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Abstract

Glioblastoma multiforme (GBM) is the most common and deadly primary
malignant brain tumor. As GBM tumor is aggressive and shows high biological
heterogeneity, the overall survival (OS) time is extremely low even with the
most aggressive treatment. If the OS time can be predicted before surgery,
developing personalized treatment plans for GBM patients will be beneficial.
Magnetic resonance imaging (MRI) is a commonly used diagnostic tool for
brain tumors with high-resolution and sound imaging effects. However, in
clinical practice, doctors mainly rely on manually segmenting the tumor
regions in MRI and predicting the OS time of GBM patients, which is time-con-
suming, subjective and repetitive, limiting the effectiveness of clinical diagnosis
and treatment. Therefore, it is crucial to segment the brain tumor regions in
MRI, and an accurate pre-operative prediction of OS time for personalized
treatment is highly desired. In this study, we present a multimodal MRI
radiomics-based automatic framework for non-invasive prediction of the OS
time for GBM patients. A modified 3D-UNet model is built to segment tumor
subregions in MRI of GBM patients; then, the radiomic features in the tumor
subregions are extracted and combined with the clinical features input into the
Support Vector Regression (SVR) model to predict the OS time. In the experi-
ments, the BraTS2020, BraTS2019 and BraTS2018 datasets are used to evaluate
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1 | INTRODUCTION

Glioblastoma multiforme, or GBM, is a highly aggressive
and deadly type of brain tumor. In 2018, it was estimated
that there were approximately 12 760 cases of GBM diag-
nosed in the United States." The survival rate for individ-
uals with this type of tumor is bleak, with a median
survival time of only 12-15 months. As a result, it is esti-
mated that there are approximately 13 000 deaths due to
GBM in the United States each year.” The standard
approach to treating GBM typically involves surgery to
remove as much of the tumor as possible, followed by
radiation therapy and additional chemotherapy. How-
ever, due to the high degree of variability in the morpho-
logical and genetic makeup of GBM tumors, the response
to treatment can be highly varied and the prognosis can
vary considerably.® For this reason, early detection of the
tumor is crucial in order to improve the chances of a
favorable outcome.

At present, the detection and diagnosis of GBM
mainly rely on multimodal magnetic resonance imaging
(MRI) techniques, which typically have four sequences:
T1-weighted (T1), T1l-weighted contrast enhancement
(T1ce), T2-weighted (T2), and fluid attenuation inversion
recovery (FLAIR). Research has shown that brain tumor
regions are closely tied to overall survival (OS) time,
which requires manual segmentation of the tumor by
radiologists.””> However, manual segmentation is often
time-consuming, subjective, and lacks repeatability, hin-
dering the efficiency of clinical diagnosis. With the
advancement of artificial intelligence in medical image
analysis, these challenges are being addressed.®”® The use
of medical image analysis techniques allows for quantify-
ing tumor regions and accurately predicting the OS time
of GBM patients, providing valuable guidance for person-
alized diagnoses and treatment plans.

The prediction of the OS time of GBM patients using
multimodal MRI images has garnered significant atten-
tion from researchers.'” Most OS time prediction
methods are based on radiomics, which involves analyz-
ing medical image information for disease characteriza-
tion, tumor grading, and staging. However, to predict the
OS time accurately, other factors such as tumor grade
must also be taken into consideration. Hence, we aim to

our framework. Our model achieves competitive OS time prediction accuracy
compared to most typical approaches.

deep learning, glioblastoma multiforme, magnetic resonance imaging, overall survival time,

achieve OS time prediction for GBM patients through
joint representations. This study makes the following
contributions: (1) A modified 3D-UNet network is devel-
oped for automatic tumor region segmentation. (2) Both
the entire tumor region and three subregions are seg-
mented. (3) The prediction of OS time for GBM patients
through joint representations is achieved with superior
results.

2 | RELATED WORKS

2.1 | Tumor region segmentation

In recent times, the utilization of machine learning algo-
rithms has been prevalent in the field of medical image
analysis. Scientists and researchers have been exploring
new techniques to detect and segment brain tumors. One
such approach is the use of Convolutional Neural Net-
work (CNN) as demonstrated by Altameem et al.'!
Another study conducted by Xue et al.'* employed a cas-
caded 3D Fully Convolutional Network (FCN) for detect-
ing and segmenting brain metastasis. Ronneberger
et al.”® introduced U-Net, a FCN that has been effectively
used in biomedical image segmentation. Comelli et al.'*
proposed using ENet and ERFNet for segmenting aortic
aneurysms. Guan et al."”> proposed a method for auto-
matic segmentation of brain tumor MR images using the
VNet network along with squeezing and excitation mod-
ules. They also incorporated an attention guidance filter
to mitigate the impact of irrelevant information. Fang
et al.'® used an improved version of VNet to achieve auto-
matic segmentation of GBM multimodal MRI images,
which has significantly enhanced the accuracy and effi-
ciency of clinical diagnosis and treatment.

