modifying
the reaction conditions [34]. Less commonly used is ultrasonication, which is the gentlest
method, using ultrasonic waves to create very high local temperatures. Zhou et al. (in
2018) reported the synthesis of yellow-emissive CDs (Y-CDs) using the ultrasonication
method [35]. The main difference among different CDs resides in the structure, primarily
regarding the core. The cores of carbon nanodots are usually amorphous, and each class of
CDs has a different core structure. However, their surfaces are believed to be composed of
simple functional groups or small organic molecules [36].

Besides the many fascinating optical properties and outstanding biocompatibilities
of CDs, unmodified pristine CDs possess some drawbacks, such as poor selectivity and
sensitivity toward specific biological systems and low quantum yield. Elemental doping of
CDs can greatly modify physiochemical properties including optical properties and surface
functional groups and, thus, improve their use in biomedical applications [37]. Likewise,
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the high surface-area-to-volume ratio allows for efficient modifications via surface passiva-
tion and functionalization. Several reviews on the modifications of CDs have recently been
published [38–40] and, therefore, will only be discussed briefly here. Nanoarchitectonics
refers to the creation of functional nanomaterials via the careful application and selec-
tion of precursors, synthesis conditions, and surface modifications. In particular, surface
modification has generated much attention and can be either accomplished by covalent
or non-covalent functionalization. The most-common surface functional groups include
carboxyl, hydroxy, and amine and can be utilized to attach tumor-targeting ligands and
anti-cancer drugs. The most-common covalent modification utilizes EDC/NHS coupling
chemistry to form a stable amide bond between the CD carboxyl group and a primary
amine (Figure 3). This is often used to covalently attach a protein or peptide or chemothera-
pies such as doxorubicin [41] and gemcitabine [42]. Other less-commonly used methods
include silylation, esterification, sulfonation, and copolymerization reactions [43]. On the
other hand, non-covalent modifications can be achieved by electrostatic, complexation, or π
interactions between CDs and the desired molecule. Non-covalent modifications have the
unique feature that they do not disrupt the structural integrity of CDs. These modification
methods introduce new functional groups and/or target molecules on the surface of CDs,
improving their properties and their biological interactions.
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7. Biocompatibility

Biocompatibility is a key determinant toward the development of nanomaterials in-
tended for biological applications. This is especially true for children since their bodies are
still developing, which may make them more vulnerable to adverse effects when utilizing
therapies aimed at interfering with cell division. Several preclinical studies have demon-
strated the safety and biocompatibility of carbon dots. In 2009, Yang et al. assessed CDs’
biocompatibility for the first time in mice by exposing them to CD aqueous solutions [44].
After four weeks of exposure, the mice demonstrated normal behavior and no negative
symptoms. In 2013, the toxicity of various photoluminescent CD concentrations was thor-
oughly evaluated in mice and rats by biochemical, hematological, and histopathological
analyses. No significant toxic effects were observed, and it was concluded that the prepared
CDs demonstrated chemical inertness, low cytotoxicity, and good biocompatibility [45].
When tumor-targeted CDs were investigated, it was noted that the CDs preferentially
accumulated in the tumor, with negligible organ retention [46]. Furthermore, due to CDs’
small size, they can be rapidly excreted in the urine, unlike other nanomaterials, which can
accumulate in the liver and kidneys. The precursors used, route of synthesis, and degree of
surface passivation or functionalization could affect how the resulting CD formulation in-
teracts with biological components; therefore, potential toxicities or adverse effects should
always be carefully examined.
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Our group has published extensively on both the chemical synthesis, as well as
preclinical efficacy of CDs used to treat pediatric tumor cell lines. As with other types of
nanoparticles, the synthesis greatly dictates their physiochemical properties and, thus, their
effect on biological tissues. We recently published our experience with synthesizing CDs
from two bottom-up approaches utilizing glucose as a precursor [47]. CDs produced via
microwave-assisted synthesis were shown to effectively cross the BBB in zebrafish and
rat models, accumulating in neurons. CDs synthesized using hydrothermal carbonization
were cytotoxic to pediatric tumor cells specifically. Though both synthesis routes utilized
the same precursors and were shown to be non-toxic to non-tumoral cell lines, they resulted
in CDs with differing properties and translational utility. The optical properties, as well as
functional groups exposed on the CD surface may be selected for during synthesis. CD
surface modification via functionalization or passivation can further improve the sensitivity
and selectivity for tumor cells, as well as enhance fluorescent intensities. CDs also offer an
extremely inexpensive and easy route of synthesis, allowing for large-scale cost-effective
reproduction and broad accessibility.

