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Prediction and identification of tumor recurrence are critical for brain cancer treatment design and 
planning. Stereotactic radiation therapy delivered with Gamma Knife has been developed as one of the 
common treatment approaches combined with others by delivering radiation that targets accurately on 
the tumor while not affecting nearby healthy tissues. In this paper, we release a fully publicly available 
brain cancer MRI dataset and the companion Gamma Knife treatment planning and follow-up data for 
the purpose of tumor recurrence prediction. the dataset contains original patient MRI images, radiation 
therapy data, and clinical information. Lesion annotations are provided, and inclusive preprocessing 
steps have been specified to simplify the usage of this dataset. A baseline framework based on a 
convolutional neural network is proposed companionably with basic evaluations. The release of this 
dataset will contribute to the future development of automated brain tumor recurrence prediction 
algorithms and promote the clinical implementations associated with the computer vision field. The 
dataset is made publicly available on the Cancer Imaging archive (tCIa) (https://doi.org/10.7937/
xb6d-py67).

Background & Summary
A brain tumor is defined as a group of abnormal cells that grows in human brain tissues. Brain tumors are 
life-threatening by either directly invading and affecting healthy brain tissues or indirectly compressing other 
parts of the brain through tumor extension. Further damage will cause inflammation, brain swelling, and pres-
sure within the skull. Brain tumors can be divided into two categories: benign and malignant. Benign tumors do 
not contain cancer cells and usually grow slowly. Malignant tumors which refer to brain cancer grow rapidly and 
invade healthy brain cells. In the year 2022, it is estimated that brain and other nervous system cancer has caused 
18,280 deaths, and about 25,050 new cases were diagnosed1. A common type of brain tumor is brain metastases 
from other primary cancers such as breast, lung, and renal cancers. Clinicians may apply various therapies to 
treat these brain metastases. A detailed treatment plan will be discussed and made for each individual patient 
properly. Tumor cell size, location, and growth rate along with patient’s general health conditions will be consid-
ered. Current common treatment approaches include surgery, radiation therapy, chemotherapy, targeted ther-
apy, hormone Therapy, or a combination of the above. Among those, stereotactic radiation therapy has been 
developed over the last few decades to deliver ionizing radiation that targets accurately via x-rays and γ-rays by 
linear accelerators or specialized devices such as the Gamma Knife while minimizing effects on nearby healthy 
tissues. Over half of cancer patients worldwide are treated with the radiation therapy approach or combined with 
surgery or chemotherapy approximately2.

In general, if the brain tumor is radiosensitive, clinicians may prescribe radiation therapy to treat cancer. 
Conventional radiation therapy aims for external beams of x-rays, γ-rays, or protons at the tumor to kill cancer 
cells and shrink brain tumors. Patients usually receive treatment over a specific period of time. The Gamma 
Knife device is used for the delivery of stereotactic radiation therapy during which high doses of radiation are 
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delivered in 1 to 5 treatment sessions. Following radiation therapy, each tumor may be controlled, i.e., shrink or 
stable, or progress, i.e., recur. It is critical to monitor, identify, and evaluate patients during follow-up to radiation 
therapy for potential tumor recurrence. If a tumor could be accurately predicted as high-rish for recurrence, 
the current treatment planning choices would be directly impacted (i.e. prescription dose regimen or planning 
goals). The goal that motivates the collection of this brain tumor magnetic resonance imaging (MRI) dataset is to 
allow various artificial intelligence algorithms to model and predict if each current tumor (lesion) will progress 
or not based on the current treatment planning, imaging, and patient clinical information.

