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Abstract 

Objective  To conduct an overview of meta-analyses of radiomics studies assessing their study quality and evidence 
level.

Methods  A systematical search was updated via peer-reviewed electronic databases, preprint servers, and system-
atic review protocol registers until 15 November 2022. Systematic reviews with meta-analysis of primary radiomics 
studies were included. Their reporting transparency, methodological quality, and risk of bias were assessed by PRISMA 
(Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020 checklist, AMSTAR-2 (A MeaSurement 
Tool to Assess systematic Reviews, version 2) tool, and ROBIS (Risk Of Bias In Systematic reviews) tool, respectively. The 
evidence level supporting the radiomics for clinical use was rated.

Results  We identified 44 systematic reviews with meta-analyses on radiomics research. The mean ± standard devia-
tion of PRISMA adherence rate was 65 ± 9%. The AMSTAR-2 tool rated 5 and 39 systematic reviews as low and critically 
low confidence, respectively. The ROBIS assessment resulted low, unclear and high risk in 5, 11, and 28 systematic 
reviews, respectively. We reperformed 53 meta-analyses in 38 included systematic reviews. There were 3, 7, and 43 
meta-analyses rated as convincing, highly suggestive, and weak levels of evidence, respectively. The convincing level 
of evidence was rated in (1) T2-FLAIR radiomics for IDH-mutant vs IDH-wide type differentiation in low-grade glioma, 
(2) CT radiomics for COVID-19 vs other viral pneumonia differentiation, and (3) MRI radiomics for high-grade glioma vs 
brain metastasis differentiation.

Conclusions  The systematic reviews on radiomics were with suboptimal quality. A limited number of radiomics 
approaches were supported by convincing level of evidence.

Clinical relevance statement   
The evidence supporting the clinical application of radiomics are insufficient, calling for researches translating radi-
omics from an academic tool to a practicable adjunct towards clinical deployment.
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Key points 

•	 The systematic reviews on radiomics studies were insufficient in reporting, suboptimal in methodological qual-
ity, and with high risk of bias.

•	 The meta-analyses covered a wide range of clinical questions, while only three of them were rated as con-
vincing level of evidence.

•	 More radiomics investigation is necessary to allow clinical translation of radiomics to a practicable adjunct 
toward clinical deployment.

Keywords  Radiomics, Quality improvement, Systematic review, Meta-analysis

Graphical Abstract

Introduction
A decade has passed since the concept of radiomics 
was raised [1]. The concept of radiomics is based on an 
assumption that medical images contain information 
of disease-specific processes that are undetectable to 
naked eye [2]. Radiomics, a high-throughput method-
ology that extract large amounts of imaging biomark-
ers from medical images, is believed to be one of the 
most promising approaches for enhancing the existing 
images into deeper mineable data to support clinical 
decision-making [1–6]. The rapidly evolving field of 

radiomics has attracted considerable interest, with a 
plethora of primary radiomics studies being published 
[7, 8]. Radiomics seems to potentially have a huge 
impact on clinical routine at first sight, but so far, lit-
tle to none of these encouraging findings have served 
as evidence supporting these research tools translating 
into clinical application [9–13].

Primary radiomics studies are the sources of informa-
tion for clinical evidence, while the systematic reviews 
and meta-analyses provide integration or synthesis of 
evidence with higher precision from conflicting results, 
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and address questions that cannot be asked in individual 
studies [14]. Although an increasing number of system-
atic reviews and meta-analyses are published in various 
medical fields, including radiomics [15], it is still unclear 
how far radiomics is from current research to clini-
cal application [9–13]. There were systematic reviews 
attempt to cover a wide range of topics in radiomics [16, 
17]. However, the number of published primary radi-
omics studies was too large to summarize in one single 
systematic review [16], and the evidence level rating of 
current radiomics was out of the aim of a methodologi-
cal systematic review [17]. Nevertheless, the overview of 
systematic reviews is a relatively new type of publication 
that attempts to provide a broader evidence synthesis 
highlighting the knowledge gaps, biases, and priorities 
for future research, which helps clinical practitioners and 
policy-makers interpret the results of higher-level pieces 
of evidence in radiomics [18–20].