2.2 | OS time prediction

In recent years, a significant amount of research has been
devoted to the prediction of survival time for cancer
patients, particularly with regards to their OS time. A
number of studies have employed various methods to
achieve this goal. Sun et al."” utilized a 3D-CNN structure
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to segment the tumor region, extract image features, and
then predict the patient's survival rate. Shboul et al.'®
took a different approach, extracting texture, volume,
and tumor region features and then using recursive fea-
ture selection to determine which features were most
important. They ultimately employed the XGBoost model
to make the prediction of patient survival time. Another
study'® utilized a generalized linear model to build a pre-
dictive model for predicting the prognosis of GBM
patients. In this study, the authors incorporated the
patient's age into a linear regression model and used the
volume feature of the tumor region to make the predic-
tion. Huang et al.*° utilized a novel composite method to
predict the survival of GBM patients. They acquired a
large number of radiomics features, which were then fed
into a random forest regression algorithm. Zhou et al.*'
used quantitative spatial image biomarkers to predict the
survival time of GBM patients.

In summary, researchers have employed a range of
methods and models to predict the survival of cancer
patients, with a focus on the OS time of patients with var-
ious types of cancer, including GBM. These methods
have included the use of 3D-CNN structures, image fea-
tures, texture, volume, tumor region features, recursive
feature selection, XGBoost models, linear regression
models, composite methods, radiomics features, and
quantitative spatial image biomarkers.

2.3 | Owur work

Despite the substantial progress that has been made in
the area of automatic segmentation of brain tumors and
the prediction of OS time, several obstacles remain that
prevent its widespread adoption in clinical settings. The
first challenge is the considerable variability in the form,
structure, and position of tumors, which makes it chal-
lenging to apply a one-size-fits-all approach. Secondly,
the data used for analysis often contains significant
imbalances between the tumor, the surrounding tissue,
and different tumor subregions, making it challenging for
automated methods to produce accurate segmentation.
Finally, there is a lack of integration of important factors
such as tumor grade and patient age into radiomics-based
models, which could further improve the predictive accu-
racy of these models.

Our work aims to tackle the aforementioned chal-
lenges by introducing a novel framework for the non-
invasive prediction of OS time in patients with GBM
using multimodal MRI radiomics. The framework con-
sists of two key steps. Firstly, it employs a modified ver-
sion of the 3D-UNet model for segmenting three
subregions in multimodal MRI scans. This is followed by

the extraction of radiomic features from the segmented
images. In the second step, these features are combined
with relevant clinical information to create a predictive
model based on SVR. The final result is an OS time pre-
diction for GBM patients, which can be achieved without
the need for invasive procedures.

3 | METHODS

3.1 | Data preprocessing

We utilize the Z-score approach to normalize the image,
which involves processing the data by subtracting the
mean value of the image's pixel values and dividing by
the standard deviation. The Z-score calculation formula
is as follows (1):

(1)

where Z indicates the image matrix after normalization,
X indicates the original image matrix, X denotes the
mean of the pixel, and s denotes the standard deviation
of the image.

The impact of the preprocessing procedure is demon-
strated in Figure 1. The comparison of the four
sequences, T1, Tlce, T2, and FLAIR, both before and
after preprocessing, is displayed in columns 2-5. The
combined effect of the preprocessing on all four
sequences is shown in the first column. As seen in
Figure 1, the contrast of the tumor region is improved
after preprocessing, making it easier to segment the GBM
subregions.

We improve edge detail detection by cropping the
individual samples after preprocessing. The original size
of 240 x 240 x 155 is reduced to 128 x 128 x 128, keep-
ing only the samples with labeling in the dataset and dis-
carding images containing only unlabeled lesion regions.
This step is necessary because the majority of images in
the brain tumor datasets used in this study consist of
background regions, with only a small portion depicting
the tumor regions. It poses a challenge for accurate brain
tumor segmentation as the model could be biased
towards the background, which is the majority class, and
not perform well on the minority class, the tumor
regions.

3.2 | Segmentation framework

In this study, a modified version of the 3D-UNet architec-
ture was developed to segment three subregions of GBM
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T1 Tlce

FIGURE 1

Comparison of results before and after preprocessing.

in multimodal MRI scan data. The architecture consists
of three distinct components: an encoder, a decoder, and
a concatenation, as depicted in the overall structure dia-
gram in Figure 2. These components are described in
greater detail in the subsequent sections of the study.

