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Abstract 

Although immunotherapy has been broadly successful in the treatment of hematologic 

malignancies and a subset of solid tumors, its clinical outcomes for glioblastoma are still 

inadequate. The results could be due to neuroanatomical structures such as the blood-brain-barrier, 

antigenic heterogeneity, and the highly immunosuppressive microenvironment of glioblastomas. 

The antitumor efficacy of endogenously activated effector cells induced by peptide or dendritic 

cell vaccines in particular has been insufficient to control tumors. Effector cells, such as T cells 

and natural killer (NK) cells can be expanded rapidly ex vivo and transferred to patients. The 

identification of neoantigens derived from tumor-specific mutations is expanding the list of 

tumor-specific antigens for glioblastoma. Moreover, recent advances in gene-editing technologies 

enable the effector cells to not only have multiple biological functionalities, such as cytokine 

production, multiple antigen recognition, and increased cell trafficking, but also relieve the 

immunosuppressive nature of the glioblastoma microenvironment by blocking immune inhibitory 

molecules, which together improve their cytotoxicity, persistence, and safety. Allogeneic chimeric 

antigen receptor (CAR) T cells edited to reduce graft-versus-host disease and allorejection, or 

induced pluripotent stem cell-derived NK cells expressing CARs that use NK-specific signaling 

domain can be a good candidate for off-the-shelf products of glioblastoma immunotherapy. We 

here discuss current progress and future directions for T cell and NK cell therapy in glioblastoma. 

 

Key Words : Glioblastoma · T-Lymphocyte · Killer Cells, Natural · Immunotherapy. 

 

INTRODUCTION 

 

Cancer immunotherapy uses complementary innate and adaptive immune responses to enhance 
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the host’s systemic and selective immunity against tumor cells. In innate immunity, natural killer 

(NK) cells and myeloid cells recognize and eliminate tumor cells in a major histocompatibility 

complex (MHC)-independent manner. Whereas innate immunity occurs immediately but does not 

have antigen specificity, adaptive immunity is antigen-specific and is initiated when antigen-

presenting cells (APCs) such as dendritic cells (DCs) present tumor antigens. Naïve T cells 

recognize tumor-derived antigen epitopes as MHC-peptide complexes presented by APCs and 

then combine them with T cell receptors (TCRs) to become effector T cells that have cytotoxicity 

to tumor cells expressing the same antigen.  

T cells are the major force of the adaptive immune response, and their potency influences the 

efficacy of cancer immunotherapy. Disappointing results from recent immunotherapeutic clinical 

trials for peptide and DC vaccines to induce the endogenous activation of T cells against 

glioblastomas21,27,112,227,228,243) suggest that the antitumor immune response induced by those 

strategies might be insufficient to control tumors. Those trials might also have failed to expand 

the population of tumor antigen–specific T cells reproducibly and effectively. The tumor-

associated antigens (TAAs) used in the vaccines can be somewhat expressed in normal tissues, so 

the immune system might recognize them as self-antigens, which would decrease the T cell 

response through the mechanisms of immune tolerance, which remove T cells with high affinity 

to self-antigens31,196). T cell exhaustion could be another reason for the disappointing results. T 

cell exhaustion is a state of T cell dysfunction in environments such as chronic infections and 

cancer that involve chronic antigen exposure and lack of appropriate assistance from helper T 

cells247). Exhausted T cells increase their expression of inhibitory receptors, including 

programmed death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), lymphocyte activation 

gene-3 (LAG-3), and T cell immunoglobulin domain and mucin domain protein-3 (TIM-3), and 

they decrease their production of effector cytokines, such as interleukin-2 (IL-2), tumor necrosis 

factor-α (TNF-α), and interferon-γ (IFN-γ); both those processes eventually impair the 

cytotoxicity of T cells to tumor cells1,5,229,230). Therefore, T cell exhaustion or T cell dysfunction 
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can be a major barrier in the development of T cell–based or checkpoint therapy77,234). T cells that 

infiltrate glioblastomas tend to promote T cell exhaustion, as measured by the expression of 

immune checkpoints and decreased effector function, compared with T cells isolated from the 

peripheral blood of patients with glioblastoma, and that exhaustion increases adaptive immune 

resistance136,234). Tumor infiltrating lymphocytes (TILs) isolated from glioblastoma patients with 

a high percentage of exhausted T cells did not respond to anti-PD-1 inhibitors ex vivo154).  

NK cells are effector cells of the innate immune system. They recognize tumor cells by 

detecting the presence of receptor ligands that are upregulated in tumor cells, and then they target 

those cells without using the MHC; they also bind to tumor-specific antibodies secreted by B cells, 

which bind to antigens on the surfaces of tumor cells183), and kill tumor cells directly. NK cells 

without tumor specificity could be efficacious for immunologically treating glioblastomas, which 

have high antigenic heterogeneity and a low mutational burden. NK cells can also be reproduced 

ex vivo. Restoring the exhausted T cell response and the limited cytotoxicity of endogenously 

activated T cells induced by vaccines can be achieved by using adoptively transferred T or NK 

cells, including tumor-specific antigen loading on ex vivo expanded T cells and genetically 

engineering T or NK cells to express chimeric antigen receptors (CARs). Moreover, modern 

advanced gene-editing technologies enable these effector cells to overcome immune escape 

mechanisms of tumor cells and relieve the immunosuppressive nature of glioblastoma 

microenvironment, which not only improve their antitumor immunity but also make them close 

to ideal off-the-shelf products. 

Here, we provide an updated summary and discuss future directions for T and NK cell transfer 

therapies in glioblastoma. 

 

ADOPTIVE T CELL THERAPY 
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Adoptive T cell therapy provides patients with a large number of immune effector cells that 

have been primed by a particular antigen and expanded ex vivo. The cells can be administered 

locally into the brain tumor site or systemically. A critical step in efficiently stimulating the 

adaptive immune response is the identification of appropriate target antigens. Identified TAAs of 

glioblastoma include IL-13Rα2, human epidermal growth factor receptor 2 (HER2), 

erythropoietin-producing hepatocellular carcinoma A2 (EphA2), survivin, tyrosinase-related 

protein 2, Wilms’ tumor 1, glycoprotein 100 (gp100), SRY (sex-determining region Y)-box 2 

(SOX2), SOX11, melanoma-associated antigen 1 (MAGE-A1), absent in melanoma 2, and 

cytomegalovirus (CMV) proteins. Epidermal growth factor type III variant (EGFRvIII), isocitrate 

dehydrogenase 1 R132H, and H3.3 K27M can be classified as tumor-specific antigens (TSAs), 

and they are frequently shared among specific patient subgroups54,146). Targeting TAAs can cause 

life-threatening events by means of on-target off-tumor effects and T cell responses against 

normal cells155). On the other hand, the remarkable heterogeneity of antigen expression by 

glioblastomas251) can be a strong barrier to adoptive T cell therapy that targets only one TSA. 

Moreover, the antitumor immune responses induced by peptide vaccines or DC vaccines that 

target multiple antigens or tumor lysates might be too diluted to control tumors. 

The recruitment of T cells is a key process in immune response. Peripherally infused T cells 

can enter the central nervous system (CNS) in patients with glioblastoma, but only at the later 

stages of tumor growth when the blood-brain-barrier (BBB) has been destroyed185). The question 

of where to administer is another important issue in the application of adoptive T cell therapy for 

brain tumors. Intracranial delivery of T cells into brain tumors has shown encouraging results in 

terms of safety and therapeutic efficacy, compared with systemic exposure208). The advantages of 

intracranial delivery are overcoming the BBB, increasing tumor infiltration, decreasing the 

number of T cells required, and minimizing systemic toxicity. 

 

Lymphokine-activated killer (LAK) cells 



 

6 

Adoptive T cell therapy has developed from LAK cell therapy, which transfers a mixture of IL-

2-activated T cells and NK cells obtained by culturing patients’ peripheral blood mononuclear 

cells (PBMCs) in the presence of IL-2 to patients with malignant glioma67). The main cytotoxic 

property of LAK cells is mediated by CD3-CD56+ NK cells rather than CD3+CD56- T cells159). 

However, their limited cytolytic activity due to a lack of tumor specificity and their IL-2-related 

toxicity, such as brain edema and aseptic meningitis, have prevented widespread use of this 

strategy9,70).  

NK cells, CD3-CD56+ lymphocytes, play a pivotal role in the innate immune response. They 

contribute to the antitumor immune response by modulating T cell activation through the 

regulation of DC maturation, as well as by directly eliminating tumor cells215). They frequently 

infiltrate glioblastomas, but their lytic activity is decreased by the abundant immunosuppressive 

mechanisms of tumor cells and their microenvironment. Tumor recognition and the elimination 

of tumor cells by NK cells can be markedly enhanced through the expression of genetically 

engineered CARs. NK cell therapy will be discussed later. 

