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Abstract
Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available 
therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM 
intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient 
in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM 
oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, 
MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesen-
chymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive 
methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach 
is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment 
strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the 
GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept 
might show potential to achieve optimum effects.
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Introduction

Glioblastoma (GBM) multiforme is the most aggressive cat-
egory of glioma due to its complex phenotype. Diffuse glio-
mas include WHO grade II and grade III astrocytic tumors, 
grade II and III oligodendrogliomas, and grade IV GBMs. 
GBMs are divided into three categories according to the 
2016 central nervous system WHO classification accord-
ing to an important genetic prognostic marker, isocitrate 

dehydrogenase (IDH): GBM, IDH-wildtype; GBM, IDH-
mutant; GBM, Not Otherwise Specified (NOS) [1]. GBM 
is usually described in two different clinical forms, pri-
mary and secondary; primary GBM is the most common 
form (about 95%) and arises typically de novo, within 
3–6 months, in older patients, while secondary GBM arises 
from prior low-grade astrocytomas (over 10–15 years) in 
younger patients [2]. The standard of care for GBM multi-
forme includes maximal safe surgical resection of the tumor 
and concurrent chemoradiation with temozolomide, and then 
provides the patient with chemotherapy, raising the probabil-
ity of median survival rates to an average of 15 months [3]. 
In some situations, the surgical resection of the tumor can be 
difficult due to the tumor location of the brain [4]. In 2009, 
for example, the humanized anti-vascular endothelial growth 
factor (anti-VEGF) monoclonal antibody bevacizumab 
(Avastin) received accelerated approval for GBM, represent-
ing the only new therapy to be approved in GBM in more 
than a decade and the first targeted agent to be approved to 
treat this disease [5]. Although bevacizumab treatment has 
achieved significantly increased rates of tumor response and 
progression-free survival, compared with historical controls 
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[6, 7], the benefit in overall survival has been modest. The 
hypothesis that interruption of blood supply to the tumor 
will lead to regression or dormancy of the tumor has led to 
the development of several drugs that target multiple steps 
in angiogenesis. However, bevacizumab has been shown to 
increase progression-free survival in phase III clinical trials 
when added to a regimen of radio- and chemotherapy but 
does not significantly improve overall survival [8]. CAR-T 
cell-based therapy led to success in treating hematological 
malignancies, but not in treatment for brain GBM. In addi-
tion, regenerative medicine including stem cell therapy has 
generated no success yet in curing GBM due to the com-
plexity of the GBM [9]. The failure of these treatments 
can be attributed to tumor heterogeneity, tumor evasion, 
the blood–brain barrier, its anatomical location, invasive-
ness, and the immune-suppressive tumor microenvironment 
[10]. This review aims to discuss the potential of systems 
medicine strategy to optimize personalized treatment strat-
egy against the uniqueness of GBM and briefly outline the 
incorporation of various potential techniques including 
CRISPR-Cas systems and MicroRNAs (miRs) as tools of 
gene therapies, the implementation of synthetic biology to 
create gene circuits and engineered cells for specific func-
tions, and the neural stem cells (NSCs) and mesenchymal 
stem cells (MSCs) as delivery vehicles.

Glioblastoma Heterogeneity Builds 
Challenges Against Cure

Several studies have attempted to identify the most affected 
cell of origin of GBM, suggesting neural stem/progenitor 
cells [11], and astrocytes [12] in the brain. A few studies 
suggest that various cells in the brain can serve as cells of 
origin for tumors in the central nervous system [13–17]. 
There are three main signaling pathways of gliomagenesis 
including TP53, RB, and receptor tyrosine kinase pathways 
(RTK/RAS/PI3K) [18]. Histologically, primary and second-
ary GBMs are difficult to distinguish, but IDH1 mutations 
can be detected in secondary GBM but rarely detected in 
primary GBMs. Molecular alterations of IDH-wild-type 
GBM include TERT promorter mutations (present in ~ 80% 
of cases), homozygous deletion of CDKN2A/CDKN2B 
(~ 60%), loss of heterozygosity at chromosomes 10p (~ 50%) 
and 10q (~ 70%), epidermal growth factor receptor (EGFR) 
alterations (~ 50%), PTEN mutations (25–30%), and PI3K 
mutations (~ 25%) [19, 20]. Genetic alterations evolve and 
cause the lost function of tumor suppressor gene (PTEN, 
TP53, CDKN2A, RB) or the activation of oncogenic path-
ways including p21-RAS, PI3K, EGFR, CDK4, and MDM2 
[21, 22]. Genetic alterations in both primary and recurrent 
GBM can include CDKN2A and CDKN2B deletions, EGFR 
mutations, TERT mutation, and PI3K pathway mutations, 

shifting over time thereby leading to therapeutic resist-
ance [23]. The deletions of PTPRD and the CDKN2A/
p16(INK4A) tumor suppressor often occur together. PTPRD 
loss activates STAT3 in and allows glioma progression [24]. 
Piccioni et al. drew the conclusion of ctDNA mutations 
such as BRAF, IDH1, IDH2 mutations, and ERBB2, MET, 
EGFR, amplifications from 55% of plasma samples from 
222 GBM patients [25], and the intratumorgeneity of GBM 
consists of cancer cells of various subtypes [26]. In another 
study, 53 glioblastoma cell (GC) lines were produced from 
94 GBM surgical specimens (82 patients) post-resection 
and categorized as proneural (PN), classical, mesenchymal 
(MES), or neural according to the The Cancer Genome Atlas 
Research Network (TCGA) cohort of 529 GBMs. The MES 
U3020MG line is changed into the classical subtype in the 
xenograft tumor and remained classical in the explanted 
cells. The other MES line, U3065MG, changed to the PN 
phenotype in the xenograft tumor, but converted back to 
MES subtype in the explanted GC. In addition, the profile 
of RNA expression also evolved [27]. It is possible that in 
addition to tumor–stromal interactions, the tumor microen-
vironment may not only promote progression of GBM [28] 
but also influence classifier gene expression that leads to a 
shift in subtype. The MES subtype is the most aggressive 
and strongly associated with a poor prognosis compared to 
PN subtype; in addition, a shift from PN to MES subtype 
can occur in patients following radiation therapy and chemo-
therapy [29], due to upregulation of CD44 and activation of 
NF-κB pathways [30, 31]. The heterogeneity of GBM builds 
challenges to treatment efficacy, thus, the current develop-
ment of therapeutics such as CAR-T or CAR-NK is still not 
promising against GBM [9].