In this work, we release the fully publicly available brain cancer MRI dataset for the purpose of tumor recur-
rence identification and prediction. The data collection includes original patient MRI images and radiation 
therapy (RT) data that consists of RTStructure and RTDose files in Digital Imaging and Communications in 
Medicine (DICOM) format. Patient’s clinical records are also provided including gender, age, primary diagno-
sis, and course information. Each lesion is annotated and confirmed by radiologists and radiation oncologists.  
In addition to the dataset, we also develop a novel multi-input deep learning framework with a 3D convolutional 
neural network (CNN) as the baseline algorithm to predict the possible recurrence of a lesion. Deep learning 
methods have shown great success in tumor pathology, including tumor diagnosis, subtyping, grading, staging, 
and prognostic prediction, as well as the identification of pathological features3. It is still challenging for our 
proposed baseline model to identify the recurrence scenario particularly. Nevertheless, the release of the base-
line algorithm will facilitate the development and evolution of an automated tumor recurrence classification 
framework. More innovative algorithms are expected to be explored to achieve acceptable clinical performance. 
Notably, the interpretability and explainability of the forthcoming machine learning algorithms are necessary 
for future clinical practice. Further potential applications based on this dataset include radiation treatment plan-
ning, evaluating and refining treatment, and automated dose delivery planning.

Methods
This dataset was collected retrospectively under IRB-approval (2017-0266) from a clinical database of patients 
treated for brain metastases with Gamma Knife radiation therapy at the University of Mississippi Medical 
Center. Due to the retrospective nature of the data collection, none of the patients were consented for data 
publication. However, an IRB waiver of consent was obtained due to the impracticability of obtaining patient 
consent (many patients were either lost to follow-up or had expired at the time of data collection). In prepa-
ration for Gamma Knife treatment, an MRI was acquired on a 1.5 T Siemens Magnetom scanner utilizing the 
scan parameters described in the literature including correction for geometric distortion4. The included MRI 
series are T1 MPRAGE with Gadolinium contrast and a voxel size of 1 × 1 × 1 mm which acts as the primary 
planning dataset for Gamma Knife treatment for brain metastase. The original axial plane dimension of the 
MRI volumes is 256 × 256 while the slice thickness varies individually. For each patient, the treatment planning 
DICOM data was collected including the MRI dataset with its accompanying RTStruct indicating the lesions 
that were targeted using a given MRI. The RTDose information provides how the dose was deposited for each 
respective lesion/target. The recurrence of a lesion is identified by post-treatment MRI scans (followed up every 
three months for the first year). The images are pushed to GammaPlan and fused with the original treatment 
planning scan. A tumor is evaluated to be within isodose lines and then classified as stable or decreasing in size. 
Sometimes, if changes are identified at the edge of isodose lines, then there may be treatment-related changes or 
progression of the disease. To decide, an MR spectroscopy and perfusion (blood flow or not) scan is performed, 
and 3 molecular markers (choline, lactate, and NAA) are measured on spectroscopy. If lactate levels are high, 
then it is radionecrosis. If choline or NAA are elevated, it is classified as recurrence.

A keyed spreadsheet also houses various other relevant clinical information mentioned above as well as how 
many treatment sessions were used to deliver the dose for a target represented in the RTDose as it may have 
been delivered in as few as 1, but maybe as many as 5 treatment sessions. Additionally, each patient may have 
undergone more than one treatment course as they developed new lesions and/or treated lesions recurred. Even 
though certain tumor types are now commonly distinguished by their molecular status and not simply their 
histological primary lesion, this information is included in the primary when available. Also, with the limited 
dataset, we are concerned about having too many features with not enough data, especially since this feature 
does not apply to every cancer and would be most useful perhaps regarding only a unique cancer type rather 
than a generalized brain metastasis model. The dose units are in Gray (Gy, AKA J/kg) which is typical in radia-
tion therapy. The dose was calculated using the TMR10 algorithm in the GammaPlanÂ® (version 11) software 
which does not consider tissue heterogeneity in the calculation but is consistent with previous Gamma Knife 
treatment practice across many institutions. Regarding another feature of the administration of corticosteroids, 
it is patient-dependent, i.e., if diabetic, there will be no steroids; If not diabetic, 5 days of steroids with a tapering 
dose will be applied. If radionecrosis on f/u is found, steroids for 1 month with 2 mg BID will be started. If symp-
tomatic doesn’t respond to steroids, bevacizumab will be prescribed. On the other hand, the next option will be 
LITT (Lasers Interstitial Thermal Therapy) or surgery.