 

TILs 

TILs are effector T cells that are thought to have tumor specificity because they are already 

present in the tumor. Ex vivo expanded TILs are apt to proliferate in vivo and show functional 

activity and trafficking to the tumor186). It has been very difficult, however, to expand TILs from 

tumor tissues in most cancers, including glioblastomas, except melanomas8). Although some 

clinical studies in patients with recurrent162) or newly diagnosed malignant glioma163) used 

autologous TILs expanded ex vivo from cells in the draining inguinal lymph nodes after 

inoculation with irradiated autologous tumor cells have demonstrated a partial radiographic 

response, no survival benefit for the patients has been found. These results indicate that gliomas 

undoubtedly present immunosuppressive obstacles to TIL therapy, and a drastic improvement is 
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needed in TIL expansion and the maintenance of TIL function in the immunosuppressive 

microenvironment of gliomas. 

 

Adoptive CD8+ T cells 

Selecting the target antigens is an important step in the efficient induction of antitumor 

immunity in effector T cells. Human CMV has been verified as a contributing factor of glioma 

progression32) and suggested as a therapeutic target82). CMV pp65 antigens are recognized by a 

high fraction of T cells127). Because they are expressed in most glioblastomas (>90%) but not in 

normal brain tissue33), they have been in the spotlight as target antigens for glioblastoma 

immunotherapy. In the first clinical study of adoptive immunotherapy using CMV-specific T cells 

in patients with recurrent glioblastoma, the treatment was shown to be safe with minimal toxicity 

to patients. The median overall survival (OS) of 19 patients was >57 weeks, with a median 

progression free survival (PFS) of >35 weeks187). Although CMV-specific immunotherapy 

showed disease stabilization and prolonged PFS in some patients, no correlation between antigen-

specific T cell frequency and clinical outcomes was detected in that study. The tumor infiltrating 

CMV-specific T cells of some patients who showed tumor progression after T cell infusion 

displayed poor cytotoxic capacity and increased expression of inhibitory receptors such as PD-1, 

CTLA-4 and TIM-3, compared with T cells from peripheral blood. Moreover, regulatory T cells 

(Tregs) were detected at levels almost 5-fold higher in glioblastomas than in peripheral blood. 

Those disappointing results were ascribed to the infusion of CMV-specific CD8+ T cells without 

CD4+ helper T cells, the possible expansion of both Tregs and T cells in the presence of IL-2 

loading, and including patients who were treated with T cells without prior lymphodepleting 

chemotherapy to make room for the infused T cells223). A phase I/II clinical trial using CMV pp65–

specific T cells to remedy those limitations in patients with recurrent and newly diagnosed 

glioblastoma after lymphodepleting dose-dense temozolomide (TMZ) treatment, however, also 

found that the infused cells had insufficient cytotoxic function to control glioblastoma223). CMV-
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specific T cells might kill autologous tumor cells effectively in only a subset of CMV seropositive 

patients, which suggests that heterogeneity in CMV antigen expression could attenuate the 

effector function of T cells. Furthermore, the finding that CMV-specific T cells within the 

glioblastoma microenvironment were immunologically dysfunctional indicates that the tumor 

microenvironment (TME) of glioblastomas might be exceptionally immunosuppressive. 

Therefore, additional modulation will be needed to obtain effective antitumor immune responses 

to adoptive T cell therapy that targets CMV pp65.  

In another clinical trial (NCT00693095) that tested CMV-targeting T cells with TMZ in 17 

patients with newly diagnosed glioblastoma, an additional vaccination with CMV pp65 RNA–

loaded DCs enhanced the frequency of polyfunctional CMV pp65–specific T cells after adoptive 

T cell therapy, correlating with prolonged OS172). Isolating CMV-specific T cells from 

glioblastoma patients with deficient polyfunctionality and then stimulating them with antigenic 

peptides in the presence of the γC cytokine ex vivo might reverse their inability to generate 

multiple cytokines and improve their ability to mount an effective antitumor response in vivo35). 

Repeated endogenous antigenic stimulation to adoptively transferred CMV pp65–specific T cells 

via DC vaccination seems to restore T cell polyfunctionality. The adoptive T cell therapy + DC 

vaccine platform can target tumor ribonucleic acid (RNA) instead of CMV pp65. Clinical trials 

to evaluate the safety and antitumor immune response of a tumor RNA–loaded DC vaccine and 

subsequent tumor RNA–specific T cell therapy in pediatric patients with newly diagnosed high-

grade gliomas (NCT03334305) and patients with diffuse intrinsic pontine glioma (DIPG) 

(NCT03396575) are underway. 

 

Genetically modified T cells 

Genetic modification of T cells has been developed to enhance the antitumor efficacy of 

adoptive T cell therapy. Two approaches have commonly been used for this strategy: (a) transfer 
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of complementary deoxyribonucleic acids in the α and β chains of the TCR cloned from high 

affinity TAA-specific T cells, and (b) insertion of CARs that recognize tumor cells through a 

single-chain variable fragment (scFv) isolated from TAA-specific antibodies31,115). 

 

TCR-transduced T cells 

Genes encoding the TCRs of T cells isolated from patients can be transferred to the T cells of 

other patients with matching human leukocyte antigen (HLA) restrictions by cloning them into 

viral vectors83). In clinical studies of patients with metastatic melanoma who were treated with 

TCR-transduced T cells targeting melanoma-associated antigen recognized by T cells-1 (MART-

1) or gp100 after lymphodepletion, objective cancer regression was seen in 30% (MART-1 

targeting TCR) and 19% (gp100 targeting TCR) of patients who received human or mouse TCRs, 

respectively83,138). However, severe on-target off-tumor toxicity, including the destruction of 

normal melanocytes throughout the body (skin, eye, and ear) caused by cytotoxic T lymphocyte 

responses to cognate antigen-containing cells was observed. Moreover, two of nine patients with 

metastatic cancers that express the MAGE-A3 antigen, such as melanoma, synovial sarcoma, and 

esophageal cancer, who received TCR-transduced T cell therapy targeting MAGE-A3 died with 

severe brain damage from necrotizing leukoencephalopathy. MAGE-A3, which was not before 

known to exist in the brain, was later found there137). Another study to test the antitumor efficacy 

of autologous T lymphocytes genetically engineered to express a murine TCR against a human 

carcinoembryonic antigen in patients with metastatic colorectal cancer refractory to standard 

treatments was stopped when all three patients experienced life-threatening inflammatory colitis 

and colonic hemorrhage155). Those results indicate that genetically engineered TCR-transduced T 

cell therapy can induce the powerful destruction of normal cells that express the same antigens as 

the tumor cells. Perhaps because of those results, no clinical study of TCR-transduced T cell 

therapy has been performed in patients with glioblastomas, which has a paucity of TSAs. This 
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approach has the further limitation that T cells engineered by this procedure generally recognize 

only antigens that have been processed and presented in an MHC-restricted pattern. 

 

CAR T cells 

CAR T cell therapy refers to the adoptive transfer of T cells genetically modified to express 

CARs, recombinant molecules typically composed of an extracellular domain of a tumor antigen 

recognition molecule that contains the scFv of a monoclonal antibody, intracellular domains with 

a TCR signaling domain and an additional costimulatory domain that lead to T cell activation, 

and a transmembrane domain as a spacer51,99). The intracellular domain has been optimized in 

successive generations of CAR T cells to enhance its signaling capacity (Fig. 1). First-generation 

CARs that used only the CD3ζ chain as the intracellular activation domain demonstrated limited 

persistence and efficacy because they lacked costimulatory signals16). Second- and third-

generation CARs were developed by combining the CD3ζ of the first-generation CARs with one 

(second-generation) or more (third-generation) costimulatory domains, such as CD28 and OX40 

or 4-1BB73,89). The addition of cytokine signaling domains such as IL-15Rα or Janus kinase-signal 

transducers and activators of transcription (JAK-STAT) into the intracellular domain of third-

generation CARs produced fourth-generation CARs and enhanced the antitumor activity of third-

generation CAR T cells85,144). Modified CAR T cells can recognize and kill target cells that express 

TSAs without the need for MHC presentation and costimulatory signals. In spite of the successful 

engineering of more potent and immunogenic CAR T cells, on-target off-tumor effects, poor 

tumor infiltration, and a highly immunosuppressive TME remain serious barriers to the clinical 

efficacy of CAR T cells for solid tumors, including glioblastomas169). 

It is also important to select appropriate antigens to target in CAR T cell therapy. An ideal target 

antigen is homogenously expressed on all tumor cells and completely absent on normal cells. To 

prevent normal cell attack by CAR T cells, which have greater cytotoxicity than non-engineered 
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T cells, tumor antigens should be undetectable or have minimal expression on normal tissues not 

enough to mediate the elimination of normal cells. It is very important, therefore, for phase I 

clinical trials in patients with glioblastomas that mainly express TAAs to confirm the safety and 

feasibility of this treatment. Antigens selected for CAR T cells in glioblastomas to date include 

interleukin-13 receptor alpha 2 (IL-13Rα2), EGFRvIII, HER2, and EphA2. To overcome the 

antigenic variability of glioblastomas and increase the efficacy of CAR T cells, bi- and tri-specific 

CAR T cells that target multiple TAAs have been developed and shown increased antitumor 

efficacy12,71). Ongoing clinical trials of CAR T cell therapy for glioblastoma are summarized in 

Table 1. 