321 | Encoder

A modified 3D-UNet model was created for the segmenta-
tion of three GBM subregions in multimodal MRI scans.
The model consists of three main components: encoder,
decoder, and concatenation. The structure of the model is
depicted in Figure 2 and each component is described in
further detail. The encoder comprises of four stages, with
each stage consisting of two 3 x 3 x 3 convolutions fol-
lowed by a normalization layer and a nonlinear activation
layer using ReLU. Instead of Batch Normalization, the
model uses Group Normalization and Instance

T2 FLAIR

FIGURE 2 Schematic diagram of
modified 3D-UNet model structure.

Dilated Conv
Upsampling 3D
Max pooling 3D

Concat

Deep Supervision|

Normalization. The first convolution in each stage
increases the number of filters while the second convolu-
tion maintains the output's channel count. A MaxPool
layer is added between each stage, downsampling the space
and increasing the number of filters by one after each pool-
ing. The kernel size in the MaxPool layer is 2 x 2 x 2 with
a stride of 2. After the final stage, two 3 x 3 x 3 inflated
convolutions with an expansion rate of 2 are applied, and
the output of the last stage is concatenated.

3.22 | Decoder

The decoder is designed to complement the encoder with
a similar structure and uses trilinear interpolation to
resize the feature maps between each stage. The encoder
and decoder are concatenated at the same spatial resolu-
tion. The final layer of the decoder consists of three out-
put channels, a sigmoid activation, and a 1 x1x 1
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FIGURE 3 Flow chart of the survival prediction model.

kernel size. The lowest spatial resolution is achieved
using a 3 x 3 x 3 convolution in the last stage of the
encoder.

3.2.3 | Loss function
In medical image segmentation, the Dice similarity coef-
ficient (DSC) is often used to measure the degree of over-
lap between the ground truth and the predicted image.
The expression for calculating the Dice similarity coeffi-
cient is shown in Equation 2:

21XNY]

DSC=="—:
(X[ +1Y]

)

where X denotes the predicted value, and Y denotes the
true value.

The entire tumor, tumor core, and enhanced tumor
regions are optimized with Dice loss, after which the Dice
loss function for each region is summed to yield the final
loss. The soft dice loss expression is given in Equation 3:

27Xy

Loss=———————
X2+ Y +e

(3)

where ¢ is the smoothing factor (in our experiments this
factor is set to 1).

33 |

OS time prediction

We present a framework for non-invasive OS time predic-
tion of GBM patients using multimodal MRI radiomics.
The process is shown in a flow chart in Figure 3. Radio-
mic features including intensity, texture, and wavelet are
extracted, followed by a CNN to extract deep features.
Both types of features are selected using Principal Com-
ponent Analysis (PCA) to remove redundant informa-
tion. Finally, the selected features and clinical
parameters like age and tumor grade are combined and
used as input to the SVR model to predict the OS time.

3.3.1 | Feature extraction

We utilize the PyRadiomics toolbox to extract radiomic
features from the segmented subregions of the GBM
tumor. These features are based on the results of the seg-
mentation process and include intensity, texture, and
wavelet features, which are further classified into seven
categories. The Gray-Level Co-occurrence Matrix
(GLCM) is used to analyze the texture of the tumor by
analyzing the spatial correlation between gray levels and
providing information on various aspects such as correla-
tion, energy, contrast, defect, variance, probability,
entropy, and the sum of squares. The first-order statistical
features describe the distribution of voxel intensities
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TABLE 1

Feature category

Shape (13)

First order (18)

GLCM (22)

GLRLM (16)

GLSZM (16)

Categories and specific content of features extracted.

Feature name

Elongation, Flatness, Least Axis Length, Major Axis Length, Maximum 2D Diameter (Column), Maximum 2D
Diameter (Row), Mesh Volume, Minor Axis Length, Sphericity, Surface Area, Surface Volume Ratio, Voxel
Volume Maximum 2D Diameter (Slice), Maximum 3D Diameter.

10Percentile, 90Percentile, Mean, Median, Energy, Entropy, Interquartile Range, Total Energy, Uniformity,

Kurtosis, Maximum, Mean Absolute Deviation, Minimum, Range, Robust Mean Absolute Deviation, Root Mean

Squared, Skewness, Variance.

Autocorrelation, Inverse Variance, Cluster Shade, Correlation, Difference Average, Sum Entropy, Joint Energy,
Cluster Tendency, Contrast, Joint Entropy, Imc1, Imc2, Idm, Idmn, Id, Idn, Maximum Probability, Difference
Variance, Difference Entropy, Sum Squares, Joint Average, Cluster Prominence.