Systems Medicine‑Based Strategy to Treat 
Glioblastoma

Systems medicine is an approach to view the patient body in 
a whole picture, integrating systems biology and synthetic 
biology along with computational techniques. Since GBMs 
in different patients are varied but share a complexity of 
evolving genetic and epigenetic profile, we suggest the sys-
tems medicine approach to target GBM. Systems medicine 
approach can be implemented as a strategy to devise person-
alized multimodal therapy based on the ongoing analysis of 
specific genetic mutations screened from the GBM of the 
individual patient that could enable the possibility of the 
multiple combined treatments tailored to cause the suppress-
sion of GBM growth, mitigate resistance to therapy, and 
inhibit reoccurrence. The experimental science and system 
science are based on a scientific paradigm, hypothetical and 
empirical in combination to form experimental methods, 
analyses, and integrated penetration composition systems 
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method. Then the experimental biology (ecology, physiol-
ogy, and genetics) and experimental medicine were devel-
oped in the nineteenth century, followed by the rapid devel-
opment of experimental biology in the twentieth century, led 
to the formation of system biology (ecology, physiology, and 
genetics) and system medicine [32]. System biology rose 
rapidly in the twenty first century. Systems biology methods 
include system mathematical models, system biotechnology, 
bioinformation, and computational biology. The concept of 
modern systems biology consists of a comprehensive disci-
pline of biological systems theory and experimental, compu-
tational and engineering methods, experimental biology, and 
computational biology to study biological systems of ecol-
ogy, organs, cells and molecules, etc., involving the inter-
section of systems science, computer science, nanoscience, 
biological science, and other disciplines [33]. Technological 
advances and existing knowledge of brain tumor biology 
create an opportunity in which systems approaches enable 
comprehensive GBM tumorgenesis pathway screening accu-
rately by using a combination of various technologies [34]. 
Multi-omic characterization of brain tumors is vital. Intratu-
moral heterogeneity is a major obstacle to successfully ther-
apies. Multi-omic, single-cell-level characterization on the 
transcriptomic, epigenetic, and proteomic level is essential to 
find targets for therapeutics, by the application of single-cell 
technologies such as scRNA-seq. Computational approaches 
have been developed to integrate data for predictive pur-
poses. Moreover, drug repurposing methods include both 
experimental and computational strategies. The combina-
tion of single-cell technologies with computational methods 
enable the understanding of regulatory network mechanisms, 
identification of tumor phenotype, and predictions of poten-
tial effective treatment combination for a patient on an indi-
vidualized level. Every GBM is unique, and also the genetic 
profile of the patients and their conditions are unique. Moni-
toring the characteristics of an individual’s brain GBM and 
its post-treatment progression is vital. Artificial design and 
synthesis of cell signal transduction and gene regulation net-
works, cell computer concept used as molecular computing 
system of biological computer, artificial design of second-
ary metabolic enzymes, and optimization of reaction chain 
have developed a new prospect—the cell factory [35]. As 
systems medicine is rather new concept, incorporating sys-
tems biology and synthetic biology methods, experimental 
medicine and personalized medicine, to plan individualized 
treatment tailored according to various aspects of the dis-
ease and patient, the concept is discussed among scientists 
but rarely suggested in targeting brain tumor, even less in 
a single disease studies. Systems biology methods have 
been proposed in various studies to target various diseases, 
including GBM. Synthetic biology methods by engineering 
CAR-T to target hematological malignancies are promising 
even though it is not effective in solid tumors, in particular 

in targeting the GBM [9]. System medicine approach should 
include a combination of multiple strategies such as screen-
ing the molecular profile of GBM, screening and targeting 
the oncogenic pathways, gene therapy for genetic mutations, 
targeting the GBM stem cells and experimental and mod-
eling methods before application of the entire combination 
of individualized approaches.

Gliomagenesis Pathway Inhibitors

The activation of the PI3K pathway during gliomagenesis 
suggests that the inhibition of this pathway may be a thera-
peutic target for GBM [36]. PI3K inhibitors include buparl-
isib and GDC-0084, and dual PI3K/mTOR inhibitors include 
dactolisib or mTOR inhibitors such as AZD8055 [37, 38]. 
As GBM is frequently associated with alterations in EGFR 
and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian 
target of rapamycin (mTOR) signaling pathway, gefitinib 
and erlotinib which act as EGFR tyrosine kinase inhibitors 
were tested in recurrent GBM with little efficacy [39, 40]. 
Rapamycin shows antitumor activity in a phase I trial for 
patients with recurrent GBM with phosphatase and tensin 
homolog deleted on Chromosome 10 (PTEN) loss, which 
inhibits mTOR [41]. EGFR inhibitors include such as erlo-
tinib, gefitinib, lapatinib, PKI-166 and vandetanib, NT113, 
neratinib, and dacomitinib [42]. Moreover, when combined 
with erlotinib, rapamycin improves the effect of EGFR 
kinase inhibitor erlotinib to PTEN-deficient tumor cells [43]. 
PD0332991 is a CDK4/6 inhibitor shown to be effective in 
suppressing the growth of intracranial GBM and prolongs 
survival in xenograft mouse models [44, 45]. Scientists 
aimed to restore p53 function by developing compounds 
such as PRIMA-1 (p53 reactivation and induction of massive 
apoptosis-1), MIRA-3 (mutant p53 reactivation and induc-
tion of rapid apoptosis), and finding PhiKan082, CP-31398, 
and SCH529074 [46]. Nutlins, including nutlin-3, are a new 
class of small molecules that bind to MDM2 and prevent 
its interaction with p53 [47]. Although oncogenic pathway-
targeting drug inhibitors can be used as a potential strategy 
to target GBM, they are insufficient to block oncogenesis 
entirely; therefore, other methods should also be considered. 
PDGF-signaling-upregulated ubiquitin-specific peptidase 1 
(Usp1) expression was associated with prolonged survival 
in patients with PN GBM, but not with other subtypes of 
GBM. A signaling cascade downstream of PDGF sustains 
PN GCs and suggests that inhibition of the PDGF-E2F-
USP1-ID2 axis could serve as a therapeutic strategy for PN 
GBM featuring increased PDGF signaling [48]. A study con-
cluded GPR56 as an inhibitor of the nuclear factor kappa 
B (NF-κB)-signaling pathway, suggesting that GPR56 has 
the potential to suppress the MES transition of other GBM 
subtypes [49]. The implementation of pathway inhibitors is 
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researched by scientists as a potential method to inhibit the 
pathways of gliomagenesis, but more studies are needed to 
evaluate efficacy.