 

EGFRvIII 

EGFRvIII, a mutated form of EGFR, is expressed in about 30% of glioblastomas231). EGFRvIII 

might be a potentially ideal target for CAR T cell therapy because its extracellular epitope can 

easily be recognized by monoclonal antibodies, and this mutation is absent in normal tissues. 

EGFRvIII-specific CAR T cell therapy has shown effective tumor control in preclinical studies182), 

but it has had limited success in clinical trials147). In a phase I clinical trial that used a single 

infusion of autologous second-generation CAR T cells (CD3ζ + CD28) targeting EGFRvIII in ten 

recurrent glioblastoma patients without prior lymphodepletion, all patients had detectable 

engraftment of EGFRvIII CAR T cells in their peripheral blood147). The EGFRvIII CAR T cells 

successfully trafficked into the tumors in the brain, with antigen decrease, indicative of antigen-

specific tumor cell lysis, in five of seven patients who received surgery early after the infusion. 

Some of the tumor specimens, however, had infiltration of immunosuppressive Tregs and 

increased expression of inhibitory molecules such as indoleamine 2,3-dioxygenase 1, 

programmed death-ligand 1 (PD-L1), and IL-10. Those results suggest that EGFRvIII CAR T cell 

therapy might not only induce antigen-specific antitumor cytotoxicity, but also stimulate a 

compensatory immunosuppressive response. In another phase I clinical trial, third-generation 
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EGFRvIII CAR T cells (CD3ζ + CD28 and 4-1BB costimulatory domains) were administered 

after lymphodepleting chemotherapy and supported post-transfer with intravenous IL-2 in 

patients with recurrent glioblastoma64). Eighteen patients were treated intravenously with a dose 

escalation of EGFRvIII CAR T cells. The persistence of CAR T cells correlated with the cell dose, 

but no objective antitumor responses were observed. 

 

HER2 

HER2 is another member of the epidermal growth factor receptor family that plays an essential 

role in cell proliferation, differentiation, motility, and adhesion, so its overexpression in cancer is 

usually associated with a poor prognosis98). HER2 is expressed at high levels (about 80%) in 

glioblastomas134), but it is also present in normal cells; therefore, HER2 CAR T cells could pose 

the risk of on-target off-tumor toxicity. Such autoimmune toxicity was manifest in a patient with 

metastatic colon cancer treated with third-generation (CD3ζ + CD28 and 4-1BB) ErbB2 

(HER2/neu) CAR T cells and IL-2 after lymphodepleting chemotherapy that died of respiratory 

distress due to a cytokine storm triggered when the ErbB2 CAR T cells recognized low levels of 

ErbB2 on lung epithelial cells139). That case emphasizes the importance of selecting TAAs with 

limited expression on normal cells because CAR T cell therapy has potent cytotoxicity. 

Nonetheless, in a subsequent phase I study, autologous HER2 CAR T cells (CD3ζ + CD28) were 

successfully demonstrated to be safe without dose-limiting toxicity in seventeen patients with 

progressive glioblastoma2). Major differences between the first troubling case and the latter study 

were the use of a second-generation CAR (CD3ζ + CD28) with a different scFv (FRP5-based 

exodomain), the absence of a concomitant IL-2 infusion, and no use of prior lymphodepleting 

chemotherapy. The HER2 CAR T cells persisted in the peripheral blood for up to 12 months. 

Eight patients had clinical benefits, in the form of a partial response (n=1) or stable disease (n=7). 

The median OS was 11.1 months after T cell administration and 24.5 months after diagnosis. 
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IL-13Rα2 

IL-13Rα2, a cancer-germline antigen found in both glioma cells and the testes, is not expressed 

at significant levels in normal brain tissue40,88). The activation of IL-13Rα2 is associated with 

increased invasiveness of glioblastoma, so IL-13Rα2 overexpression is related to poor 

prognosis20). Local administration of first-generation IL13-Rα2 CAR T (CD3ζ) cells into the 

resection cavity of three patients with recurrent glioblastoma was found to be feasible and safe, 

with encouraging clinical responses, in a first-in-human pilot study18). A subsequent study of serial 

intracranial and intraventricular infusions of second-generation CAR T cells targeting IL13-Rα2 

(CD3ζ + 4-1BB) in one patient with multifocal glioblastoma also showed the treatment to be safe 

and feasible. All intracranial and metastatic tumors in the spine were completely eliminated 

during the treatment, and that dramatic clinical response was sustained for 7.5 months after the 

initiation of therapy (NCT02208362)17). A phase I clinical trial (NCT05540873) to assess the 

safety and tolerability of intravenously administered IL13-Rα2 CAR T cells in patients with 

malignant glioma has started in Korea. 

 

B7 homolog 3 protein (B7-H3) 

B7-H3, also known as CD276, is a member of the B7 superfamily of immune checkpoint 

molecules that regulate T cells34). It is overexpressed in the cells of some hematological and most 

solid tumors135), and it shows limited expression in normal tissues212). Therefore, B7-H3 could be 

an attractive target for antibody-based cancer immunotherapy. It is expressed, interestingly, in 

tumor-associated vessels and fibroblasts as well. Thus B7-H3 CAR T cells could eliminate tumor 

cells not only through direct targeting, but also through stroma disruption and neo-angiogenesis 

inhibition160,188) without causing major on-target off-tumor toxicity. Second-generation (CD3ζ + 

4-1BB) B7-H3 CAR T cells effectively controlled solid tumor cells47) and induced the regression 

https://clinicaltrials.gov/ct2/show/NCT02208362
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of established solid tumors in xenograft models of osteosarcoma, medulloblastoma, and Ewing’s 

sarcoma without causing obvious toxicity125). A randomized, parallel-arm, phase I/II study 

(NCT04077866) of an intratumoral/intraventricular injection of B7-H3 CAR T cells between 

TMZ cycles to evaluate their safety and efficacy in patients with refractory or recurrent 

glioblastoma is in progress. 

 

CD147 

CD147, an extracellular matrix metalloproteinase inducer, is one of the immunoglobulin 

superfamily of adhesion molecules that stimulate collagenase secretion, such as 

metalloproteinase-1, -2, -3, -9, -14, and -15 in fibroblasts, that leads to the degradation of the 

extracellular matrix (ECM)237). It is overexpressed in tumor cells, including glioblastoma cells, 

and is believed to increase their malignant properties, such as proliferation, invasion, metastasis, 

and the inhibition of tumor cell apoptosis66,103). In addition, it might also be involved in 

angiogenesis via the regulation of vascular endothelial growth factor production in tumor and 

stromal cells14). Therefore, it is a promising biomarker for predicting prognosis in many cancers, 

including glioblastomas53,241). A single-center, single-arm, open label, dose-escalation clinical 

study (NCT04045847) to assess the safety, tolerance, and efficacy of CD147 CAR T cells is 

underway in patients with recurrent glioblastoma. 

 

Disialoganglioside (GD2) 

GD2 is highly expressed on several types of tumor, including melanoma, retinoblastoma, and 

neuroblastoma120). It is also highly expressed in glioblastoma cells and expressed at a very low 

level in normal CNS cells46). The antitumor effects and safety of GD2 CAR T cells have been 

explored in various preclinical models, including glioblastoma58,167) and diffuse pontine glioma140). 

A clinical trial (NCT04196413) to evaluate the antitumor efficacy of GD2 CAR T cells after 

https://clinicaltrials.gov/ct2/show/NCT04077866
https://clinicaltrials.gov/ct2/show/NCT04045847
https://clinicaltrials.gov/ct2/show/NCT04196413
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lymphodepleting chemotherapy in patients with H3-K27M mutated diffuse pontine glioma is 

ongoing. In a preliminary report, three of the first four patients exhibited clinical and radiographic 

improvement without on-target off-tumor toxicity124). Another phase I clinical study 

(NCT04099797) of GD2 CAR T cell therapy in patients with GD2-expressing brain tumors, such 

as glioblastoma, DIPG, medulloblastoma, and other rare brain tumors, is also underway. The 

insertion of GD2-targeting CARs into mesenchymal stem cells (MSCs) that deliver tumor 

necrosis factor–related apoptosis-inducing ligand (TRAIL) to create CARs with bi-functional 

MSCs that express high levels of both TRAIL and GD2 could reinforce the antitumor activity of 

this treatment against GD2-positive glioblastoma cells65). 

 

Matrix metalloproteinase 2 (MMP-2)  

Another way to expand the repertoire of target antigens used in CAR T cell therapy involves 

naturally derived products with exclusive tumor-binding potential170). For example, chlorotoxin 

(CLTX), a peptide toxin isolated from the venom of the death stalker scorpion (Leiurus 

quinquestriatus)39, can selectively bind to glioblastoma and other neuroectodermal tumors, while 

showing minimal reactivity with normal cells in the brain and other tissues, including skin, kidney, 

and lung tissues121,195). CLTX itself is non-cytotoxic to tumor and normal tissues, so it has been 

used for the tumor-specific delivery of cytotoxic agents or radioisotope I131 38, 126). Although the 

precise cell surface receptor on glioblastoma cells that is responsive to CLTX remains unclear, 

the expression of MMP-2, chloride channel CLCN3, and phospholipid protein annexin A2 seems 

to be involved43,129,201]. Specific binding of CLTX to cancer cells is facilitated by MMP-2210), and 

MMP-2 knockdown in glioblastoma cells reduced CLTX CAR T cell activation and 

cytotoxicity218). Thus, MMP-2 expression is required for effective CLTX CAR T cell activation. 