8. Crossing the Blood–Brain Barrier

A major hurdle to effective brain tumor treatment has been the failure of most therapies
to cross the BBB at therapeutic levels. The unique microvasculature of the BBB is a structural
and functional barrier tightly controlling the entry of molecules into the CNS. Capillary
endothelial cells, astrocyte projections, and the basement membrane function as a physical
barrier limiting the entry of substances from the circulation into the brain parenchyma.
Tight junctions between endothelial cells allow the passage of a few select substances such as
oxygen and carbon dioxide (Figure 4). It is estimated that 98% of small molecules and 100%
of large molecules cannot cross the BBB, severely limiting the number of therapeutic agents
available for brain tumor treatment [48]. Despite this, we and others have demonstrated
that both surface-modified and bare CDs can cross the BBB. Using a zebrafish model, Li, S
et al. demonstrated that CDs synthesized via the top-down method from carbon powder do
not cross the BBB. However, when conjugated to the iron transport protein transferrin, these
CDs readily cross the BBB [49]. Transferrin receptors (TfRs) are highly expressed on brain
endothelial cells, which makes them excellent targets to transport transferrin-conjugated
CDs and other nanoparticles across the BBB via a process known as receptor-mediated
transcytosis. While the TfRs are commonly used to facilitate BBB crossing, other receptors
present on the BBB can be exploited for transport. For example, angiopep-2, a ligand for
the low-density lipoprotein receptor-related protein 1 present on the BBB, can be used
to deliver cargo into the brain parenchyma. Liu et al. demonstrated that systemically
administered angiopep-2-decorated fluorescent CDs crossed the BBB in healthy Sprague–
Dawley rats and accumulated in tumor tissue in a mouse C6 glioma orthotopic brain
tumor model [21]. Similarly, CDs can be synthesized to take advantage of transporters
expressed at high levels on the BBB such as the glucose transporter GLUT1 or the L-type
amino acid transporter 1 (LAT1). Seven et al. demonstrated that fluorescein-conjugated
CDs prepared from glucose readily crossed the BBB and were visualized in the CNS by
fluorescent microscopy [50]. Furthermore, transporter-mediated uptake was confirmed
when yeast expressing glucose transporters showed significantly greater uptake than yeast
lacking the transporters. Likewise, Mintz et al. showed that tryptophan CDs readily cross
the BBB in a zebrafish model. The authors hypothesized that the residual tryptophan
molecules present on the CDs allowed recognition by the LAT1 transporters [51]. Another
way CDs can cross the BBB is by adsorptive-mediated transcytosis, which is dependent
on electrostatic interactions between negatively charged moieties on the luminal side of
brain capillary endothelial cells and positively charged surface functional groups or ligands
of the CDs. The methods commonly used to deliver cargo across the BBB are shown in
Figure 4.
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9. Active Targeting

Pediatric tumors in the CNS range from benign inconsequential growths to fast-
expanding malignancies. Two tumors that receive the same pathological diagnosis may
vary greatly in susceptibility to treatment. Furthermore, it is well established, especially
in aggressive tumors such as gliomas, that individual populations of cells within the
same tumor may also express different genomic expression profiles, protein expression,
and sensitivity to certain treatments. Many chemotherapeutic regiments that target these
tumors have peripheral toxicity on unwanted tissues, posing an additional hurdle in
treating children specifically. Effective therapies need to account for both inter- and intra-
tumoral heterogeneity, underscoring the importance of personalized, real-time molecular
analysis and targeted intervention.