See Fig. 1.

Glioblastoma Stem Cells

The cancer stem cell (CSC) theory proposes that tumor is 
maintained by glioma stem cells with self-regeneration abil-
ity and the capacity to generate heterogeneous tumor cells 
[50]. A better understanding of the molecular and functional 
characteristics of the subpopulation of CSCs will potentially 
allow the development of more effective therapies for vari-
ous malignant tumors. This is indeed an  requirement for 
therapeutics against brain tumors, particularly GBM, for 
which no cure are currently available. Identifying better 
methods to the detection of GBM CSCs, and refining their 
isolation and culture, is a critical step in achieving this goal. 

Pallini et al. have found that if the number of tumor stem 
cells increases, overall survival time will become less. The 
precursor cells of tumor stem cells are still unclear. They 
may come from normal NSCs or mature neurons which are 
genetically changed and, thus, obtain a more primitive phe-
notype [51]. The GBM stem cells mainly exist in vascu-
lar niches and other tumor microenvironments that control 
nutrient and oxygen supply [52]. Some researchers hold the 
opinion that GBM CSCs are culprit that drives relapses. It 
is suggested by that it is possible that nontumorigenic can-
cer cells holding high heterogeneity could turn into GBM 
CSCs; therefore, proposals are made to targeting GBM 
stem cells in the hope of eradicating this disease as standard 
treatments are unable to eliminate GBM [53]. Glioblastoma 
stem cells (GSCs) present in GBM are responsible for the 
vasculature directly or indirectly, inducing self-regeneration 
and proliferation of GSC [54]. Signaling pathways that are 
essential for the maintenance of the brain are also shared by 
GBCs which included the Notch, WNT, Sonic Hedgehog 
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Fig. 1   Glioblastoma pathway inhibition. a Inhibitors to target three 
major glioblastoma oncogenesis pathways and main genetic muta-
tions. b Four subtypes of glioblastoma and the utilization of CRISPR-
Cas system as a tool to correct genetic mutations. c Increased PDGF 
signaling activates the expression of E2F transcription factors, which 

activated Usp1, leading to the stabilization of Inhibitor of DNA-bind-
ing 2 (ID2), needed for cell survival in proneural subtype. d GPR56/
ADGRG1 inhibits other GBM subtypes from shifting towards mesen-
chymal subtype
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(SHH), PI3K/AKT, and STAT3 pathways. Scientists have 
been researching for strategies to identify GBCs, including 
cell surface markers such as CD133, CD15, A2B5, CD90, 
L1CAM, and the combination of CD44 and ID1 [55]. Posa-
conazole inhibits the GSCs by inducing autophagy and sup-
pressing the Wnt/β-catenin/survivin-signaling pathway in 
GBM [56]. PI3K/mTor-signaling pathway is important for 
the maintenance of GBCs, and inhibition of both mTOR 
and PI3K is suggested as a strategy for treatment in GBM 
[57]. NVP-LDE-225, inhibitor of the SHH signaling path-
ways, whereas NVP-BEZ-235 as dual inhibitor of PI3K and 
mTOR inhibited the expression of p-PI3K, p-Akt, p-mTOR, 
and p-p70S6K, when combined together, they suppress epi-
thelial–mesenchymal transition, tumor growth, by targeting 
GSCs [58]. The AKT/mTOR inhibitor FC85 and ISA27 
were used in combination, FC85 reactivated the function of 
p53, activating the apoptosis of GBM cells, and inhibited 
the proliferation of GSCs and promoted the apoptosis of 
GSCs [59]. Although the afatinib, an EGFR inhibitor, pro-
moted survival in GBM with EGFRvIII mutation in vitro, it 
also activated STAT3-signaling pathway, and an alternative 
pathway to compensate for EGFR signaling after afatinib 
was given, therefore, inhibition of both EGFR and JAK2/
STAT3 signaling by treatment of afatinib and pacritinib 
was needed to suppress the growth of GSCs [60]. Ma et al. 
showed that although neither farnesyltransferase inhibitors 
(FTIs) nor NOTCH-targeted γ-secretase inhibitors (GSIs) 
alone, but when applied together, they inhibited GBM 
growth by tackling the GSC subpopulation [61]. Apart from 
pathway inhibitors, a variety of other methods are studied 
in targeting GSCs. A group found that bone morphogenetic 
proteins (BMPs), among which BMP4 is most effective, sub-
stantially decrease the stem cell like precursors of human 
GBMs, thus, blocking the growth of cancer cells and rel-
evant decease of mice post-intracerebral grafting of human-
derived GBM cells [62]. Another group concluded that bone 
morphogenetic protein 7 (BMP7) is able to restrict GBM 
growth in vitro and in vivo by inhibiting GSCs [63]. Met-
formin, used as an antidiabetic agent, by activating FOXO3, 
reduced the GSCs into nontumorigenic cells. Mouse models 
are treated with metformin which prolonged their median 
survival [64]. GSK591 or LLY-283 inhibition of Protein 
arginine methyltransferase 5 (PRMT5) a potential target, 
was shown to be effective in suppressing the growth of 
GSCs cultures derived from 46 patients [65]. A report show 
that PIM1 inhibition eradicates GSCs, since PIM1 inhibi-
tion suppresses the stem cell markers CD133 and Nestin in 
GBM cells [66]. CD133+ cells are known to be the culprit of 
chemotherapy and radiotherapy resistance GBM, which may 
cause intratumoral heterogeneity. In addition, a group used 
inmmunotherapy CART133 cells to target CD133+ GSCs 
[67]. Another group aimed to deter the invasiveness of GCs 
and GSCs in zebrafish brains in vivo through the nanobody 

NB237 which targeted TRIM28 [68]. GSCs are targeted in 
various researches, and the success of GBM also depends on 
the suppression or eradication of GBCs. See Fig. 2.