CLTX CAR T cells also efficiently eradicated tumors in glioblastoma-bearing mice with no 

observed toxicity218). A subsequent phase I study (NCT04214392) of T cells expressing CLTX 

CARs for the treatment of MMP-2-positive recurrent or progressive glioblastoma is in progress. 
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EphA2 

EphA2, a member of the Eph family of receptor tyrosine kinases, is overexpressed in 

glioblastomas236) and associated with poor outcomes221) through its capacity to enhance 

tumorigenesis248), tumor invasion132), angiogenesis45,149), and metastasis15). EphA2 is not 

expressed in most normal tissues, including the brain, but it is present in pulmonary epithelial 

cells236). Second-generation EphA2 CAR T cells (CD3ζ + CD28) could eliminate EphA2-positive 

glioblastoma cells and glioblastoma-initiating cells in vitro, and adoptive transfer of EphA2 CAR 

T cells in animal models showed the regression of gliomas and a significant survival benefit30). In 

a subsequent study, incorporating the 4-1BB signaling domain into CD3ζ + CD28 CARs did not 

improve CAR T cell function, so second-generation CAR T cells (CD3ζ + CD28) might be a safer 

choice for clinical trials than third-generation CAR T cells244). A pilot study (NCT03423992) is 

in progress to determine the safety and efficacy of personalized CAR T cell immunotherapy based 

on the expression of TSAs/TAAs (EGFRvIII, IL13Rα2, HER2, EphA2, CD133, GD2) in patients 

with recurrent malignant gliomas. In the preliminary report, two of three patients with EphA2-

positive recurrent glioblastoma enrolled as the first cohort to receive a single intravenous infusion 

of EphA2 CAR T cells at a starting dose level of 1X106 cells/kg after lymphodepleting 

chemotherapy showed grade 2 cytokine release syndrome (CRS) accompanied by pulmonary 

edema, which resolved with dexamethasone treatment. Among those three patients, one achieved 

stable disease, and the other two patients showed progressive disease, with OS ranging from 86 

to 181 days114). 

 

Natural killer group 2 member D (NKG2D) ligands 

The human NKG2D is an activating receptor naturally expressed on most NK cells, CD8+ T 

cells, a subset of CD4+ T cells, natural killer T cells, and γδ T cells. Cells undergoing stress such 
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as DNA damage, hypoxia, or viral infection can express NKG2D ligands11). The interaction 

between NKG2D and NKG2D ligands causes immune cell activation that results in the cytolysis 

of NKG2D ligand–expressing cells13). NKG2D ligands are rarely expressed by normal tissues, 

but they are frequently overexpressed on solid tumors145). NKG2D ligands are also frequently 

expressed on glioblastoma stem-like cells and glioblastoma cells, and they can activate NKG2D-

expressing killer cells55,239). Chemotherapy or radiotherapy can upregulate NKG2D ligand 

expression on glioblastoma cells, so combining conventional therapy with NKG2D-targeting 

immunotherapy might have synergistic antitumor effects225). Such an effect, including 

significantly prolonged OS, was actually demonstrated in an animal study of glioblastoma 

combining murine NKG2D CAR T cell therapy with radiotherapy226). A phase I study 

(NCT04270461) to evaluate the safety and clinical activity of NKG2D-based CAR T cells in the 

treatment of relapsed and refractory NKG2DL-positive solid tumors, including glioblastoma and 

medulloblastoma, was withdrawn for administrative reasons. Recently, increased antitumor 

activity of human mRNA–based multifunctional NKG2D CAR T cells co-expressing IL-12 and 

IFN-α2 was reported in vitro and in vivo in mouse glioma models without signs of toxicity131). 

In addition to those targets of CAR T cell therapy in ongoing clinical studies, targets in 

preclinical studies are carbonic anhydrase IX (CAIX), CD70, chondroitin sulfate proteoglycan 4, 

fibroblast growth factor-inducible 14 (Fn14), and trophoblast cell surface antigen 2. 

 

ENHANCEMENT OF CAR T CELL FUNCTION 

 

Targeting multiple antigens 

The antigenic and molecular profiles of glioblastoma are strikingly heterogeneous in terms of 

pathology and genetic changes, even within a single tumor156). So, glioblastoma cells without the 

targeted antigen can escape CAR T cell recognition and elimination. In addition, preclinical and 
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clinical studies have shown that targeting a single antigen can result in antigen loss variants during 

subsequent tumor recurrence100,150). Strategies to prevent such escape include efforts to expand 

the list of available TSAs, such as mutation-derived neoantigens, and to engineer CAR T cells to 

achieve multi-specificity. To date, two preclinical studies from the same research group have used 

CAR T cells to target multiple antigens in glioblastomas. One study used bispecific CARs 

composed of signaling domains (CD28 + CD3ζ) and a tandem CAR (TanCAR) exodomain that 

fused a HER2-binding scFv to an IL13Rα-binding IL13 mutein. The TanCAR T cells displayed 

enhanced antitumor efficacy and improved animal survival compared with the effects of single 

CAR T cells encountering HER2 or IL13Rα271). The other study designed trivalent CAR T cells 

that targeted HER2, IL13Rα2, and EphA2. The trivalent CAR T cells exhibited improved 

cytotoxicity and cytokine release compared with monospecific and bispecific CAR T cells in vitro. 

They were also able to control tumor growth at low T cell doses in autologous glioblastoma 

patient–derived xenografts12). Further clinical information is required to determine whether CAR 

T cells targeting multiple antigens can be efficient in the immunosuppressive TME of human 

glioblastomas. 

 

Neoantigens 

Neoantigens are real TSAs because they are a series of peptides present in tumor cells but not 

in normal cells. Therefore, neoantigens derived from tumor-specific mutations can generate 

potent immune responses with central tolerance and without toxicity to normal tissue242). The most 

common method for identifying personalized neoantigens compares DNA sequences in tumor 

tissues with those in normal tissue108). An efficient sequencing tool currently in wide use is whole 

exome sequencing technology209).  

Since the first personalized neoantigen-pulsed DC vaccine began to be tested in a phase I 

clinical trial for melanoma in 201522), various clinical trials of neoantigen-loaded DC vaccines for 
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solid tumors have been conducted44,151,152,180,184) and shown therapeutic value against cancer. In a 

phase I/Ib study of personalized neoantigen DC vaccines for eight patients with newly diagnosed 

MGMT-unmethylated glioblastoma, neoantigen-specific T cells from the peripheral blood were 

shown to migrate into an intracranial tumor without dose-limiting toxicity. However, all patients 

showed tumor recurrence and ultimately died of progressive disease, with a median OS and PFS 

of 16.8 months and 7.6 months, respectively90). Thus, even the T cell response induced by a DC 

vaccine targeting neoantigens might be insufficient to produce clinically effective antitumor 

activity in the immunosuppressive TME of glioblastoma. Perhaps, reducing the number of steps 

between effector T cells and naïve T cells in the body would improve the antitumor activity of 

effector T cells. For example, in mouse tumor models, neoantigen-pulsed DC vaccines that used 

fewer steps to produce effector T cells endogenously were superior to neoantigen-adjuvant 

vaccines with one more step of antigen priming in both activating immune responses and 

inhibiting tumor growth252). Therefore, ex vivo expanded neoantigen-specific effector T cells that 

do not require an endogenous process to stimulate T cells might improve the antitumor immune 

response. 

 

Cytokine overexpression 

Incorporating a signal of immune stimulatory cytokines into third-generation CAR T cells 

produces fourth-generation CAR T cells, which have improved cell expansion and persistence25). 

Transgenic cytokine expression could also stimulate CAR T cells to lyse antigen-negative cancer 

cells not otherwise recognized by CAR T cells in the tumor. The cytokine tested in a glioblastoma 

animal model was IL-15, which plays an important role in T cell expansion and survival, 

especially in absence of the antigen93,100). IL-13Rα2 CAR T cells modified to express transgenic 

IL-15 (IL-13Rα2 CAR T/IL-15) showed greater proliferation and longer persistence, and 

produced more cytokines than IL13-Rα2 CAR T cells in vitro. Those results also produced a 

survival benefit in vivo, but late recurrence of tumors with downregulated IL-13Rα2 expression 



 

20 

and antigen loss was observed100). Although genetically modifying CAR T cells to express 

transgenic cytokines might be a powerful method to improve their antitumor activity, multiple 

antigen targeting might also be required to prevent the occurrence of antigen loss variants during 

tumor recurrence. 

 

Bispecific T cell engagers (BiTEs) 

BiTEs are a subclass of bispecific antibody composed of two different antibody fragments, one 

of which is specific for CD3ζ on T cells and the other of which recognizes a tumor antigen233). 