Therefore, our overview of systematic reviews of pri-
mary radiomics studies is aimed at assessing the study 
quality and the evidence level supporting radiomics 
application in clinical settings.

Methods
Protocol and registration
This overview of meta-analysis has been prospectively 
registered on PROSPERO (CRD42021272746), and the 
review protocol is available as Additional file 1: Note S1. 
The ethical approval was not required due to the nature of 
the study. The overview of meta-analysis was conducted 
as per guidelines [19–22]. The corresponding checklists 
are supplied in Additional file  1. The literature search, 
study selection, data extraction, and quality assessment 
were duplicated by two independent reviewers (J.Z. and 
either Y.H., Y.X., X.G., or D.D.). The disagreements were 
resolved by consults with a third independent reviewer 
(G.Z., S.M., H.C., Q.Y., G.Y., H.Z. or W.Y.). The data anal-
ysis was performed by a reviewer (J.Z.) under supervision 
of a statistical expert (J.L.).

Literature search and study selection
A systematic search was performed to identify systematic 
reviews with meta-analysis concerning on the radiom-
ics applications for diagnostic, predictive, or prognostic 
purposes. The search strategy was tested for feasibility 
with the variations of the terms “radiomics”, “systematic 
review” and “meta-analysis”. The full formal search was 
performed until 30 September 2022 and was updated 
until 15 November 2022. We searched the peer-reviewed 
electronic databases (PubMed, Embase, Web of Science, 
Cochrane reviews via Cochrane Central, EBSCO Cumu-
lative Index to Nursing and Allied Health Literature, 

Institute of Electrical and Electronics Engineers and 
Institution of Engineering and Technology Xplore, Asso-
ciation for Computing Machinery Digital Library, China 
National Knowledge Infrastructure, Wanfang Data), pre-
print servers (arXiv, medRxiv, bioRxiv), and systematic 
review protocol registers (PROSPERO and Cochrane 
protocol via Cochrane Central). To identify addition-
ally eligible systematic reviews, the reference lists of all 
included articles were screened, and radiomics experts 
were consulted.

We include all the systematic reviews with meta-analy-
sis concerning on the radiomics applications for diagnos-
tic, predictive, or prognostic purposes in humans. There 
was no restriction for publication period, target popula-
tion, study setting, or comparator group, while only arti-
cles in English, Chinese, Japanese, German, and French 
were available. We excluded with following criteria: (a) 
primary study systematic review without meta-analysis, 
and article with insufficient information for assessment; 
(b) systematic review purely assessed artificial intelli-
gence, machine learning or deep learning; (c) system-
atic review focused on methodology or robustness issue 
other than clinical-relevant questions. After excluding 
duplicates, we screened the titles and abstract for poten-
tially available systematic reviews and then, confirmed 
their eligibility by reading the full-texts, supplementary 
materials, and related review protocols. The detailed 
search strategy and study selection process are provided 
in Additional file 1: Note S2.

Data extraction and study assessment
The data were extracted according to a predefined data 
extraction sheet (Additional file  1: Table  S1). This sheet 
includes bibliographical information, study characteris-
tics, and effect metrics at level of meta-analyses and those 
at level of individual primary studies. The contingency 
tables at the level of individual studies were extracted or 
reconstructed for repeating meta-analysis.

The PRISMA (Preferred Reporting Items for System-
atic reviews and Meta-Analyses) 2020 checklist [22], the 
AMSTAR-2 (A MeaSurement Tool to Assess systematic 
Reviews, version 2) tool [23], and the ROBIS (Risk Of 
Bias In Systematic reviews) tool [24] for reporting qual-
ity, methodological quality, and risk of bias assessment, 
respectively. The operational definitions of these three 
tools can be found in Additional file  1: Tables S2 to S5. 
The PRISMA 2020 checklist is updated to guide system-
atic reviewers for transparently reporting with a checklist 
for abstract of twelve items and a checklist for full-text of 
twenty-seven items. The AMSTAR-2 tool is developed and 
modified for critically appraising systematic reviews with 
sixteen questions to assess their methodological quality. 
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The three-phase ROBIS tool is specifically designed to 
assess the risk of bias in systematic reviews covering four 
domains: study eligibility criteria, identification and selec-
tion of studies, data collection and study appraisal, and 
synthesis and findings. These tools have been tailored to 
radiological systematic reviews and applied for identifying 
overlooked reporting items, insufficient methodology, and 
potential risk of bias, respectively [25–27].