MicroRNA‑Based Therapeutics Against 
Glioblastoma

MicroRNAs are non-coding small RNAs, 18–24 nucleo-
tides regulate gene expression post-transcription in cells. 
By binding the miR, nucleotide 2–7 to the 3′-untranslated 
region (3′-UTR) of the mis intended to inhibit by comple-
mentary nucleotides and such methods have been used in 
cancer therapy [69]. In Suh et al., the overexpressions of 
miR-25 and miR-32 are detected along with low signal of 
p53 and inhibited the growth of the GCs in the brains of 
mouse models [70]. In a study, miR-296-5p is shown to sup-
press the glioblastoma cell stemness, inhibiting their ability 
to self-regenerate [71]. A cationic carrier system, dendritic 
polyglycerolamine (dPG-NH2), allowing miR-34a to cross 
blood–brain barrier, is to inhibit the activities of GBM cells 
[72]. Li et al.  demonstrated that miR-378 overexpression 
promotes GBM response to radiotherapy and prolongs the 
survival of GBM mouse models suggesting miR-378 as a 
potential therapeutic approach [73]. MicroRNA has the 
capacity to target several genes in cellular pathways, and 
in a study, polymeric nanogels consisting of polyglycerol 
scaffold are utilized to deliver NG-miR-34a nano-polyplexes 
in mice which suppressed GBM cell growth [74]. In Shi 
et al., overexpression of miR-139-3p inhibited the growth of 
GBM via targeting NIN1/RPNI2-binding protein 1 homolog, 
whereas miR-139-3p underexpression promotes the growth 
of GBM [75]. The miR-30c was delivered by bone marrow 
MSCs to induce apoptosis in U-251 GSCs [76]. Another 
study show that the miR-15b is involved in invasiveness and 
proliferation in GBM and its inhibition could lead to GBM 
cell apoptosis. Combined treatment using isothiocyanate sul-
foraphane and a peptide nucleic acid interfering with miR-
15b-5p is suggested as a potential therapeutic against GBM 
[77]. Gheidari suggests that miR-424 has the capacity to 
target GBM through the RAF1 and AKT1 oncogenes [78]. 
Extracellular vesicles can act as vehicles delivering miRs 
and therapeutic to the target site to treat GBM. Microvesi-
cles were isolated from NSCs engineered to overexpress 
CXCR4 receptor and were used to carry anti-miR-21 and 
miR-100 and via intranasal route, and then the GBM cells 
became more sensitive to temozolomide [79]. In Nieland 
et al., miR-21 was knocked out by using CRISPR-Cas12a in 
immunocompetent mouse models which suppressed GBM 
growth and promoted overall survival [80]. In Singh et al., 
miR-155 mitigates angiotensin II receptor type-1-mediated 
angiogenesis to suppress GBM growth [81]. Zurlo et al. 
suggested the combined use of an anti-miR-10b-5p and a 
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1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole deriva-
tive as potential strategy against GBM to improve the effi-
cacy of antitumor therapy and reduce side effects at the same 
time [82]. He et al. concluded that miR-210-3p can inhibit 
glioma growth, migration, and proliferation by targeting the 
iron–sulfur cluster assembly protein (Iscu) gene in mouse 
models [83]. Another group suggested that overexpression 
of miR-139 exercises a tumor suppressive effect by inhibit-
ing the stemness GSCs [84]. The miR-146a suppresses glio-
mas, whereas the knockdown of miR-146a by miR sponge 
upregulates Notch1 and promotes tumorigenesis of malig-
nant astrocytes which induce the miR-146a as a negative-
feedback mechanism to restrict tumor growth by suppressing 
Notch1 [85]. To sum up, these studies above show that the 
development of a variety of miR-based therapeutics, show 
potential as gene therapy, and might allow the construction 
of a network of miR-based therapeutics to inhibit GBM. See 
Table 1. See Fig. 3.

Fig. 2   Glioblastoma stem 
cell-based treatment. a 
Various treatments methods to 
target glioblastoma stem cell 
pathways which are shared by 
normal brain cells. b Afatinib, 
promoted survival in GBM by 
inhibiting EGFRvIII mutation, 
activated STAT3-signaling 
pathway, and then pacritinib 
was needed to target STAT3 in 
order to suppress the growth of 
GSCs. c. The combination of 
AKT/mTOR inhibitor FC85 and 
ISA27 reactivated the function 
of p53, leading to the apoptosis 
of GSCs
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Table 1   MicroRNA-based studies on glioblastoma

MicroRNA Impact on 
Glioblastoma

Research group

MicroRNA-25 Suppression Suh et al. (2012)
MicroRNA-32 Suppression Suh et al. (2012)
MicroRNA-296-5p Suppression Lopez-Bertoni et al. (2016)
MicroRNA-34a Suppression Ofek et al. (2016)
MicroRNA-378 Suppression Li et al. (2018)
MicroRNA-30c Suppression Mahjoor et al. (2021)
MicroRNA-34a Suppression Shatsberg et al. (2016)
MicroRNA-139-3p Suppression Shi et al. (2019)
MicroRNA-15b-5p Suppression Gasparello et al. (2022)
MicroRNA-424 Suppression Gheidari et al. (2021)
MicroRNA-100 Suppression Wang et al. (2021)
MicroRNA-21 Promotion Wang et al. (2021)
MicroRNA-21 Promotion Nieland et al. (2022)
MicroRNA-155 Suppression Singh et al. (2020)
MicroRNA-10b-5p Promotion Zurlo et al. (2022)
MicroRNA-210-3p Suppression He et al. (2020)
MicroRNA-139 Suppression Li et al. (2021)
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Neural Stem Cell‑Based Delivery