Therefore, BiTEs can act as an immunologic synapse to facilitate an optimal interaction between 

cytotoxic T cells and tumor cells without the need for co-stimulation or MHC recognition48). Their 

antitumor effects and safety have been shown in clinical trials for various hematologic 

malignancies10,143) and solid tumors95,200). In glioblastoma mouse models, bispecific T cells 

expressing both EGFRvIII CAR and a BiTE against EGFR eliminated heterogeneous EGFRvIII-

expressing tumors that monospecific EGFRvIII CAR T cells were unable to treat completely28). 

Fn14, a cell surface receptor of the TNF-related weak inducer of apoptosis, is upregulated in 

gliomas, and its overexpression can stimulate the migration and invasion of glioma cells, so it is 

associated with poor prognosis206). In a preclinical study testing the antitumor activity of three 

therapeutic approaches, an Fn14xCD3ζ BiTE antibody, Fn14-specific CAR T (Fn14 CAR T) cells, 

and Fn14 CAR T cells engineered to secrete IL-15 (Fn14 CAR T/IL-15) against glioblastomas, 

both the Fn14xCD3ζ BiTE antibody and Fn14 CAR T cells showed cytotoxic effects in vitro and 

in vivo, and IL-15 production augmented the antitumor effects of CAR T cells, resulting in longer 

remission and survival107). Although BiTEs or BiTE-secreting CAR T cells have shown promising 

antitumor activity in preclinical studies, it is necessary to further verify whether they will work 

well in the immunosuppressive TME of human glioblastomas. A phase I clinical study 

(NCT04903795) to evaluate the safety of EGFRvIIIxCD3ζ BiTEs alone and in combination with 
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a peripheral autologous T cell infusion in patients with EGFRvIII-mutated grade IV malignant 

glioma is ongoing. 

 

Disrupting immunosuppressed molecules 

The widespread adoption of gene-editing technologies has enabled the random insertion or 

deletion of specific transgenes to or from CAR T cells. Incapacitating immune inhibitory 

molecules such as PD-1 and transforming growth factor-β (TGF-β) on T cells could be one 

strategy for overcoming the immunosuppressive TME of glioblastomas.  

Methods for blocking or reversing immune inhibitory molecules include combination therapy 

of CAR T cells and PD-1 blocking antibodies190,194), CAR T cells that secrete PD-1 blocking 

antibodies198), CAR T cells with PD-1 gene-knockout29), and CAR T cells with a PD-1 chimeric 

switch receptor that reverses the inhibitory signal of PD-1 activation into a stimulatory signal116). 

Because Treg cells also express PD-1, systemic treatment with PD-1/PD-L1 blocking agents 

could enhance Treg cell function, leading to significant suppression of antitumor immune 

responses and subsequent hyper-progression of cancers23,91). The advantages of CAR T cells with 

an intrinsic PD-1 blockade produced by genetic engineering are that they provide more 

sustainable activity and more tumor-limiting PD-1 inhibition than CAR T cells combined with 

antibody treatment. Targeted disruption of PD-1 using the clustered regularly interspaced short 

palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) system enhanced the 

antitumor activity of EGFRvIII CAR T cells in vitro and significantly prolonged the survival of 

mice bearing glioblastomas29). However, a sustained PD-1 blockade by genetic deletion can 

promote the accumulation of terminally differentiated, exhausted CD8+ T cells148,224) and raise 

safety concerns about the occurrence of CRS through the supraphysiological activation of CAR 

T cells that would result from continuously blocking the physiologic function of PD-1, which is 

to inhibit excessive T cell activation. Clinical trials, therefore, should only be conducted after 
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sufficient consideration of the problems that could arise from a persistent PD-1 blockade. 

TGF-β is a powerful immunosuppressive factor that has been shown to promote T cell 

exclusion and dysfunction in most solid tumors, including glioblastomas128,161). TGF-β blockade 

can facilitate the efficacy of adoptive T cell therapy for glioblastomas. Recent advanced CAR 

engineering can convert immunosuppressive molecules into T cell stimulants for CAR T cell 

therapy. Actually, CARs responsive to a variety of soluble ligands, including TGF-β, can be 

constructed to effectively convert TGF-β from a potent immunosuppressive cytokine into a strong 

stimulant for T cells24). Such CAR T cells could inhibit endogenous TGF-β signaling in T cells. 

Because that approach is not directly involved in tumor cell lysis, it might require a combination 

of receptors to recognize surface antigens for direct tumor cell killing. 

 

Enhancing T cell trafficking 

Making CAR T cells accumulate in the TME for a long time is another method for increasing 

antitumor efficacy. CAR T cells can be engineered to express chemokine receptors, such as C-X-

C motif chemokine receptor 1 (CXCR1) and CXCR2, and thereby enhance intratumoral T cell 

trafficking. CD70, a member of the TNF family, is a novel immunosuppressive ligand and glioma 

target80). CD70 CAR T cells modified to express IL-8 receptors, CXCR1, and CXCR2 had greater 

trafficking to the tumors via radiotherapy-induced IL-8 upregulation, which resulted in complete 

tumor regression and a long-lasting memory T cell response in preclinical models of malignant 

tumors, including glioblastoma81). A subsequent phase I study (NCT05353530) of IL-8 receptor–

modified CD70 CAR T cell therapy in CD70 positive and MGMT-unmethylated adult 

glioblastoma is underway. 

 

Allogeneic CAR T cells 
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CAR T cell therapy based on autologous T cells has some limitations, including treatment delay 

due to production time, high cost, and the risk of manufacturing failure, and the functional 

availability of T cells is often reduced by the disease itself or previous therapies254). Allogeneic or 

universal “off-the-shelf” CAR T cell therapy using T cells obtained from healthy donors could be 

an alternative. Advances in gene-editing technologies, including zinc finger nuclease (ZFN)168), 

transcription activator-like effector nuclease164), and CRISPR/Cas9174), might be used to remove 

the two main barriers to allogeneic CAR T cells: graft-versus-host disease (GVHD) and 

allorejection. These exquisite gene-editing tools can generate TCR-deficient T cells to prevent 

GVHD164,174,204) or T cells that eliminate MHC class I molecules by disrupting the β2-

microglobulin locus to reduce allorejection217). In a recent phase I clinical trial, the safety and 

feasibility of allogeneic CAR T products were evaluated in patients with recurrent glioblastomas. 

Healthy donor–derived CAR T cells targeting IL-13Rα2 were generated and engineered using 

ZFNs to permanently disrupt the glucocorticoid receptor GRm13Z40-2, making them resistant to 

glucocorticoid treatment. Allogeneic Grm13Z40-2 T cells combined with an intracranial infusion 

of IL-2 and systemic dexamethasone maintained their effector function in the presence of 

dexamethasone, which was used to reduce the tumor-related brain edema as well as the rejection 

of therapeutic allogeneic T cells, and induced transient tumor reduction and/or tumor necrosis at 

the T cell infusion site in four of six treated patients without evidence of GVHD19). This first-in-

human experience demonstrated the feasibility of using allogeneic CAR T products to treat 

glioblastomas.  

 

ADOPTIVE NK CELL THERAPY 

 

NK cells are effector cells of the innate immune system that can kill tumor cells directly in an 

MHC-independent fashion by releasing lytic granules that contain perforin and granzymes or by 
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inducing death receptor–mediated apoptosis through the expression of the Fas ligand or TRAIL166). 

The mechanism of NK cell activation is subject to the “missing-self hypothesis”. NK cells do not 

attack healthy cells when their inhibitory receptors, including NKG2A and killer 

immunoglobulin-like receptors (KIR), recognize the cognate MHC class I molecules of healthy 

cells, which protects self-cells from innate immunity; however, the downregulation of MHC class 

I occurs frequently in tumor cells, which are thus subject to NK cell activation101,118). NK cells 

recognize tumor cells through cell surface receptors such as NKG2D, CD16, and the natural 

cytotoxicity receptors NKp44, NKp46, and NKp30, which bind directly to ligands of the tumor 

cells119). Those receptors activate signaling proteins such as DAP10, DAP12, and CD3ζ that 

initiate the release of perforin and granzymes, and mediate the release of cytokines such as IFN-

γ and TNF-α, resulting in the lysis of tumor cells104). NK cells can also regulate DC maturation 

through crosstalk with DCs that determines the efficacy of the DC-mediated adaptive immune 

response50,216). Furthermore, NK cells can eliminate tumor cells via antibody-dependent cellular 

cytotoxicity (ADCC) mediated by CD16106). They express Fcγ receptors that bind to tumor cell 

surface–coating tumor-specific antibodies secreted by B cells and then lyse tumor cells by 

releasing perforin and granzymes213). In addition, they infiltrate glioblastomas more frequently 

than T cells240). In immunotherapy for glioblastomas, innate immune NK cells without tumor 

specificity can have distinct advantages over adaptive immune T cells because glioblastoma 

presents high antigenic heterogeneity and a low mutational burden. Therefore, NK cells could be 

potential candidates for adoptive immunotherapy for glioblastoma, if their potent cytotoxicity can 

be maintained in vivo despite the severely immunosuppressive TME and tumor cells. 

Ongoing clinical trials of allogeneic and CAR NK cells are summarized in Table 2. 