A training phase was introduced to test and modify the 
tools to reach an operational definition of each item and 
make sure that all reviewers have a shared understand-
ing. Reached consensus during data extraction and qual-
ity assessments is available in Additional file 1: Note S3.

Data analysis and strength of evidence
The statistical analysis was performed with R language 
version 4.1.3 within using relevant packages [28, 29]. The 
differences of PRISMA adherence rate, AMSTAR-2 rat-
ing, and ROBINS assessment were compared by (a) Jour-
nal Citation Report quartile (Q1 or Q2-Q4), (b) journal 
type (imaging or non-imaging), (c) first authorship (radi-
ologist or non-radiologist), (d) biomarker (diagnostic, 
predictive, or prognostic), and (e) publication year (2020, 
2021, or 2022), using student’s t test, one-way analysis of 
variance, and Chi-square test. A two-tailed p < 0.05 was 
recognized as statistical significance, unless specified 
otherwise.

The meta-analyses were re-performed with R language 
version 4.1.3 using relevant packages to allow evidence 
rating [30, 31]. The diagnostic odds ratio (OR) and the 
corresponding 95% confidence interval (CI) were pooled 
as summary effect size using random-effect models, and 
corresponding p values were calculated. The sensitivity, 
specificity, area under curve and index of concordance 
were not included for analysis, because the correspond-
ing methodology has not been well established so far 
[21]. The I2 statistic was used to assess heterogeneity 
among primary studies. The 95% prediction intervals 
(PI) were calculated to facilitate more conservative pre-
diction for potential application of radiomics models. 
The Egger’s test was conducted for small-study effects 
and publication bias. Excess significance bias was evalu-
ated by a Chi-square test comparing the actual observed 
number of primary studies with a p < 0.05 with the 
expected number of primary studies with statistical 
significance.

The strength of evidence supporting radiomics for 
clinical use was categorized into five levels: convinc-
ing, highly suggestive, suggestive, weak, and not sugges-
tive (Additional file 1: Table S6), based on the results of 
a series of aforementioned analyses [21]. The detailed 
data analysis process is available in Additional file  1: 
Note S4.

Results
Literature search
The flow diagram of selection process is shown in Fig. 1. 
Our primary literature search resulted in 926 records, 
in which 43 systematic reviews were included. No extra 
available systematic review was identified through pre-
print servers, systematic review protocol registers, or 
citation searching. The up-to-date search identified 1 
extra eligible systematic review. Finally, 44 systematic 
reviews were included for the current overview [32–75]. 
The lists of the included systematic reviews with meta-
analyses, and the excluded articles with justifications are 
provided in Additional file 1: Note S5.

Study characteristics
The characteristics of the included systematic reviews 
were summarized (Table  1 and Additional file  1: Tables 
S7 and S8). The systematic reviews most frequently 
evaluated the application of radiomics in breast cancer 
(n = 7), followed by glioma (n = 5) and liver cancer (n = 4). 
The systematic reviews evaluating non-oncological dis-
eases were less common. Only 2 and 1 systematic review 
investigated the radiomics in COVID-19 and pancreati-
tis, respectively.