Neurogenesis in the adult mammalian brain occurred in the 
germinal zones: the subgranular layer (SGL) of the dentate 
gyrus (DG) of the hippocampus [86] and the subventricu-
lar zone (SVZ) in the lateral wall of the lateral ventricle 
[87]. NSCs are present in the ventricular–subventricular 
zone (V–SVZ) and the subgranular zone (SGZ). NSCs in 
the SGZ of the hippocampus produce new excitatory neu-
rons for the DG, which are involved in learning, memory, 
and pattern separation [88]. A NSC and its progeny divide 
and differentiate to produce a new neuron. Radial astro-
cytes, radial glia-like cells, radial cells, neural progeni-
tors, or type-1 progenitors are their names before they are 

identified to be NSCs [89]. In Bagó et al., induced NSCs are 
used as delivery vehicles to transfer TNFα-related apoptosis-
inducing ligand (TRAIL) to tumor site to target the growth 
of GBM and to prolong survival in mouse models [90]. As 
it is a challenge to avoid invasive methods to deliver cell-
based therapeutics to the brains, thus, a study researched on 
intranasal approach of NSCs delivery to treat GBM, show-
ing efficient migration of NSCs suggesting it as promising 
method of intranasal delivery [91]. Methimazole can be 
used to promote the NSCs as therapeutic delivery vehicle 
to reach GBM by allowing it to cross-olfactory epithelium 
for intranasal delivery [92]. In a study, pluripotent stem cell 
(iPSC)-derived therapeutic NSCs (ipNSC) by using either 
unmodified or gene-modified somatic cells were engineered 
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Fig. 3   MicroRNA-based treatment against glioblastoma. a A net-
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to express S-TRAIL and HSV-TK have antitumor impact 
when encapsulated in synthetic-extracellular matrix (sECM) 
and transplanted mouse of resected GBMs [93]. In a study, 
canine-induced NSCs (iNSCs) were engineered to deliver 
TNFα-related apoptosis-inducing ligand (TRAIL) and thy-
midine kinase (TK) which migrated to human tumor cells, 
to inhibit tumor growth [94]. Another group utilized human-
induced pluripotent stem cells (hiPSC)-derived NS/PCs 
expressing herpes simplex virus thymidine kinase (HSV-TK) 
in a mouse model to treat GBM [95]. A group engineered 
induced NSCs from human blood cells, an approach to 
obtain NSCs [96]. The NSCs show the potential as delivery 
vehicles to carry therapeutics to the GBM in the brain. How-
ever, there is also a study that claims that NSCs can acceler-
ate tumor growth [97]; thus, more researches are needed to 
evaluate the benefits and drawbacks of NSCs-based delivery 
of therapeutics.

Mesenchymal Stem Cell‑Based Delivery

MSCs are self-regenerative multi-potent stem cells and are 
able to differentiate into various cells [98]. A group used 
MSCs derived from humans to deliver a replication able 
oncolytic adenovirus in mouse models of intracranial malig-
nant glioma, which was assessed in vitro and in an in vivo 
suggesting the MSCs to be used as a strategy to migrate and 
deliver oncolytic adenovirus which have the potential to rep-
licate in and annihilate glioma cells [99]. Yong et al. showed 
that the injection of human MSCs into the carotid artery 
of mice is able to carry Delta24-RGD to treat the glioma, 
increasing survival in mouse models [100].  MicroRNAs are 
regulatory factors that can decrease the expression of more 
than one genes. A study investigates the effect of lentivirus-
mediated microRNA-4731 (miR-4731) genetic-manipulated 

adipose-derived (AD) MSCs lead to apoptosis in GBM 
[101]. A group compared NSCs with MSCs as they both 
have the capacity as delivery vehicles for an oncolytic ade-
novirus to human glioma with migratory capacity. NSCs 
act as a more effective intracranial tumors delivery vehi-
cle of oncolytic virus against glioma [102]. In addition, in 
Pavon et al., it is suggested that the release of exosomes by 
MSCs can lead to tumor growth [103]. In Bhere et al., allo-
geneic MSCs which expressed cell-surface death receptor-
targeted ligand were used to target GBM as kill switches 
[104]. In Menon et al., human bone marrow-derived MES 
stromal cells were engineered to produce tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) human 
as a therapeutic method in a mouse xenograft model which 
effectively inhibited GBM growth and prolonged survival 
[105]. Moreover, in another study, MSCs are generated to 
express herpes simplex virus thymidine kinase (HSV-TK) 
tumor necrosis factor apoptosis-inducing ligand (S-TRAIL) 
to inhibit GBM [106]. Wildburger et al. also used bone 
marrow-derived MSCs as a therapeutic delivery vehicle for 
GBM treatment due to their capacity for migration [107]. 
Tumor necrosis factor alpha (TNFα) can inhibit a variety of 
cancer. TNFα-producing adipose tissue-derived MSCs were 
engineered in Tyciakova et al. to target GBM [108]. In Lang 
et al., bone marrow-derived MSCs can be engineered into 
cell factories to produce exosomes including miR124a, by 
silencing Forkhead box for GBM growth inhibition [109]. In 
Mohme et al., MSCs were genetically engineered to express 
high levels of interleukin 12 and interleukin 7 [110]. In these 
studies, above MSCs can both be engineered target GBM by 
themselves and act as delivery vehicles to carry therapeutics 
to target the GBM. More studies are needed to investigate 
whether the MSCs show more advantages in comparison to 
NSCs as noninvasive therapeutic carriers to the brain. See 
Fig. 4.
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CRISPR‑Cas Technique Against Glioblastoma

Clustered regularly interspaced short palindromic repeats 
(CRISPR) system shows great potential in genetic material 
editing, such as various protein-coding genes, non-coding 
RNAs, and regulators. CRISPR/Cas9 acts as a bacterial 
immune system that causes targeted DNA double-strand 
breaks (DSBs) to induce death to foreign viral invaders. 
The CRISPR/Cas9 system consists of two major parts. 
The Cas9 protein, an endonuclease that can cleave double-
stranded DNA. The other is single-guide RNA (sgRNA) 
that complexes with the Cas9 protein and guides it to its 
genomic site of action by pairing with the target sequence 
as a complementary base [111]. CRISPR-Cas tools can be 
utilized to screen GBM pathogenesis, providing insights 
into genes for drug targets, metastatic regulators, and rea-
sons of drug resistance. There are computational tools and 
algorithms for the purpose of analyzing CRISPR screens 
[112]. CRISPR screening of E3 ubiquitin ligases identified 
ring-finger protein 185 as tumor GBM growth inhibitor, and 
moreover, discovered that promoter hypermethylation and 
miR-587T can repressed it [113]. Moreover, researchers 
used CRISPR/Cas9 in studies to generate animals carrying 
genetic mutations for modeling of human diseases such as 
mouse models of lung cancer and monkey models of mus-
cular dystrophy [114, 115]. These models are utilized to 
identify disease pathology or to experiment potential treat-
ments and to test the potential of CRISPR/Cas9-mediated 
gene editing to correct a disease causing mutation in vivo. 
Furthermore, CRISPR/Cas9 technology has been applied to 
generate patient-derived iPS (pluripotent stem cells) with 
diseases of genetic mutations. Pluripotent stem (iPS) tech-
nology allowed the in vitro cell modeling of Becker muscu-
lar dystrophy (BMD), Parkinson disease (PD), Huntington 
disease (HD), juvenile onset, and type-1 diabetes mellitus 
[116, 117]. In addition, CRISPR-Cas9 systems were utilized 
to discover the genes that promote cell survival in GBM. 
MacLeod et al. screened and found the members of SOX 
transcription factor family (SOCS3, USP8, and DOT1L) and 
protein UFMylation which regulates the expansion of GSCs 
[118]. Also Prolo et al. screened the role of MAP4K4 in the 
GBM invasion by CRISPR-Cas9 [119]. CRISPR libraries 
can be utilized to facilitate research in identifying poten-
tial target genes for the development of cancer therapeu-
tics. The PICKLES (Pooled In-Vitro CRISPR knockout 
Library Essentiality Screens) database incorporates data 
from several CRISPR knockout libraries and allow users 
to gain profiles of protein encoding genes [120, 121]. A 
group applied an adeno-associated virus (AAV)-delivered 
CRISPR screen in GBM. AAV library-targeting mutation 
genes frequently identified in human cancers were injected 
into the brains of Cas9 mice resulted in development of 