 

Autologous NK cells 
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In early clinical trials, autologous ex vivo–expanded NK cell–rich effector cells derived from 

PBMCs were administered to patients with recurrent glioblastoma78,113). The autologous NK cell 

therapy was safe, but its antitumor effects were limited.  

 

Allogeneic NK cells 

Allogeneic HLA-mismatched NK cells have been in the spotlight as an alternative to autologous 

cells. Because allogeneic NK cells can bypass inhibitory signals and carry a low risk of 

GVHD158,178), they are expected to have more potent antitumor efficacy than autologous cells. 

Moreover, glioblastoma stem-like cells seem to be highly susceptible to the cytotoxicity of 

allogeneic NK cells6,69). The sources of allogeneic cells include embryonic stem cells (ESCs), 

induced pluripotent stem cells (iPSCs)49), umbilical cord blood211), cell lines such as NK-9294), 

and the PBMCs of healthy donors133). Because of the low yield of NK cells available from 

allogeneic sources and the low transduction efficiency of CAR constructs, it could be reasonable 

to use NK cell lines. The NK-92 cell line is approved by the United States Food and Drug 

Administration (US FDA) for use in clinical trials202). NK-92 cells can expand without limit and 

are uniform, well-characterized, reproducible, and easily modifiable through genetic 

engineering192,199). They present impaired ADCC due to a lack of CD16, which can be re-

expressed by CRISPR/Cas9 editing to increase antitumor cytotoxic activity75). Because the NK-

92 cell line is derived from human NK cell lymphoma, it requires irradiation prior to infusion into 

patients due to safety concerns, such as chromosomal abnormalities and the risk of malignant 

transformation175). This radiation treatment does not affect the cytotoxicity of NK-92 cells, but it 

impairs their proliferation and reduces trafficking to the tumor, so it does limit their therapeutic 

efficacy72). Therefore, CAR NK-92 cells must be administered several times. Allogeneic NK cell 

transfer therapy has also been found to be safe. The antitumor efficacy of allogeneic NK cell 

therapy has been demonstrated in treating hematologic malignancies and to a lesser extent in 

studies on solid tumors60). The US FDA approved a clinical trial (NCT04489420) to evaluate the 
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safety and feasibility of using human placental hematopoietic stem cell–derived NK cells 

(CYNK-001) in patients with recurrent glioblastoma in July 2020, but unfortunately that study 

was terminated in January 2022. 

 

CAR NK cells 

Because NK cells have potent antitumor cytotoxicity and a favorable safety profile, they are 

the most frequently explored candidate for generating CARs. NK cells do not produce IL-1 or IL-

6, the main cytokines involved in CRS192), and they display a low risk of GVHD158,178). If CARs 

are genetically engineered on NK cells, they will have greater antitumor activity than CAR T cells 

and minimal toxicity. The development of CAR NK cells for glioblastomas has followed a path 

similar to that of CAR T cells. CAR NK cells used CD3ζ as the first signal domain and then 

costimulatory domains such as CD28 and CD137 (4-1BB) were added. These conventional 

costimulatory domains, which are not found in NK cells72), can be changed into NK-specific 

signaling domains such as NKG2D, CD244 (2B4), DAP10, or DAP12 to promote NK cell 

activation and cytotoxicity62,130). Compared with CAR T cells, CAR NK cells carry significantly 

fewer safety concerns, such as CRS and GVHD158). Moreover, CAR NK cells maintain their 

activating receptors, including NKp30, NKp44, NKG2D, and DNAM-1, which could reduce 

tumor recurrence caused by the loss of CAR targeting antigens192). The CAR targets of NK cells, 

including HER2, EGFR, EGFRvIII, and NKG2D, are very similar to those of T cells discussed 

above.  

The potent anti-glioblastoma activity of CAR NK cells targeting EGFR61), EGFRvIII61,141,142), 

both EGFR and EGFRvIII61,68), and ErbB2 (HER2)4,249,250) has been shown in various preclinical 

studies. The route of delivery is also important in CAR NK cell therapy. Intravenously injected 

CAR NK-92 cells did not cross the BBB without ultrasound disruption in murine models, 

resulting in no therapeutic efficacy for intracranial tumors4). Even though the BBB environment 
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in animals might be different from that in human glioblastoma patients whose BBB can be broken 

by the tumor, intratumoral delivery has been the preferred route of administration. In preclinical 

glioblastoma mouse models, repeated intratumoral injections of ErbB2 (HER2)-specific CAR 

NK-92 cells (NK-92/5.28.z cells) induced endogenous antitumor immunity and persistent 

protection against the tumor, with cures of initial syngeneic glioblastomas and the rejection of 

rechallenged tumor cells at distant sites249). A subsequent phase I clinical trial, CAR2BRAIN 

(NCT03383978), to investigate a clonal intracranial ErbB2-specific NK-92/5.28.z CAR NK 

product combined with intravenous ezabenlimab in patients with recurrent HER2-positive 

glioblastoma is ongoing. 

 

Protection from an immunosuppressive microenvironment 

NK cell therapy for glioblastoma can encounter several obstacles, including the inhibition of 

NK cell infiltration into tumor sites, downregulation of target ligands or maintenance of cognate 

MHC class I molecule expression on the tumor cells, and the release of inhibitory cytokines and 

secretory factors such as TGF-β in the TME183). TGF-β impairs NK cell cytotoxicity and 

proliferation by inhibiting IFN-γ117), and it also inhibits activating receptors such as NKKG2D105) 

and ADCC207). So blocking the TGF-β signaling pathway could be a strategy to increase NK cell 

function238). Genetically engineering cord blood–derived NK cells to express dominant negative 

TGF-β receptor II, a mutant receptor lacking the kinase domain of TGF-β, has shown enhanced 

antitumor activity in preclinical studies of glioblastoma246) and medulloblastoma165). Another 

approach is administering TGF-β inhibitors with the NK cells. In a xenograft glioblastoma mouse 

model, treatment with allogeneic NK cells in combination with inhibitors of integrin or TGF-β 

signaling or treatment with allogeneic NK cells whose TGF-β receptor 2 (TGF-BR2) gene was 

edited to abrogate glioma stem cell-induced NK cell dysfunction produced significant tumor 

control and prolonged survival of the animals189). Those findings suggest that the integrin and 

TGF-β axis could be a potential therapeutic target of NK cell therapy in glioblastomas, as well as 
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an important NK cell immune escape mechanism. A phase I clinical trial (NCT04991870) 

evaluating the feasibility and toxicity of engineered allogeneic cord blood NK cells with TGF-

βR2 and NR3C1 deletion in recurrent glioblastoma is in progress. Mothers against 

decapentaplegic homolog 3 (SMAD3) could be an another target for NK cell therapy. SMAD3 

can induce TGF-β mediated NK cell suppression, so the suppression of SMAD3 could enhance 

NK cell activity207). Genetically engineered SMAD3-silenced NK-92 cells promoted IFN-γ 

production in NK-92 cells and inhibited tumor progression in xenograft mouse models of 

hepatoma and melanoma222). In addition, prostaglandin E2 (PG E2) secreted by cancer cells can 

promote cancer progression by inhibiting NK functions153). Blocking PG E2 has enhanced NK 

cell activity in preclinical models of metastatic breast cancer123) and gastric cancer110).  

An approach targeting immune checkpoints can be applied to NK cells as well as T cells to 

improve their potential antitumor immunity. These immune checkpoints include NK cell–specific 

receptors such as KIR and NKG2A, and NK cell–expressed TIM-3, T cell immunoreceptor with 

immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains, CD96, and LAG-

35,102). Although the role of those checkpoints in regulating NK cell function remains unclear and 

the mechanisms involved in their enhancement of NK cell function are controversial92), further 

studies evaluating the therapeutic benefits of targeting them will provide new treatment options 

and improve NK cell function, producing better clinical outcomes.  

 

Off-the-shelf CAR NK cells 

Off-the-shelf products in effector cell therapy are allogeneic immune cells that can be 

manufactured on a large scale and distributed to treat a broad range of cancer patients193). Although 

CAR NK-92 cells with potent antitumor activity do not require strict HLA matching, can expand 

easily, and do not present safety concerns such as GVHD and CRS, making them good candidates 

for off-the-shelf products, they require irradiation prior to infusion into patients, which suppresses 



 

29 

their proliferation. Moreover, these cells do not express CD16, which mediates ADCC, so they 

might have decreased lytic activity. iPSCs might also be standardized as an off-the-shelf therapy. 

Human iPSCs can produce NK cells effectively96), and they are easier to genetically modify than 

ESCs and hematopoietic stem cells111). Theoretically, any somatic cell can be reprogrammed into 

an iPSC, but in practice, easily accessible cells such as skin, urine, or blood are commonly used86).  

iPSC-derived NK cells expressing CARs that use NK-specific NKG2D instead of conventional 

CD28 as the costimulatory signal (NK-specific CAR iPSC NK cells) have demonstrated enhanced 

NK cell activation and longer survival than T cells or iPSC-NK cells expressing a conventional 

CAR in a mouse xenograft model of ovarian cancer111). NK-specific CAR iPSC NK cells could 

be an attractive option as a safe and renewable off-the-shelf CAR NK therapy, but a variety of 

clinical studies to evaluate their antitumor efficacy and safety in solid tumors with heterogeneous 

tumor populations and immunosuppressive TMEs, including glioblastoma, will be required. 