To date, most nanomedicines used in the clinic depend on the enhanced permeabil-
ity and retention effect (EPR). This phenomenon refers to the passive accumulation of
nanoparticles within the tumor due to leaky vasculature and reduced lymphatic drainage
and has been a key factor in nanomedicine design [52,53]. However, data indicate that
very little of the injected dose actually accumulates in the tumor [54]. Two overarching
uptake mechanisms have been described in cellular CD uptake. The passive route refers
to non-receptor mediated uptake via diffusion or endocytosis of CDs, which has been
shown to favor CDs with more positively charged surface moieties, whereas the active
route refers to transporter and receptor–ligand-mediated uptake into cells [55–57]. CDs can
be conjugated to ligands and drug cargo either covalently, via linkers, or by electrostatic
conjugation to allow drug release at specific locations through pH release systems, or
through reductase-dependent bonds such as disulfide linkage. The targeted tumor, tumor
microenvironment, and enzymes present intracellularly must be considered to effectively
deliver drug to the target. Understanding the expression landscape of pediatric brain tumor
subtypes will aid researchers in the honing of targets for CD-based drug delivery.

Methods to improve tumor cell selectivity primarily involve taking advantage of
differentially upregulated membrane receptors, transporters, and antigens, as well as
altered tumor cell metabolism. Specifically, tumor cells demonstrate increased glycolysis
and amino acid (AA) metabolism. Using nanoarchitectonics, CDs can be generated to
target glycolytic or AA transporters, which are expressed at high levels on tumor cells.
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Furthermore, since the glucose transporter GLUT-1 and the AA transporter LAT1 are
present on the BBB, these CDs can cross the BBB for bioimaging and drug delivery purposes.

Brain-tumor-specific CDs were synthesized via thermal hydrolysis using equal molar
concentrations of D-glucose and L-aspartic acid. Upon injection into tumor-bearing mice,
the fluorescent CDs localized to the tumor in a glioma orthotopic model, confirming that
these are in fact brain tumor self-targeting CDs, which can be utilized for brain tumor
bioimaging and drug delivery. The authors hypothesized that the CDs contain some
reactant functional groups on their surface, which would facilitate their uptake via glucose
and AA transporters. Qiao, L. et al. employed nanoarchitectonics to optimize these glioma-
cell-targeting CDs by varying ratios of glucose and aspartic acid and found that a ratio of
7:3 demonstrated superior glioma cell selectivity [58]. Using a simple microwave-mediated
synthesis method, we generated fluorescent carbon nitride dots (CNDs), using citric acid
and urea. Due to carboxylic and primary amine surface functional groups, these CNDs
structurally mimic AAs and demonstrate preferential uptake by tumor cells. Treatment of
pediatric high-grade glioma (pHGG) and embryonic kidney cells with CNDs covalently
conjugated to the chemotherapy gemcitabine induced significantly more cell death in the
tumor compared to non-tumor cells. Additionally, both the bare CNDs and chemotherapy-
conjugated CNDs readily crossed the BBB when tested in a zebrafish model [49]. Increasing
the ratio of urea to citric acid increased the number of primary amine groups, which further
increased CND uptake in pHGG cells, as well as increased the chemotherapy drug loading
capability. AA transporter inhibitor studies indicated that CND uptake was intricately
linked to the upregulated expression of ASCT2 and LAT1 AA transporters on pHGGs [32].
Similarly, Li, S. et al. synthesized CNDs from citric acid and 1,4,5,8-tetraminoanthraquinone
(TAAQ) via autoclave-mediated hydrothermal synthesis. The resulting CNDs referred to
as large AA-mimicking carbon quantum dots (LAAM CQDs) demonstrated tumor cell
selectivity both in vitro and in vivo and, when loaded with the chemotherapy topotecan
via π–π-stacking interaction, reduced tumor growth in a mouse orthotopic brain tumor
model [46]. Microwave-mediated synthesis of CNDs using citric acid and the anti-diabetic
drug metformin resulted in fluorescent CNDs that localize to the nucleus and mitochondria
of pHGG cells, but not in non-cancer cell lines [59]. Such CDs would be useful for drugs
that work optimally in these organelles.