tumors with mutation frequencies relates to the GBM of 
two individual patient cohorts. Same mutation driver com-
binations including Mll2, B2m-Nf1, Mll3-Nf1, and Zc3h13-
Rb1 were discovered by analysis [122]. Three-dimensional 
(3D) in vitro cell culture models are utilized as a strategy 
by a group to research on GBM profile and GBM-targeted 
therapeutics as such models hold the potential to mimic after 
the surrounding 3D microenvironments, and compared it 
with the two-dimensional GBM culture model. The study 
came to the conclusion that 3D in vitro cell culture mod-
els is quite useful during anti-GBM therapeutic screening 
and in discovering new molecular targets [123]. To identify 
therapeutic targets for GBM, a genome-wide CRISPR-Cas9 
knock-out (KO) screens in patient-derived GBM stem-like 
cells (GSCs), for genes required for their in vitro growth 
that uncovered the wee1-like kinase, PKMYT1/Myt1 that 
interacts with WEE1 to inhibit cyclin B-CDK1 activity via 
CDK1-Y15 phosphorylation, which is lost in GSCs [124]. 
There is an interesting review that discussed the applica-
tion of CRISPR-Cas9 tool to identifying genes associated 
with self-regeneration, growth, angiogenesis, inflammation, 
apoptosis, cell migration, and invasion factors. Moreover, 
CRISPR-Cas9 screens are utilized to identify new biomark-
ers, oncogenic drivers, and cause of chemotherapy resistance 
in vivo or in vitro [125]. In addition, CRISPR-Cas9 genome 
editing can be applied to detect novel coding and non-coding 
transcriptional regulators of the GBM in vitro, although the 
application of CRISPR-Cas systems in vivo systems requires 
further research and development.

CRISPR-Cas system to knock-in and knock-out of genes 
in precise genomic locations has been used to discover vari-
ous gene functions and organisms, and as a potential tool to 
correct human diseases by genome editing includes cutting 
disease causing mutations or repair genetic defects [126]. A 
group concluded that dual-sgRNA CRISPR/Cas9 strategy 
including sgRNAs g82 and g165 with a repair template was 
capable in knocking out PD-L1, shown by western blot anal-
ysis in U87 cells, which inhibited their proliferation, growth, 
and migration [127]. In a study, cancer-specific InDel 
attacker (CINDELA) was used to eradicate cancer cells by 
specific targeting, success was observed while CINDELA 
strategy was implemented to kill cancer cell lines, xeno-
grafted cancer cells in mice, patient-derived GBM, and in a 
patient-driven Xenograft (PDX) lung cancer model without 
affecting normal cells or mice [128]. In another study, there 
is a proposal of CRISPR-to-kill (C2K) lentiviral particles 
targeting highly repetitive Short Interspersed Nuclear Ele-
ment-Alu sequences which has more than 15,000 matched 
target sites within the human genome. C2K Efficiently Inhib-
its growth, triggers GBM cell death, and increases radiosen-
sitivity in patient-derived GBM cell lines (PDCL-GBM), 
acting as suicide triggering method against cancer cells 
[129]. CRISPR-induced double-strand breaks (DSBs) can be 
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applied to induce apoptosis. CRISPR-Cas9 system was used 
to target the E7 oncogene in HPV16-positive cervical cancer 
cell lines and the DSBs lead the cancer cells to apoptosis, 
which could inspire scientists to develop similar methods to 
induce apoptosis in glioblastoma cells [130]. In Gier et al., 
the generation of the CRISPR-AsCas12a system with critical 
alterations to the Cas protein and its CRISPR RNA (crRNA) 
demonstrated the potential of multigene editing from a sin-
gle-RNA transcript and combinatorial genetic screening as 
AsCas12a (opAsCas12a) achieved double-KO screening 
against epigenetic regulators in the study [131]. CRISPR-
Cas9 system was used to conduct miR-10b gene KO and 
observe its impact on the growth of cultured human glioma 
cells, CSCs, and mouse GBM models, and oncogenic astro-
cytes since miR-10b promotes the growth of GBM cells and 
the results seem effective [132]. ALDH1L2, a folate-depend-
ent mitochondria aldehyde dehydrogenase gene, was over-
expressed in GSCs. The KO of ALDH1L2 gene in U-251 
cells by CRISPR-Cas 9 technique decreased the growth of 
tumor sphere, and no off-target effect was detected [133]. 
Nanocapsules (~ 30 nm) is utilized by a group to deliverer a 
single Cas9/sgRNA complex crossed the blood–brain bar-
rier and released it to target the GCs, by PLK1 gene editing 
[134]. CRISPR-Cas systems are proposed by researchers to 
degrade the viral genome of SARS-CoV-2, which could also 
inspire methods against GBM by degrading the genome of 
glioblastoma cells. However, suitable delivery system into 
the glioblastoma cells should be found, for instance, viral 
vectors or delivery system that enters the GCs by binding 
with its cell surface receptors [135]. CRISPR-Cas systems 
can be applied a variety of functions including genetic 
screening, gene corrections of genetic mutations on DNA 
and RNA level in the oncogenesis, and maintenance path-
ways of GBM, in addition knocking out surface receptors of 
GBM cells and GSCs, also CRISPR-Cas techniques show 
potential in inducing GBM cellular apoptosis or breaking 
down GBM cell genome.