Treatment was ultimately delivered on the Gamma Knife Icon® at the same institution. After collection, 
all DICOM data (MRI images, RTStruct, and RTDose) was fully anonymized removing all protected health 
information and treatment-related dates. The anonymization process included mapping them to identifiers that 
matched the clinical information in the database spreadsheet. At this point, no one can track any of the data 
given to an individual patient.

The aim of this data collection is to classify and predict brain tumor recurrence given a patient’s MRI, dose 
treatment plan, and clinical information. The general method is shown in Fig. 1. A classification framework to 
be developed should be multi-input by considering all three types of inputs. MRI along with the corresponding 
radiation dose can be analyzed as an image-like input. Therefore, various CNN frameworks are preferred for 
feature extraction or direct prediction. Numerical or categorical clinical variables can be converted to dense 

https://doi.org/10.1038/s41597-023-02683-1


3Scientific Data |          (2023) 10:785  | https://doi.org/10.1038/s41597-023-02683-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

representations. Our proposed baseline model follows the typical 3D CNN workflow for identification and pre-
diction. A sample of a patient’s brain MRI with the corresponding lesion mask and dose radiation information 
can be found in Fig. 2.

We conduct a series of data preprocessing steps. First, dose MRI images have been resampled to the same 
spacing as the original patient MRI because the raw MRI and dose files share not only different dimensions 
but incompatible actual spacing as well. To represent the transformation process from the dose voxel D to MRI 
coordinates M by using affine transformation:
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where Δr, Δc, Δs represent row, column, and slice voxel spacing resolution, respectively; r, c, s represent row, 
column, and slice index to their respective plane, and F refers to the values from each direction cosine of the 
image orientation. Thus, the dose voxel space can be further transformed to the corresponding original MRI 
voxel space. Second, every lesion region in each patient’s MRI has been extracted and cropped out based on 
the patient’s lesion mask. It is noted that one patient may have multiple lesions. Third, the corresponding 
radiation dose information can also be cropped out using the same lesion mask because the masks are shared 
through the same coordinate after resampling. In this way, each lesion MRI is paired with its radiation dose 
MRI. Furthermore, based on all the cropped lesions and dose MRI, the voxel values have been normalized 
between 0 and 1, respectively. The normalized common scale is demanded for the usage of machine learn-
ing algorithms. Resizing is necessary to keep the cropped training and test samples in the same dimension.  
The shape of 40 × 40 × 40 mm volume is determined, and further data augmentation techniques are discussed 
in the technical validation section. A sample procedure of lesion and dose extraction has been shown in Fig. 3.

Data Records
The full dataset collection can be found on The Cancer Imaging Archive (TCIA) site5. In this data repository, 
we provide not only raw data but also preprocessed data. Raw DICOM files can be accessed and read by using 
open-source software, such as 3D Slicer (https://www.slicer.org/) or other software that focuses on image 
computing in clinical and biomedical fields. In general, this dataset represents patients who developed brain 
metastases for various primary tumors and then underwent Gamma Knife stereotactic radiation therapy in an 
effort to control the identified brain lesions. Additionally, these patients participated in treatment follow-up 
during which the response to treatment could be adequately assessed to identify recurring lesions and those that 
responded to treatment by stopping growth or even shrinking. For each patient, the treatment targets were iden-
tified and delineated through collaboration between radiation oncologists and neurosurgeons with validation 
from neuroradiologists in many cases.