The quality assessment tools used in included system-
atic reviews varied (Table  1). The Radiomics Quality 
Score (RQS) rating was the most employed tool (n = 31), 
followed by the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis Or Diag-
nosis (TRIPOD) checklist (n = 4), the Image Biomarker 
Standardization Initiative (IBSI) checklist (n = 2), and 
the CheckList for Artificial Intelligence in Medical imag-
ing (CLAIM) (n = 1). The revised QUality Assessment of 
Diagnostic Accuracy Studies (QUADAS-2) tool, and Pre-
diction model Risk Of Bias ASsessment Tool (PROBAST) 
were applied by 30 and 2 systematic reviews for risk of 
bias assessment.

Quality and risk of bias assessment
The result of quality assessment is presented in Fig. 2 and 
Table 2. The evaluation results for individual systematic 
reviews are available in Additional file 1: Tables S9 to S11. 
The overall mean ± standard deviation (median, range) of 
PRISMA adherence rate was 65 ± 9% (64%, 48%-83%) for 
reporting quality. The AMSTAR-2 rated 5 and 39 system-
atic reviews as low and critically low confidence in meth-
odological quality assessment, respectively. The overall 
risk of bias assessment by ROBIS tool resulted 5, 11, and 
28 systematic reviews as having a low, unclear, and high 
risk of bias, respectively. The PRISMA adherence rate 
of systematic reviews with a first authorship of radi-
ologist was higher than those without (68 ± 7 vs 62 ± 10, 
p = 0.023).
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Meta‑analysis and strength of evidence
There were 53 meta-analyses in  38 systematic reviews 
re-conducted based on extracted or reconstructed data, 
covering 497 primary studies, 65,955 subjects, and 29,408 
events [32, 33, 35–41, 44–47, 49–59, 61–63, 65–75] 
(Fig. 3). The meta-analyses in 6 systematic reviews were 
excluded due to unavailable data [34, 42, 43, 48, 60, 64]. 
Up to 47 meta-analyses reached a stringent p-value of less 
than 10−6, and 6 meta-analyses presented p-values < 10−3. 
None of the meta-analyses was deemed as non-signifi-
cant. Twenty-eight meta-analyses presented an I2 > 50%. 
There were 5 meta-analyses conducting with less than 
three primary studies. For those performing with three 
or more primary studies, the 95%PI excluded the null 
value in 37 meta-analyses. Egger’s test of 28 meta-anal-
yses reached p > 0.05 for indicating no small-study effects 
or publication bias. The excess significance bias was not 
presented in 35 meta-analyses.

Accordingly, there were 3, and 7 meta-analyses rated 
as convincing, and highly suggestive level of evidence, 
respectively (Table  3). The radiomics has been rated as 
convincing level of evidence in (1) T2-FLAIR radiom-
ics for IDH-mutant vs IDH-wide type differentiation in 

low-grade glioma (diagnostic OR 7.2, 95%CI 4.0 to 12.9; 
p = 3.13 × 10−11), (2) CT radiomics for COVID-19 vs other 
viral pneumonia differentiation (OR 26.7, 95%CI 19.5 to 
36.7; p = 4.54 × 10−82), and (3) MRI radiomics for high-
grade glioma vs brain metastasis differentiation (OR 48.8, 
95%CI  32.8 to 72.5; p = 7.25 × 10−92). The meta-analyses 
were rated as highly suggestive mainly due to high het-
erogeneity, significant small-study effects and publication 
bias. In spite of these dramatic statistical significances, 43 
meta-analyses were rated as weak pieces of evidence. The 
reason for them failed to reach a higher level of evidence 
was mainly inadequate number of participants.

Discussion
An increasing number of studies are investigating the 
potential of radiomics as a diagnostic, predictive, or 
prognostic tool in multiple clinical scenarios, while none 
of the radiomics academic research has been success-
fully translated into daily clinical practice. Our overview 
of systematic reviews with meta-analyses identified 44 
systematic reviews and reperformed 53 meta-analyses. 
The radiomics seemed to be convincing tools in answer-
ing three clinical questions including: (1) differentiation 

Fig. 1  Flow diagram of systematic review search and selection
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of IDH-mutant vs IDH-wide type in low-grade glioma, 
(2) differentiation of COVID-19 vs other viral pneumo-
nia, and (3) differentiation of high-grade glioma vs brain 
metastasis. However, the included systematic reviews 
were insufficient in reporting, suboptimal in methodo-
logical quality, and with high risk of bias. The subopti-
mal study quality might lead to insufficient confidence 
in radiomics application and thereby hinder the clinical 
translation of radiomics even there was high-level of sup-
porting evidence.