Ultimately, to be ideal off-the-shelf effector cells for the treatment of glioblastomas, NK-specific 

CAR iPSC NK cells will need to be produced in large quantities and modified to express cytokines 

that play a major role in stimulating NK cell expansion and cytotoxic functioning such as IL-

15171,232), to relieve the immunosuppression mediated by TGF-β released from the TME57), to 

express checkpoint inhibitors (as seen in CAR T cell therapy)109), and to enable multi-specific 

targeting220). The advantages and the disadvantages of CAR NK cells close to off-the-shelf 

effector cells for glioblastoma therapy are summarized in Table 3. 

 

COMBINATION THERAPY 

 

Combination with conventional chemo-/radiotherapy 

Lymphoid cells independently perform homeostatic regulation of resting and memory cells, so 

a rapid proliferation of remaining or infused lymphocytes occurs to recover normal lymphocyte 
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numbers after periods of lymphopenia59). Because these homeostasis-induced T cells respond to 

tumor antigens at a lower dosage than naïve cells26), the administration of TSAs in the form of a 

vaccine or ex vivo expanded adoptive T cell transfer during this recovery time can induce a 

disproportionate enhancement of effector cell populations that increases antitumor efficacy97,181). 

The induction of lymphodepletion in patients before T cell–based immunotherapy can be 

achieved using total body irradiation or non-myeloablative chemotherapy157). Another therapeutic 

advantage of lymphodepletion prior to immunotherapy is the ability to eliminate 

immunosuppressive cells, including myeloid derived suppressor cells (MDSCs) and Tregs7). 

Lymphodepletion before immunotherapy has been applied to various types of adoptive T cell 

therapy176). 

   Conventional adjuvant therapies for patients with glioblastomas, such as radiotherapy and 

chemotherapy, are independently immunosuppressive52). However, they can also induce favorable 

immune responses by changing the TME to increase the antitumor efficacy of T cell therapy. In 

addition to cancer cell death caused by DNA damage, which triggers the release of danger signals, 

radiation can cause phenotypic changes in tumor cells that enhance tumor cell recognition and 

elimination, including the upregulation of MHC class I, NKG2D ligands, co-stimulatory receptor 

CD80, death receptor Fas, and intercellular adhesion molecule 141,56,173); the induction of 

proinflammatory cytokines such as TNF-α, IL-1β, IFN-γ, CXCL9, CXCL10 and CXCL16, which 

attracts T cells into the tumor41,56); and possibly the disruption of the tumor vasculature and the 

BBB, which would also increase T cell trafficking179). These immune-favorable responses in the 

TME can produce an endogenous and systemic antitumor immune response. The abscopal effect, 

an antitumor immune response that occurs outside the radiation field, suggests the potential for 

radiation-induced systemic antitumor immunity56). However, the rare occurrence of the abscopal 

response indicates that this endogenous immune response is generally weak. Thus, local radiation 

therapy can be harnessed in combination with immunotherapy to induce a potent systemic 

antitumor immune response. Combining CAR T cell therapy with radiotherapy has been shown 
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to improve the antitumor efficacy of each monotherapy in preclinical models with a subset of 

solid tumors and glioblastoma42,226). In two independent syngeneic mouse models of glioblastoma, 

a sublethal dose of local radiotherapy combined with NKG2D CAR T cell therapy exerted 

synergistic activity by promoting the migration of CAR T cells to the tumor site, which increased 

the effector functions and prolonged survival226). Chemotherapeutic agents similar to local 

irradiation can also enhance the antitumor immunity of adoptively transferred T cells or CAR T 

cells via the upregulation of tumor antigens79), elimination of immunosuppressive cells253), and 

extension of cell survival214). 

 

Combination with immunotherapy 

Immunotherapy, such as immune checkpoint inhibitors and oncolytic viruses, is another 

candidate for combination with CAR T cell therapy. Immune checkpoint inhibitors restore the 

activity of effector cells that can recognize and attack cancer cells. Despite clinical success in 

various cancers, including melanoma, non-small cell lung cancer, and renal cell carcinoma203), 

anti-PD-1 monotherapy has not shown a significant survival benefit in patients with 

glioblastoma177). Immune checkpoint blockades that target the PD-1/PD-L1 and CTLA-4 

pathways have been found to increase the activity of CAR T cells in preclinical studies of 

glioblastomas194,245). Two clinical trials of CAR T cell therapy combined with immune checkpoint 

inhibitors are currently progressing. One of them is a phase I clinical trial (NCT04003649) testing 

the safety and feasibility of L-13Rα2 CAR T cells administered alone or together with nivolumab 

(anti-PD-1) and ipilimumab (anti-CTLA-4) to patients with recurrent/refractory glioblastoma, and 

the other is a clinical study (NCT03726515) to assess the safety and tolerability of EGFRvIII 

CAR T cells in combination with pembrolizumab (PD-1 inhibitor) in patients with newly 

diagnosed EGFRvIII+, MGMT-unmethylated glioblastoma. However, systemic immune 

checkpoint inhibitors can block the checkpoints of Treg cells, as well as those of CAR T cells, 

which can enhance Treg cell function, as mentioned above. 
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Oncolytic viral infection and subsequent immunogenic tumor cell death can turn tumor cells 

into large-scale producers of tumor-specific neoantigens, cytokines, and chemokines, which 

converts the TME from immunosuppression to immune stimulation and thus augments T cell 

effector function and trafficking87). Oncolytic viruses can also induce the production of type I 

IFNs (IFN-αβ) in the TME to promote T cell proliferation, effector function, and immune memory 

function37). In addition, IFN-β can modulate the TME by inhibiting Treg cell activation and 

proliferation and disrupting tumor microvessels255). This potential for TME modulation suggests 

that oncolytic viruses and CAR T cell therapy could have synergistic antitumor effectiveness3). 

Combined therapy of B7-H3 CAR T cells and IL-7-loaded oncolytic adenoviruses has been shown 

to enhance T cell proliferation and reduce T cell apoptosis in vitro, and it produced a synergistic 

survival benefit in glioblastoma xenograft mouse models74). In another study of glioblastoma, a 

combination of oncolytic adenoviruses armed with CXCL11 and B7-H3 CAR T cells produced 

increased infiltration of the effector cells and decreased proportions of immunosuppressive cells 

such as MDSCs and Tregs in the TME. In animal models, glioblastoma that was not inhibited by 

B7-H3 CAR T cells alone was inhibited when CXCL11-armed oncolytic viruses were added219). 

In addition, a herpes simplex 1–based oncolytic virus expressing IL-15/IL-15Rα combined with 

EGFR CAR NK cells demonstrated increased synergistic antitumor effects and a significant 

survival gain in glioblastoma-bearing mice122).  

 

Combination with targeted therapy 

Small-molecule inhibitors block intracellular signal transduction pathways such as tyrosine 

kinases and mitogen activated protein kinases in tumor cells, which deregulates cell proliferation 

and differentiation. Small-molecule tyrosine kinase inhibitors (TKIs) have been shown to have 

great antitumor efficacy in treating hematologic malignancies191) and a variety of solid tumors197). 

Monotherapy with small-molecule TKIs, however, has displayed limited treatment outcomes in 

clinical studies of patients with glioblastoma205). Combining TKI therapy with CAR T cells in 
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murine models produced synergistic antitumor effects in other types of solid tumors76,235). The 

combination of LB-100, a small-molecule inhibitor of protein phosphatase 2 A (involved in cell-

to-cell adhesion), and CAIX-specific CAR T cells has been found to have synergistic antitumor 

effects in glioblastoma animal models36). These results suggest that TKIs could induce synergistic 

effects in combination with CAR T cell therapy for glioblastoma.  

In a particularly useful innovation, CAR T cells can be designed to switch off by administering 

a small molecule that chemically disrupts a heterodimer63). CAR T cells incorporate a protease 

and CAR degradation moiety (degron) that can be switched on in the absence of the protease 

inhibitor asunaprevir. The degron is cleaved from the CAR by the protease, and it is switched off 

in the presence of asunaprevir; thus in the absence of the inhibitor, the degron is cleaved from the 

CAR by protease, leading to the degradation of the CAR84). These CAR T cells with a switch off 

function provide a controllable way to improve the safety of CAR T cell therapy and reduce the 

risk of CRS.  

 

CONCLUSIONS  

 

Glioblastoma has been an immunologically “cold” tumor characterized by a paucity of tumor 

infiltrating effector cells because it has high antigenic heterogeneity, a low mutational burden, an 

exceptionally immunosuppressive TME, and restricted immune access. Therefore, the clinical 

outcomes of immunotherapy for glioblastomas have been poor compared with those for other 

types of cancer. Nonetheless, cell transfer therapy using effector cells such as T and NK cells has 

been developed to overcome immune escape mechanisms and allow the cells to survive in the 

immunosuppressive TME.  