Alternatively, active targeting can be accomplished by attaching ligands that bind cell
surface proteins known to be upregulated in pediatric brain tumors. TfRs are upregulated
in tumor cells and present on the BBB, making them an attractive target for nanoparticle-
mediated drug delivery [60]. Hettiarachchi, SD, et al. investigated the efficacy of CD-
mediated dual-drug delivery and showed that targeted dual-drug delivery (transferrin
conjugated) was approximately 100-fold more effective in inducing brain tumor cell death
than untargeted CD drug delivery. Furthermore, transferrin-receptor-targeted doxorubicin-
conjugated CDs induced more pediatric brain tumor cell death than doxorubicin alone [41].
Bioimaging studies revealed that a pediatric brain tumor cell line treated with the CD
conjugate had significantly higher nuclear doxorubicin levels compared to cells treated
with doxorubicin alone. However, while transferrin receptors have been utilized as a target
for several nanoparticle formulations, they are also expressed on normal cells and, as such,
can cause adverse side effects.

The search for cell surface antigens for chimeric antigen receptor (CAR) T-cell ther-
apy for aggressive pediatric brain tumors has identified several candidates for targeted
nanoparticle-mediated drug delivery [61]. The most-common antigens for targeting pHGGs,
ependymoma, atypical teratoid/rhabdoid tumor, and medulloblastoma are shown in
Table 1. With the exception of B7H3, antigen-targeted functionalized nanoparticles have
demonstrated anti-cancer effects. To date, targeted drug delivery to B7H3 has been ac-
complished by an antibody–drug conjugate, but anti-B7H3 antibody targeting can also be
applied to nanoparticle-mediated drug delivery.
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Table 1. Potential antigens and targeted ligands for CD-mediated drug delivery to pediatric brain
tumors.

Targeted
Molecule Function Natural Ligand(s)

Examples of Targeting
Ligand(s) Tested for

Nanoparticle Delivery to
Tumor Cells

HER2 (ErbB-2) Receptor Neuregulin-1 (NRG1) KCCYSL peptide [62],
LTVSPWY peptide [63]

IL13Rα2 Receptor IL13 Pep-1 [64]

EGFR Receptor

Several, such as EGF
and neuregulin

family members, as
well as TGF-a

GE11 Peptide [65],
anti-EGFR anti-bodies,

e.g., Cetuximab [66]

EphA2 Receptor Several ephrins

Ephrin-A1-mimicking
peptide YTPL [67],

anti-EphA2-specific
antibody fragments [68]

GD2 Ganglioside Not identified Anti-GD2 antibody [69,70]

B7H3 Checkpoint inhibitor IL20RA Anti-B7H3 antibody [71]

An alternative strategy for CD-mediated pediatric brain tumor therapy is to target
the tumor microenvironment (TME). The TME refers to the cellular and non-cellular
components such as low pH and hypoxia, which promote tumor cell proliferation and
invasion, immune evasion, and drug resistance. Targeting blood vessel growth with
bevacizumab, a VEGF inhibitor has been proven to extend life for GBM patients and
has been approved for the treatment of recurrent GBM [72]. Recently, Shoval A et al.
demonstrated the anti-angiogenic effects of an anti-VEGF aptamer-modified CD in a mouse
ocular disease model [73].