The radiomics were most frequently employed in onco-
logical field with a representing example of breast can-
cer which accounting for seven of included systematic 
reviews, resulting only three non-oncological radiomics 
systematic reviews. Sollini et  al. [16] declared that the 
number of oncological image minding studies was six-
times of those in non-oncological field. Spadarella et  al. 
[17] found that more than nine tenths of their included 
systematic reviews focused on oncological radiomics. 
It is not surprising because the concept of radiomics 
was raised to mine the medical images for extra deeper 
information related to oncological genomics [1]. How-
ever, the radiomics-biological correlation is more than 
radio-genomics but covers the diverse clinical, imaging, 
and molecular profile data, which allow understanding of 
complex diseases to achieve accurate diagnosis in order 
to provide the best possible treatment [12, 76]. The radi-
omics investigations are encouraged to expand to the 
non-oncological field for wider potential applications.

The quality and risk of bias assessment tools for radiomics 
systematic reviews varied. The RQS and QUADAS-2 tool 
were the most used tool for study quality and risk of bias 
assessment, respectively. The RQS was most used for quality 
assessment in the included systematic reviews and has been 
long served a necessary role as the de facto reference tool 
for assessing radiomics studies [17]. However, the RQS was 
far from perfect. With an increasing trend of deep learning 
application in radiomics, RQS could not well identify the 
advantages and disadvantages in radiomics studies applying 
as the CLAIM [72]. The TRIPOD checklist might further 
identify room for improvement in radiomics studies, but 
some items were not suitable for radiomics studies [76]. The 
IBSI checklist has highly overlapped with other checklists 
and somehow too complicated to use [73]. Recently, Check-
List for EvaluAtion of Radiomics research (CLEAR) has 
been developed as a  single documentation standard for 
radiomics research that can guide authors and reviewers 
[77. However, the reproducibility and effectiveness of this 
tool has not  been fully investigated yet.  The QUADAS-2 
tool was employed repeatedly because most of the radiom-
ics studies were diagnostic accuracy studies. The PROBAST 

Table 1  Characteristics of included systematic reviews

*Two systematic reviews have no impact factor [35, 44]. ** Systematic reviews 
with multiple imaging modalities, or multiple quality assessment tools 
were counted, respectively. CLAIM = Checklist for Artificial Intelligence in 
Medical Imaging, IBSI = Image Biomarker Standardization Initiative, Journal 
Citation Report, PROBAST = Prediction Model Risk of Bias Assessment Tool, 
QUADAS = Quality Assessment of Diagnostic Accuracy Studies, RQS = Radiomics 
Quality Score rating, TRIPOD = Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis

Characteristics Data

Included primary studies, mean ± standard 
deviation, median (range)

22.4 ± 22.7, 15 (5 to 133)

Impact factor, mean ± standard deviation, 
median (range)

5.33 ± 1.63, 5.74 (2.37 to 10.06)

JCR quartile, n N = 42*

 Q1 18

 Q2-Q4 24

 Not applicable 2

Journal type, n N = 44

 Imaging 22

 Non-imaging 22

 First authorship, n N = 44

 Radiologist 21

 Non-radiologist 23

Imaging modality, n N = 81**

 CT 25

 MRI 35

 PET 11

 US 8

 MMG 2

Biomarker, n N = 44

 Diagnostic 25

 Predictive/Prognostic 13

 Diagnostic and Predictive/Prognostic 6

Topics N = 44

Oncologic

 Breast 7

 Chest 4

 Gastrointestinal 9

 Genitourinary 6

 Head and Neck 3

 Musculoskeletal 3

 Neuro 7

 Gynecologic 2

Non-oncologic

 COVID-19 2

 Pancreatitis 1

Quality assessment tool, n N = 70**

 CLAIM 1

 IBSI 2

 PROBAST 2

 QUADAS-2 30

 RQS 31

TRIPOD 4
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tool might be also suitable for most of radiomics studies 
because it is developed for predictive models of both diag-
nostic and prognostic purpose. Other guidelines and check-
lists are developed or under development for radiomics and 
artificial intelligence studies including artificial intelligence 
extensions for TRIPOD, QUADAS-2, and PROBAST [79]. 