CRISPR‑Cas Delivery

Viral methods are the most common CRISPR/Cas9 deliv-
ery approaches, through lentiviral, adenoviral (AV), and 
adeno-associated viral (AAV) techniques for CRISPR/Cas9 
to reach the intended target genome [136]. Delivery of Cas9-
encoded mRNA is another commonly used approach for 
inducing of the CRISPR-Cas system into the mammalian 
cell swiftly, which only function in a short while, avoiding 
the risks of integration into the host genome. This delivery 
format, however, is limited by two major factors: inherent 
stability of mRNA and the requirement for individual deliv-
eries of each component [137]. Another delivery approach 
is by using Cas9 protein fused with sgRNA (together, the 

Cas9-RNP) using synthetic delivery vehicles, transient, 
direct pathway for introduction of the [138]. Furthermore, a 
group developed a plasmid delivery approach for CRISPR-
Cas9 group by the characteristics of the Cell-Penetrating 
Peptide (PepFect14) in a Bomirsky Hamster Melanoma cell 
line aiming to deactivate the luciferase gene  and to express 
Green Fluorescent Protein, and by labeling the CRISPR 
plasmid with Cy5-ensured screening of the cellular entrance 
through fluorescent microscopy [139]. Moreover, NSC and 
MSC-based deliveries are mentioned earlier in this review. 
However, difficulty still remains regarding finding methods 
for CRISPR-Cas systems delivery vehicles overcome barri-
ers before reaching its intended destinations and its precision 
in delivery destination and safety [140].

Drawbacks of CRISPR‑Cas Systems

Off-target effects are the introduction of unintended genetic 
alterations leading to a major setback for the safety of 
CRISPR-Cas systems [141], although they are continu-
ally improved by researchers. The off-target effects of 
thousands of sgRNAs were profiled to develop a metric to 
predict off-target sites. A group used such data to design 
computational models and provide information on sgRNA 
to ensure on-target activity and reduce off-target effects to 
maximize safety [142]. A study used the CRISPR Guide 
RNA-Assisted Reduction of Damage (CRISPR GUARD) as 
a method to prevent off-targets by co-delivery of short-guide 
RNAs directed against off-target loci by competing with the 
supposed on-target guide RNA, thus, minimizing off-target 
effects while retaining on-target genetic corrections with 
Cas9 and base editor [143]. Another concern is that anti-
CRISPR (acr) genes build resistance towards CRISPR-Cas 
approach by encoding small proteins that target and deacti-
vate the vital parts of the CRISPR-Cas immune system. At 
least 20 families of acr genes exist, which deactivate both 
type I and II CRISPR-Cas systems [144].

Synthetic Circuits Against Glioblastoma

Scientists have been striving to create molecular circuits that 
can direct complex cellular behavior to endow cells with 
particular functions with the rapid development of synthetic 
biology [145]. To design synthetic cells, it is necessary to 
implement the toggle switches, oscillators, feedback loops, 
and Boolean logic gates to form synthetic circuits [146], to 
control timing and dosage of therapeutics generated accord-
ing to specific biomarkers [147] that holds the potential to 
provide natural therapeutics for human diseases. Synthetic 
cells are designed by rewiring the signaling networks of bio-
logical circuits to regulate gene expression at DNA, RNA, 
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or protein level for therapeutic purposes against complex 
diseases. To engineer gene circuits, it is essential to con-
trol multiple genes. Synthetic transcriptional gene switches 
can either be CRISPR-Cas or RNA or protein level-based 
response to stimuli. CRISPR-Cas tools show high potential 
in building gene circuits, for instance when multiple gRNAs 
are expressed simultaneously, Cas9-based transcription 
factors are enabled to the targeting of multiple genes. To 
synthesize biological circuits to control cell behavior, the 
construction of biologic gates consisting of coding DNA, 
promoter, transcription factor, RNA polymerase, non-cod-
ing RNA, DNA-binding elements, and small molecules are 
required to bind with regulatory protein to switch a gene 
ON or OFF with protein or RNA as the input or output [148, 
149]. Synthetic biology logic gates are required to permit 
the expression of an output when the input signals precisely 
fit the required input signal design of the gates, and the cat-
egory of gates includes AND, OR, NOT, and their combina-
tions such as NOR, XOR, and NAND. For instance, the OR 
gate enables expression of the output gene when either of 
two input signals received; AND gates permit output gene or 
protein expression only when all the required input signals 
exist. NOT gate enables output when the required absent 
signal is present. The benefit of these gates allows the inte-
gration of multiple circuits to process inputs [150]. A study 
developed synthetic zinc finger transcription regulators (syn-
ZiFTRs), derived from human proteins, and gene switches 
and circuits which enable T-cells to activate antitumor activ-
ity [151]. Regulation of cellular functions by engineering 
novel sensors and receptors for intracellular signaling path-
ways as an approach for treatment has been used for a few 
diseases [152]. For instance, synthetic biology enables the 
construction of a synthetic mammalian circuit with switches 
to control uric acid homeostasis in the bloodstream to treat 
gout [153]. Scientists engineered a genetic circuit that moni-
tors blood fatty acid levels. Cells with lipid-sensing receptor 
induced expression of pramlintide are implanted in mice for 
the treatment of obesity induced by diet [154]. Moreover, 
researchers engineered mammalian cells implanted into 
mouse models to detect endogenous disease associated sig-
nals for therapeutic purposes in metabolic diseases [155]. 
Saxena et al. designed biological thyroid hormone circuit 
to reestablish the hypothalamus–pituitary–thyroid feedback 
system in a mouse model Graves’ disease. Moreover, a syn-
thetic transcription control network was developed, which 
can drive the differentiation of human-induced pluripotent 
stem cells (hIPSCs)-derived pancreatic progenitor cells 
into glucose-sensitive insulin-secreting beta-like cells [156, 
157]. The idea of synthetic biological circuits could inspire 
future researches to target GBM and prevent recurrence. A 
study with analysis of genomic, proteomic, post-translational 
modification, and metabolomic data on 99 GBM patients 
provides insights to GBM biology. Phosphorylated PTPN11 