Targeting immune cell components such as activating cytotoxic T-cells with CTLA-4
and PD-1 inhibitors or inhibiting tumor-associated macrophages with colony stimulating
factor-1 inhibitors are also promising strategies currently being evaluated as potential
therapies for brain tumors in clinical trials. Recently, Su et al. developed PD-L1-targeted
CD-based PROTACs, which resulted in PD-L1 degradation and colon cancer cell death [74].
Targeting the integrin family of transmembrane proteins is an attractive target for tumor-
specific drug delivery. Integrins are upregulated in cancers and can be expressed on both
endothelial and tumor cells including pediatric brain tumors. The RGD peptide (arg-gly-
asp) is often used to target integrins. Feng et al. developed a pH-dependent cisplatin drug
release integrin-targeted CD and demonstrated significant breast cancer cell death at a
lower pH, thereby targeting multiple aspects of the tumor microenvironment [75].

10. Future Applications

Though many challenges remain ahead in the optimization of treatment for pedi-
atric brain tumors, exciting advancements have been made in recent years. Refinement
of surgical techniques, BBB disruption, targeted drug delivery, and modified radiation
therapy have resulted in additional avenues to target and treat these lesions. Combining the
therapeutic potential of CDs with these developments may aid in combatting pediatric CNS
neoplasms in the future. Currently, histone deacetylation inhibitors and demethylating
agents are under investigation as drugs of interest for pediatric brain tumors (Table 2).
Conjugating these novel therapies, which show promise with CDs for more effective de-
livery, may further increase their utility in the future. Chemotherapies that have been
used for many years in the clinic, as well as chemotherapies that have proven ineffective
historically may be optimized and reinvestigated for their clinical utility when delivered via
CDs. The anti-cancer effects of CDs effectively loaded with drugs such as doxorubicin [50],
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epirubicin [76], gemcitabine [42], topotecan [77], paclitaxel [78], and others has been demon-
strated. In addition, anti-cancer agents can be engineered for covalent conjugation to CDs,
an area our group is actively pursuing [79,80]. Lastly, CDs can function as radiosensitizers,
thereby enhancing the anti-cancer effects of radiotherapy [81]. Furthermore, just as CDs
can be conjugated simultaneously to both drug payloads and ligands for targeted delivery,
multiple drugs can be carried by CDs to the desired target [76]. Future studies should aim
to optimize not only ideal drugs and targeting ligands for conjugation, but also the best
combinations and number of payloads to conjugate.

Table 2. Epigenetic therapies that are under investigation. Mechanism of action listed, as well as 2D
chemical structure for CD conjugation consideration.

Drug Name Mechanism Chemical Structure

Panobinostat

Histone deacetylase (HDAC)
inhibitor,

Partial rescue of H3K27M
hypomethylation [82]
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Pediatric neurosurgeons have recently implemented endoscopy to access difficult-to-
reach lesions in the brain and spinal canal [87,88]. Though flexible scopes permit tortuous
courses to be taken to the target tissue, the use of both rigid and flexible endoscopes has
been shown to be safe in endoscopic third ventriculostomy in both pediatric and adult
populations [89]. Endoscopy enables the surgeon to minimize the size of the incision and
craniotomy, in some cases to a singular burr hole, thereby limiting surgical morbidity.
This approach has been used for the treatment of hydrocephalus, intracranial masses,
and craniosynostosis. Endoscopic access to the ventricular system would not only enable
intraventricular tumors to be removed in a minimally invasive fashion, but also allow
for intra-operative delivery of drug into the ventricular system prior to establishing a
more permanent route of administration such as an Ommaya catheter. Intra-ventricular
delivery of chemotherapy directly into the fourth ventricle has been shown to be rela-
tively well-tolerated, producing a beneficial anti-tumor response in some patients after
medulloblastoma resection [90]. More recently, the infusion of methylation inhibitor 5-AZA
was also performed directly into the fourth ventricle of pediatric patients with recurrent
ependymomas in the posterior fossa without causing neurological toxicity [91].