The identification of patient-specific neoantigens derived from tumor mutations has expanded 

the usable repertoire of TSAs in glioblastoma. T and NK cells have also been engineered using 
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modern genetic technologies to have multiple functionalities, including cytokine production, 

multiple antigen recognition, and trafficking enhancement with immune favorable modification 

of the TME through the inhibition of immunosuppressive molecules. BiTEs that facilitate optimal 

interactions between T cells and tumor cells can potentiate the cytotoxicity of effector cells. iPSC-

derived NK receptor–specific CAR NK cells are close to ideal off-the-shelf effector cells. Further 

efforts will be needed to learn more about immune escape mechanisms and optimize effector cell 

functions using that knowledge. In addition, an effort is required to find potent combinatorial 

therapeutic strategies that enhance antitumor efficacy and minimize the toxic effects of T or NK 

cell therapy for glioblastoma. 
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Table 1. On-going clinical trials of CAR T cell therapy for glioblastoma 

Target Title Location Phase N Clinical Trial 

EGFRvIII 

EGFRvIII-CAR T Cells in 

Treating Patients with 

Leptomeningeal Disease 

from Glioblastoma. 

(CARTREMENDOUS) 

University of Oulu, 

Oulu, Finland 

Jyväskylä Central 

Hospital, Jyväskylä 

Finland 

Apollo Hospital, New 

Delhi, India 

1 10 NCT05063682 

EGFRvIII 

Long-term Follow-up of 

Subjects Treated with 

CARv3-TEAM-E T Cells 

(CAR targeting EGFR and 

T cell engaging antibody 

molecule targeting EGFR) 

• Massachusetts 

General 

Hospital, 

Boston, 

Massachusetts, 

United States 

 

1 18 NCT05024175 

HER2 

Memory-enriched T Cells 

To Express HER2, 41BB-

CAR, and CD19 in 

Treating Patients with 

Recurrent or Refractory 

Grade III-IV Glioma 

• City of Hope 

Medical Center, 

Duarte, 

California, 

United States 

1 42 NCT03389230 

IL-13Rα2 

IL13Rα2-CAR T Cells 

with or Without 

Novolumab and Ipilimmab 

in Treating Patients with 

• City of Hope 

Medical Center, 

Duarte, 

1 60 NCT04003649 
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GBM California, 

United States 

IL-13Rα2 

IL13Rα2-CAR T Cells for 

the Treatment of 

Leptomeningeal 

Glioblastoma, 

Ependymoma, or 

Medulloblastoma 

• City of Hope 

Medical Center, 

Duarte, 

California, 

United States 

1 30 NCT04661384 

IL-13Rα2 

Memory-enriched T Cells 

To Express IL-13Rα2, 

41BB-Constimulatory 

CAR, and CD19 for 

Patients with Recurrent or 

Refractory Malignant 

Glioma 

• City of Hope 

Medical Center, 

Duarte, 

California, 

United States 

1 82 NCT02208362 

B7-H3 

Anti-BT-H3 CAR-T Cell 

Therapy for Recurrent 

Glioblastoma 

Beijing Tiantan 

Hospital, 

Beijing, China 

1 30 NCT05241392 

B7-H3 

B7-H3-targeted CAR T 

Cells in Treating Patients 

with Recurrent or 

Refractory Glioblastoma 

Second Affiliated 

Hospital, School of 

Medicine, Zhejiang 

University, Hangzhou, 

Zhejiang, China 

1/2 40 NCT04077866 

B7-H3 

Intraventricular Infusion of 

T Cells Expressing B7-H3 

CAR in Subjects with 

• Lineberger 

Comprehensive 

Cancer Center, 

1 36 NCT05366179 
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Recurrent or Refractory 

Glioblastoma 

• Chapel Hill, 

North Carolina, 

United States 

B7-H3 

Clinical Trial of 

Locoregionally Delivered 

Autologous B7-H3 CAR T 

Cells in Adults with 

Recurrent Glioblastoma 

Multiforme 

• Stanford 

Cancer 

Institute, 

Palo Alto, 

California, 

United States 

1 39 NCT05474378 

CD147 

CD147-CAR T Cells in 

Patients with Recurrent 

Malignant Glioma 

• Xijing Hospital, 

• Xi'an, Shaanxi, 

China 

1 31 NCT04045847 

GD2 

Autologous T 

Lymphocytes Expressing 

GD2-specific CAR and 

IL-7 Receptors for the 

Treatment of Patients with 

GD2-expressing Brain 

Tumors 

Texas Children's 

Hospital, 

Houston, Texas, United 

States 

1 34 NCT04099797 

EGFRvIII, 

IL13Rα2, 

Her-2, 

EphA2, 

CD133, 

GD2 

Personalized 

Immunotherapy for 

Patients with Recurrent 

Malignant Gliomas Based 

on the Expression of 

Tumor Specific/Associated 

• Xuanwu 

Hospital, 

Beijing, China 

1 100 NCT03423992 



 

69 

Antigens (EGFRvIII, 

IL13Rα2, Her-2, EphA2, 

CD133, GD2) 

MMP2 

CAR T Cells with a 

Chlorotoxic Tumor-

Targeting Domain in 

Treating Patients with 

MMP2+ Recurrent 

Glioblastoma 

City of Hope Medical 

Center, Duarte, 

California, United 

States 

1 36 NCT04214392 

NKG2D 

NKG-2D-based CAR T 

cell Immunotherapy for 

Patients with Recurrent or 

Refractory NKG2DL+ 

Solid Tumors 

(Hepatocellular ca, 

Glioblastoma, 

Medulloblastoma, Colon 

ca.) 

Fudan University, 

China 

1 3 NCT05131763 

CD70 

IL-8 Receptor Modified 

Patient-derived Activated 

CD70 CAR T Cell 

Therapy in CD70+ and 

MGMT-unmethylated 

Adult GBM 

• University of 

Florida Health 

Gainesville, 

Florida, United 

States 

1 18 NCT05353530 

N, number of participants 
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Table 2. On-going clinical trials of allogeneic and CAR NK cell therapy for glioblastoma 

Target Title Location Phase N Clinical Trial 

TGF-

βR2 

NR3C1 

Engineered NK Cells (cord 

blood-derived expanded 

allogeneic NK cells) 

Containing Deleted TGF-

βR2 and NR3C1 for the 

Treatment of Recurrent 

Glioblastoma  

M D Anderson Cancer 

Center, 

Houston, Texas, United 

States 

1 25 NCT04991870 

HER2 

Intracranial Injection of 

NK-92/5.28.z Cells in 

Combination With 

Intravenous Ezabenlimab in 

Patients With Recurrent 

HER2-positive 

Glioblastoma 

(CAR2BRAIN) 

• Johann W. 

Goethe 

University 

Hospital, 

Department of 

Neurosurgery, 

Frankfurt, 

Germany 

• Johann W. 

Goethe 

University 

Hospital, 

Senckenberg 

Institute of 

Neurooncology, 

1 42 NCT03383978 
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Frankfurt, 

Germany 

N, number of participants 
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Table 3. Comparison of the CAR NK cells close to off-the-shelf cell therapy for glioblastoma. 

They commonly will need to modify to express cytokines and checkpoint inhibitors, to relieve 

the immunosuppression mediated by TGF-β, and to enable multi-specific targeting to be ideal 

off-the-shelf effector cells. 

CAR NK cells Advantages Disadvantages 

CAR NK-92 

cells  

MHC-independent cytotoxicity 

Easy reproducibility 

Easy genetically modification 

Decreased safety concerns (GVHD 

and CRS)           

Need irradiation prior to infusion 

Relatively decreased cytotoxicity 

compared to NK-specific CAR 

iPSC NK cells 

NK-specific 

CAR iPSC NK 

cells 

MHC-independent cytotoxicity 

Easy reproducibility 

Easy genetically modification 

Decreased safety concerns (GVHD 

and CRS) 

Do not need irradiation prior to 

infusion 

Relatively increased cytotoxicity 

compared to CAR NK-92 cells 

Need more clinical studies to 

evaluate antitumor efficacy and 

safety 

GVHD, graft-versus-host disease; CRS, cytokine release syndrome; iPSC, induced pluripotent 

stem cell 

  



 

73 

 

Fig. 1. Advances in chimeric antigen receptor (CAR) generation. CARs are composed of an 

extracellular domain of a tumor antigen recognition molecule that contains the scFv of a 

monoclonal antibody, intracellular domains with a TCR signaling domain and an additional 

costimulatory domain that lead to T cell activation, and a transmembrane domain as a spacer. The 

intracelluar domain has been optimized in successive generations of CAR T cells to enhance its 

signaling capacity. First-generation CARs utilized CD3ζ chain only as an intracellular activation 

domain. Second- and third-generation CARs were developed by combining CD3ζ with one 

(second-generation) or more (third-generation) costimulatory domains such as CD28 and OX40 

or 4-1BB. Fourth-generation CARs incorporated a cytokine signaling domain such as IL-15Rα or 

Janus kinase-signal transducers and activators of transcription (JAK-STAT) into the intracellular 

domain of third-generation CARs.  

 