Further validation is needed for their feasibility and effi-
ciency in improving quality of radiomics studies.

The evidence rating highlighted three pieces of con-
vincing evidence of radiomics approaches answering 
clinical questions. However, there were seven pieces 
of highly suggestive evidence hindered by the high 

AMASTR-2 rating score

Total
PICO components

Review protocol
Study design selection

Search strategy
Duplicated study selection
Duplicated data extraction

Study exclusion
Study characteristics

RoB assessment
Funding information

Meta-analysis method
RoB impact

RoB accounting
Heterogeneity

Publication bias

0% 25% 50% 75% 100%

Yes Partial Yes No

PRISMA adherence rate

Total
Titile and abstract

Introduction
Methods

Results
Discussion

Other information

0% 25% 50% 75% 100%

Yes No

a b

c ROBIS assessment

RoB in review
Eligibility criteria

Data collection and appraisal

0% 25% 50% 75% 100%

Low Unclaer High

Fig. 2  Result of quality assessment of included systematic reviews. a PRISMA adherence rate, b AMASTR-2 rating score, and c ROBIS assessment

Table 2  Result of quality assessment of included systematic reviews

Subgroup No. of 
systematic 
reviews

PRISMA adherence rate AMSTAR-2 rating ROBINS assessment

Mean ± standard deviation, % Low, n Critically low, n Low, n Unclear, n High, n

Overall 44 65 ± 9 5 39 5 11 28

JCR quartile (N = 42), p-value 0.406 > 0.99 0.073

Q1 18 67 ± 8 2 16 0 4 14

Q2-Q4 24 64 ± 10 3 21 5 7 12

Journal type (N = 44), p-value 0.689 0.154 0.291

Imaging 22 64 ± 10 4 18 3 5 14

Non-imaging 22 65 ± 8 1 21 2 6 14

First authorship (N = 44), p-value 0.023 0.187 0.344

Radiologist 21 68 ± 7 1 20 3 5 13

Non-radiologist 23 62 ± 10 4 19 2 6 15

Biomarker (N = 44), p-value 0.124 0.117 0.132

Diagnostic 25 64 ± 9 5 20 4 9 12

Predictive/Prognostic 13 63 ± 9 0 13 1 2 10

Diagnostic and Predictive/Prognostic 6 72 ± 8 0 6 0 0 6

Publication year (N = 44), p-value 0.208 0.698 0.499

2020 3 65 ± 10 0 3 0 1 2

2021 20 62 ± 9 3 17 1 4 15

2022 21 67 ± 8 2 19 4 6 11
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Fig. 3  Summary of evidence rating. AML = angiomyolipoma, BC = breast cancer, HCC = hepatocellular carcinoma, NSCLC = non-small cell 
lung cancer, RCC = renal clear cell carcinoma, NACT = neoadjuvant chemotherapy, TNBC = triple negative breast cancer. NS = not significant, 
Sig = significant, N/a = not applicable

Table 3  Summary of convening and highly suggestive evidence

Study [References] Clinical question Evidence rating PRISMA, % AMSTAR​ ROBINS

Han2022 [45] T2-FLAIR radiomics for IDH-mutant vs IDH-wide type in low-grade 
glioma

Convincing 67 Critically low Unclear

Kao2021B [56] CT radiomics for COVID-19 vs viral pneumonia differentiation Convincing 56 Critically low High

Li2022C [49] MRI radiomics for high-grade glioma vs brain metastasis differentiation Convincing 67 Low Unclear

Li2022A [54] Radiomics in microvascular invasion prediction in hepatocellular 
carcinoma