This public dataset retrospectively involved a total of 47 brain cancer patients with 21 males and 26 females. 
The dataset can be described in three ways: 1) patient-level, 2) course-level, and 3) lesion-level. Patient-level 
keeps all the data related to a specific patient altogether. Each course-level treatment data has been stored 
for each patient. Among all the patients, 17 patients received more than one course of treatment, 7 received 
more than two courses, and 1 patient received up to eight courses in total. Regarding the lesion-level, a total of  
244 lesions were collected with annotations. 221 lesions are stable, and 23 are recurrence, which makes the dataset 
imbalance from the lesion-level perspective. Data files are organized through the flow of course-patient-lesion. 
The detailed data file directory structure is shown in Fig. 4. In terms of data format, we provide initial DICOM 
format MRI files for each patient. Lesion annotations and dose plan information are stored in RTStructure and 
RTDose, respectively. In addition to DICOM format, we provided Nearly Raw Raster Data (NRRD) format for 
neuroscience research support. NRRD is less complicated compared with DICOM while preserving essential 
metadata. Researchers can directly access those data formats without a start with processing RTStruct files. 
Additionally, all the preprocessed MRI images have been saved in numpy array format, which can facilitate the 
implementation in Python or other programming languages. Two sections of the data can be downloaded and 

Fig. 1 MRI dataset content and objective.
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studied separately. Different from the DICOM format usage where patient data consists of many slices, each 
patient MRI is retained in one single array along with the patient’s cropped lesion arrays. Corresponding dose 
information has also been extracted from RTStructure as a separate array file.

The clinical information has been collected in a spreadsheet that stores both patient-level and lesion-level 
records separately. Patient clinical data includes age, gender, age, course information, and primary diagnosis 
location. Lesion clinical data includes lesion property, location, and MRI type (stable or recurrence) associ-
ated with a specific patient. Clinical data samples of patient-level and lesion-level are shown in Tables 1, 2, 
respectively.

Fig. 2 Sample patient MRI data with lesion annotation and dose radiation.

Fig. 3 Studied lesion segmentation and extraction during data preprocessing.

Fig. 4 Data files and a directory structure of folders.
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technical Validation
This dataset is validated and evaluated by our proposed baseline learning model. We apply a multi-input 3D 
CNN framework particularly, handling original patient MRI, dose history, and clinical information. A typical 
3D convolution structure has been followed, including convolutional layers, pooling layers, and batch normal-
ization. The neural network classifiers trained for volume inputs contain 3 × 3 × 3 convolutional layers with 32, 
64, and 128 filters, respectively. Three types of inputs have been concatenated after convolution operations. Fully 
connected layers are used to generate the dense representation and the output category. An overview of the pro-
posed baseline network is shown in Fig. 5. The total number of model parameters is 825,185. ADAM optimizer 
is chosen in our experiments. In terms of training and test data split, a set of test samples has been selected and 
reviewed by experts. In our baseline study evaluation, a random data split was performed on the subject level 
instead of the lesion level. Therefore, test performance can avoid being inflated as a lesion evaluated would not 
be included in the training for the same patient. Other split strategies may be investigated. Table 3 shows the 

Unique 
patient ID

Course 
number

Diagnosis (Only 
want Mets) Primary diagnosis

Age at 
diagnosis Gender

463 1 Brain Mets-Lung Adenocarcinoma of 
the lung 60 Male

463 2 Brain Mets-Lung Adenocarcinoma of 
the lung 60 Male

247 1 Brain Mets Breast Invasive ductal 
carcinoma of Rt Breast 63 Female

408 1 Brain Mets Lung Adenocarcinoma of 
the lung 64 Male

… … … … … …

Table 1. Patient-level clinical data samples.

Unique 
patient ID

Course 
number

Lesion 
number Lesion location MRI type

Duration 
(months)

463 1 1 Lt Frontal recurrence 11

463 2 2 R Motor Cortex stable 8

463 2 3 Lt Post Temporal stable 8

463 2 4 Lt Lat Cerebellum stable 8

… … … … … …

Table 2. Lesion-level clinical data samples.