Aside from direct delivery of therapy into the ventricular system, researchers have
sought to deliver drugs systemically and disrupt the BBB surrounding the target lesion. A
recent study reviewing medical records from 1997–2019 at one institution demonstrated safe
intra-arterial injection of chemotherapy in 12 patients with progressive/and or unresectable
pilocytic astrocytoma, for which early radiotherapy could induce long-term neurocognitive
deficits [92]. Focused ultrasound is a commonly used, minimally invasive, FDA-approved
modality used to induce targeted lesions in certain neuroanatomical regions to treat tremor,
for example [93]. Focused ultrasound is also being investigated as a potential therapy
to disrupt the BBB near tumors, thereby allowing systematic drug delivery to reach the
malignant target cells more easily [94,95]. Radiation is often utilized to treat pediatric
CNS malignancy, but toxicity and secondary effects remain a challenge. Proton beam
therapy is a modality of particle radiotherapy posited to have better dose localization to
the tumor and limited scatter into healthy surrounding tissues, though longer follow-up
studies are needed to definitively establish this difference in pediatric patients with CNS
tumors [96]. Tumor-treating fields are being used in adult glioma to disrupt chromosomes
from effectively lining up at the metaphase plate during mitoses with the aim to slow tumor
proliferation [97,98]. It remains to be seen what role this technology may play in pediatric
brain tumors and the delivery of nanomedicines to tumors within the CNS.

The ability to specifically target the tumor tissue without affecting normal tissues
remains the “holy grail” of cancer treatment. It has been demonstrated that CDs can
cross the BBB, localize to tumor tissue, and reduce tumor burden in mouse orthotopic
brain tumor models. Combining the recent advances in drug delivery discussed above
with CD-mediated drug delivery expands their potential use as drug delivery agents.
CDs can be functionalized with multiple tumor-targeting ligands and multiple drugs in
order to combat tumor heterogeneity and the development of drug resistance. Molecular
profiling has revealed distinct differences between adult and pediatric brain tumors. A
better understanding of the disease process and the identification of novel targets and
potential new treatment options has paved the way for personalized treatment plans. Since
CDs only take a few weeks to synthesize and characterize, it is plausible that targeted CD
drug complexes can be prepared on an individual basis for pediatric brain tumor patients.

11. Conclusions

Brain tumors remain a significant cause of pediatric morbidity and mortality in the
United States and around the globe. Nanoparticles as a therapeutic modality have gained
attention in recent years, and CDs in particular offer the benefit of a low cost, high repro-
ducibility, imaging, as well as robust modification for tumor-specific molecular targeting.
We posit that the unique properties of CDs make them an excellent choice for pediatric
brain tumor therapy, especially compared to other drug delivery systems. For example,
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liposomes, ranging in size from 50–450 nm, are the most-commonly used drug delivery
vehicles in clinical trials [99]. A significant advantage of CDs over liposomes and other
nanoparticle drug delivery systems is their small size, a feature that facilitates more rapid
and efficient penetration of the BBB, with greater tumor access and dispersion throughout
the tumor cells [100,101]. Nanoparticle size is a special concern for children because larger
nanoparticles can accumulate in the spleen and liver, increasing toxicity, while smaller
nanoparticles are more efficiently cleared via the kidneys [102]. Furthermore, CDs can be
easily functionalized with tumor-targeting ligands and various chemotherapies for active
tumor cell targeting and killing [41,76]. Specifically, receptor- or transporter-mediated
targeting should result in higher tumor cell uptake and reduced off-target effects, which is
of utmost importance in treating children. Further pre-clinical research is needed, both on
CD characterization and therapeutic optimization, in order to understand the translational
utility CDs will have in combatting these malignancies clinically in the future.
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