Highly suggestive 77 Low Unclear

Davey2021C [41] MRI radiomics in Luminal A vs other subtypes differentiation in breast 
cancer

Highly suggestive 52 Critically low High

Zhang2022A [67] Radiomics in microvascular invasion prediction in hepatocellular 
carcinoma

Highly suggestive 77 Low Low

Li2022D [57] MRI radiomics in breast cancer positive vs negative differentiation Highly suggestive 58 Critically low High

Castaldo2021 [36] Radiomics in prostate cancer positive vs negative differentiation Highly suggestive 67 Critically low Unclear

Mühlbauer2021 [59] Radiomics in benign vs malignant renal tumors differentiation Highly suggestive 60 Critically low High

Cleere2022 [38] US radiomics in malignancy vs benign thyroid nodule per patient Highly suggestive 52 Critically low High
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heterogeneity. We did not investigate the potential 
source of heterogeneity due to the workload, but this 
should be explored in the individual systematic review 
to allow interruption of the results. Unfortunately, 
these systematic reviews did not perform related 
investigations. Indeed, less than a half of included sys-
tematic reviews conducted such an analysis. Another 
reason for failing to reach convincing level of evi-
dence is significant small-study effects and publica-
tion bias. This was assessed by more than four fifths of 
the included systematic reviews. The radiomics were 
not rated as sufficient tools for other clinical applica-
tions. There were more pieces of weak evidence due 
to insufficient participants. This could not be solved 
by systematic reviews, but it might be overcome with 
more carefully designed prospective, multicenter, ran-
domized controlled trials and data sharing [9, 11, 12]. 
Another concern on the systematic reviews and meta-
analyses of radiomics was their relatively low study 
quality. Although our overview identified three poten-
tial application of radiomics with high-level of sup-
porting evidence, they were all with suboptimal quality 
that should be taken into consideration when applying 
the evidence. A systematic approach is encouraged to 
establish to comprehensively evaluate the radiomics 
tool, in order to tell whether the tool can be used in 
the clinical practice. The GRADE (grading of recom-
mendations assessment, development and evaluation) 
system can be used for diagnostic tests or strategies 
[80], but the feasibility of this approach for radiomics 
researches needs to be verified.

There are several limitations to address. First, we 
only included systematic reviews with meta-analyses 
to identify the most possible candidate to be sup-
ported by high-level evidence. We only included the 
primary studies mentioned in the meta-analyses for 
re-analysis, because updating the literature search may 
lead to a too heavy workload. As a rapidly developing 
field, our meta-analyses may not include all the eligible 
radiomics studies. Second, most of the meta-analyses 
were based on training or validation dataset, which 
potentially overestimated the results. The future anal-
ysis is encouraged to be conducted using testing data-
set of the strictly designed studies. Third, the majority 
of the included primary studies were retrospec-
tive, single-center, small-scale studies and have been 
assessed as suboptimal quality. Further, the overall 
quality of included systematic reviews was also insuf-
ficient. Therefore, the aforementioned evidence level 
rating results should be cautiously interpreted. Lastly, 
the evidence rating criteria of diagnostic accuracy tests 
have not been well established. We only estimated the 

diagnostic odds ratio as effect size, but not the corre-
sponding sensitivity, specificity, and area under curve 
value for each meta-analysis, whose potential role in 
evidence rating needs further investigation.

Conclusion
In conclusion, our overview of systematic reviews and 
meta-analyses highlighted three convincing and seven 
highly suggestive level of evidence for radiomics in 
answering clinical questions, while the low study qual-
ity and high risk of bias might lead to insufficient con-
fidence in clinical translation. Future research should 
provide more scientific base for those with low-level of 
evidence and seek to validate the radiomics algorithms 
in clinical settings for those with high-level of evidence. 
Systematic reviews and meta-analyses on radiomics 
researches could continuously help the stakeholder to 
identify knowledge gaps, biases, and priorities for future 
research to promote the radiomics translation from 
an academic tool for generating papers to a practicable 
adjunct toward clinical deployment.
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