and PLCG1 are regarded as potential switches mediating 
oncogenic pathway activation, as well as potential targets 
for EGFR-, TP53-, and RB1-altered tumors [158]. The 
synthetic gene circuits or sensor systems could be used in 
combination with miR network approaches. In Simion et al., 
miRNA-ON-monitoring system implanted in lentivirus 
expression system (LentiRILES) is utilized as an miRNA 
sensor system in mouse models of several types of cancer 
including GBM to monitor miRNA activities in single cells 
and monitor miRNA-based treatment [159]. Another group 
proposed that miR-1983 stimulates TLR7, which stimulates 
the secretion of IFN-β, and in turn stimulates the release 
of natural killer cells to target glioma suggesting that tak-
ing advantage of this innate circuit could enable successful 
immunotherapy for glioma [160]. Studies on innate regula-
tory circuits are vital to the understanding of oncogenesis, 
GBM growth, and proliferation to inspire ideas the building 
of synthetic circuits to inhibit GBM growth and recurrence. 
Regulatory circuit TCF4-miR-125b/miR-20b-FZD6 control 
GBM phenotype is innated, and  insights on future research 
are provided to building a circuit to prevent GBM subtype 
transition from PN into MES. The miR-125b and miR-20b 
miR inhibit APC and FZD6, thereby enhancing the Wnt 
signaling and inhibiting the generation of MES subtype, 
since the canonical Wnt signaling is more active in PN rela-
tive to MES GBM [161]. There are currently few researches 
focused on synthetic biological circuits to target GBM, and 
there should be more in the future by using tools such as 
CRISPR-Cas systems, RNA-based techniques in targeting 
gliomagenesis, GBM maintenance, and growth associated 
pathways. See Fig. 5.

Discussion

Since current available treatments targeting GBM are not 
promising, due to the challenges posed by heterogeneity, 
subtype transition, and evolving genetic profile etc., systems 
medicine approach is suggested in this review to provide per-
sonalized treatment targeting GBM with precision. Personal-
ized medicine is to provide treatment based on the fact that 
every individual possesses unique health profiles, physically, 
psychologically, and genetically, etc. [162]. Systems medi-
cine approach to provide individualized treatment integrates 
the systems biology and synthetic biology along with indi-
vidualized treatment strategy against GBM by considering 
the uniqueness of both patient and the GBM profile that is 
vital in such a complex disease to achieve optimum efficacy 
and prevent relapse. Also after the GBM is removal dur-
ing the first operation to remove the tumor, animal models 
and bioprinting could be utilized to mimic the individual's 
disease which could be used to tailor personalized combi-
nation of treatment for the individual patient from whom 
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the tumor was removed from and only successful therapies 
should be used on the patient for to detect and prevent recur-
rence. Furthermore, computational modeling might be used 
as a tool to assist in designing an optimum strategy for the 
individual patient, according to the unique ongoing molec-
ular and genetic profile of GBM. As systems medicine is 
rather new concept, it is discussed much among scientists 
but barely suggested or outlined in targeting GBM. Synthetic 
biological circuits incorporate both synthetic biology and 
systems biology, but studies based on development of the 
design of synthetic circuits to target GBM are rare. CRISPR-
Cas technique is a gene-editing tool that shows the potential 
to break down GBM genome, could be experimented in a 
lab in cell or animal models to design most effective treat-
ment approach for gene correction or induction of apoptosis 
and glioblastoma cells while identifying optimum methods 
to avoid off-target effects and ensure on-target effects. The 
application of CRISPR-Cas system to screen gliomagenesis 
and reverse pathogenesis of disease by genetic corrections 
are still quite in its infancy and, therefore, not a conventional 
treatment approach widely implemented in vivo. Moreover, 
CRISPR-Cas tool can be used to tailor various therapeutics 
according to the individual’s GBM genetic profile or create 
cell sensors, synthetic cells, and synthetic biological circuits 
that can be delivered into the brain, potentially by NSCs and 
MSCs or other delivery methods via the intranasal route 
and some other noninvasive or minimal invasive methods. 
A variety of synthetic circuits and synthetic cells could be 
manipulated by scientists with gene-editing tools to carry 
out various functions, for instance, leading to the generation 
of immune cells such as specific T cells or NK cells to tar-
get a specific disease. Synthetic cells could be manipulated 
by scientists to produce antibodies and inhibitors, regulate 
GBM suppressive miRs, sense and inhibit genetic mutations. 
On the other hand, a lot of the current studies are based on 

animal brains such as mice. There might be discrepancies 
between animal brains and the human brains due to the dif-
ficulty in obtaining human brain samples [163], a challenge 
for more accurate effects on humans that needs methods to 
overcome. Bioprinting could be a potential method to create 
phantoms of the patient’s healthy or diseased brain in the 
future, although currently it has limitations and is still under 
development [164]. Safe delivery systems and functionality 
inside the human body need to be ensured before gene-edit-
ing tools and synthetic circuits or cells can be applied clini-
cally. The challenges of systems medicine approach include 
huge costs and the fact that it is still at the research stage, 
and it depends on vast amount of future researches to make 
it safe and feasible clinically. See Fig. 6.

Conclusions

According to the ineffectiveness of current available thera-
peutics against GBM, taking a systems medicine approach 
against GBM seems vital in treating the highly uniqueness 
of every GBM case and to overcome GBM heterogene-
ity. On the other hand, there are still information to be 
uncovered from GBM that might contribute the design 
of personalized multimodal treatments that include the 
therapeutics discussed in this review and others such as 
immunotherapy, brain cell regeneration, or other potential 
methods beyond the scope of this review but are reviewed 
elsewhere. Systems biology method is vital to gain more 
understanding of natural biological circuits for the design 
and engineering of synthetic cells to target a particular 
disease. Gene-editing methods are essential to facilitate 
the development of systems medicine approach in genetic 
screening of patient or GC genome, screening therapeutic 
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effects, and treating GBM, but there are safety and ethical 
issues to take into account. In this review, we hope the 
proposal of systems medicine approach to target GBM  and 
will inspire future studies for individualized strategies to 
target GBM cases with precision.
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