Fig. 5 Overview of the proposed baseline network. (Clinical records: course, diagnosis, primary diagnosis, age 
at diagnosis, gender; Conv: convolution; MP: max pooling; BN: batch normalization; Concat: concatenate).

Lesions Stable Recurrence Total

Training Set 140 13 153

Test Set 81 10 91

Total 221 23 244

Table 3. Training and test set size before data augmentation.
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lesion-level training and test set statistics. Recurrence lesions are rare in clinical practice, which results in a dif-
ference in terms of the number of samples in each category.

Since the dataset is imbalanced in terms of lesion-level, data augmentation techniques have been applied to 
train a more generalized machine learning model. Specifically, rotation operation is employed. Because an MRI 
image can be viewed as a 3D object, one single MRI can be rotated in three directions. Each object has been 
rotated with three angles, [90, 180, 270]. Dose MRI images have also been rotated and paired with patient MRI. 
Therefore, one sample can be augmented to nine more samples for training. The size of the augmented dataset 
is shown in Table 4.

The lesion recurrence identification performance is shown in Table 5. The model has achieved 90.1% accu-
racy, 10% sensitivity, 89.0% specificity, and 18.2% F1-score. Various cutting-edge techniques such as class 
weights remain open for further study to improve the performance due to the imbalanced dataset. According 
to the classification confusion matrix, it is demonstrated that the proposed baseline model is able to identify 
stable tumors accurately. However, lesion recurrence remains a challenging and open problem. Further potential 
improvement in model structure and important features of recurrence tumors are expected to be studied.

Usage Notes
The full dataset can be found in the TCIA5. The data described in this work corresponds to the version reviewed 
in August 2023. Future updates can be referred within the same collection. Preprocessed data has been generated 
based on the approaches mentioned in the Methods section. Particularly, basic downstream processing steps such 
as resampling, VOI extraction, normalization, and resizing have been used. SimpleITK (https://simpleitk.org/)  
and Pydicom (https://pydicom.github.io/) packages are used in preprocessing. Users may have other pre-
processing procedures in terms of different focus and implementation. We provide the script of our proposed 
baseline model based on the TensorFlow platform. Other advanced frameworks and optimization techniques 
are expected to be developed, so as to achieve promising results and promote the implementation of artificial 
intelligence-assist tumor recurrence prediction.

This dataset is published under a data use agreement between UMMC and the University of Arkansas for 
Medical Sciences (UAMS) that operates the TCIA. The agreement sets forth the terms by which UAMS will 
facilitate the participation in submission activities for TCIA research and publication programs. Users can access 
imaging data under a standard TCIA Data Use Agreement. Clinical data is accessible under a CC-BY license.  
A project description must be provided by the user. Some data in this collection contains images that could 
potentially be used to reconstruct a human face. To safeguard the privacy of participants, users must sign and 
submit a restricted license agreement to TCIA before accessing the data. Users who use the dataset should prop-
erly acknowledge the data contributions of the authors by citing this article and the data repository. It is noted 
that lesion segmentation can be subjective and manual errors may occur. Any issues or feedback can be sent to 
the authors, and any unexpected errors can be posted on the data repository page. We will also keep the reposi-
tory updated when we release any new data.

Code availability
The repository of brain tumor recurrence prediction data can be found on our GitHub (https://github.com/
siolmsstate/brain_mri). Pydicom version 2.3.0 and SimpleITK version 2.1.0 have been used in data preprocessing. 
The baseline model framework is generated using TensorFlow version 2.8.0. We release sample codes for users 
to get started with raw data, guiding through loading the data and all preprocessing steps. Fundamental data 
visualization is also available.
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Lesions Stable Recurrence Total

Training Set 140 130 270

Test Set 81 100 181

Total 221 230 451

Table 4. Training and test set size after data augmentation.
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