Gray Level Non-Uniformity, High Gray Level Run Emphasis, Long Run Emphasis, Long Run Low Gray Level
Emphasis, Low Gray Level Run Emphasis, Run Entropy, Run Length Non-Uniformity, Run Length Non-
Uniformity Normalized, Gray Level Variance, Run Percentage, Long Run High Gray Level Emphasis, Run
Variance, Short Run Emphasis, Short Run High Gray Level Emphasis, Gray Level Non-Uniformity Normalized,
Short Run Low Gray Level Emphasis.

Gray Level Non-Uniformity, High Gray Level Zone Emphasis, Large Area Emphasis, Gray Level Variance, Large
Area Low Gray Level Emphasis, Low Gray Level Zone Emphasis, Size Zone Non-Uniformity, Gray Level Non-
Uniformity Normalized, Size Zone Non-Uniformity Normalized, Small Area High Gray Level Emphasis, Small

Area Low Gray Level Emphasis, Small Area Emphasis, Large Area High Gray Level Emphasis, Zone Entropy,

Zone Percentage, Zone Variance.

GLDM (14)

Dependence Entropy, Dependence Variance, Gray Level Non-Uniformity, High Gray Level Emphasis, Large

Dependence High Gray Level Emphasis, Low Gray Level Emphasis, Large Dependence Low Gray Level
Emphasis, Small Dependence High Gray Level Emphasis, Small Dependence Emphasis, Gray Level Variance,
Dependence Non-Uniformity, Small Dependence Low Gray Level Emphasis Large Dependence Emphasis

Dependence Non-Uniformity Normalized.

Interpolated

statistic (9) Maximum.

within the image region defined by the mask. Shape fea-
tures, including sphericity, perimeter ratio, spindle
length, and elongation, are also calculated to describe the
3-dimensional form of the tumors. Additionally, 14 Gray
Level Dependency Matrix (GLDM) features, 5 interpo-
lated statistic features, 16 features from the Gray Level
Size Zone Matrix (GLSZM), and 16 from the Gray Level
Run Length Matrix (GLRLM) are extracted. A compre-
hensive list of the features included in each category can
be found in Table 1.

Moreover, our method involves collecting features
from both the original MRI image and a version of the
image that has undergone wavelet decomposition. This
approach is designed to provide a comprehensive set of
characteristics for the tumor subregions. The wavelet
decomposition process divides the image into multiple
levels of detail, which enables the extraction of a total of
2500 image features. This combination of features from
the original image and the wavelet decomposition
enhances the accuracy and robustness of the prediction
model.

In our newly proposed CNN network, the final fully
connected layer is specifically designed to predict the OS

Spacing, Bounding Box, Voxel Num, Volume Num, Center Of Mass Index, Center Of Mass, Mean, Minimum,

time of GBM patients. The network has a structure that
comprises four convolutional layers with a stride of
2, and three fully connected layers. The architecture is
not only capable of extracting deep information from the
MRI images, but also of directly estimating the number
of survival days. After training, the network can extract
512 deep features, which can be used for further analysis.
The combination of these deep features and the imaging
features is then subjected to a feature selection process to
eliminate redundant features and improve the accuracy
of the prediction model. Additionally, the CNN network
has the capability to learn the shape and texture charac-
teristics of brain tumors, which are important imaging
properties that can impact the prediction of OS time.

3.3.2 | Feature selection

In the process of extracting features, some of the extracted
features may be redundant or unimportant for OS time
prediction, resulting in overfitting of the model. To address
this issue, we use PCA for feature selection to decrease the
dimension of the data set and retain the features that have
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the highest impact on the squared difference of the data
set. This helps in analyzing small sample sizes and high-
dimensional, high-volume data. The main steps involved
in the PCA calculation are as follows:

The sample of x = (xl,xz,...,xp)T dimension is trans-
formed into the standard matrix of p dimension, as
shown in the following formula:

Zi=""1,2,.,n,j=1,2,..,p (4)

Where Z is the standardized matrix.
And the correlation coefficient matrix is solved for Z,
the calculation formula is as follows:

yANA
n—1

(5)

R= [rij]pxp =

ki3 . .
Where r;j = anfl 9 ij=1,2,..,n.

Then, make the characteristic equation | R-AI, |=0 of
the sample correlation matrix R, to obtain
p characteristic roots. The specific value of M is deter-

=~ >t to make the information
=1

utilization rate reach more than t. for each J;, the unit

mined by the formula

eigenvector qu is obtained by solving Rb = 4;b.

Finally, the standardized index variable is converted
into the main component, and its calculation method is
as follows:

Uy=2z; bf (6)

Where U, 1 is regarded as the pth principal component.
The variance contribution rate of each principal component
is used to weight and sum the m principal components.

3.3.3 | Prediction model

After the feature selection, our framework obtained a set
of effective features for OS time prediction. To ensure
comprehensive feature coverage, clinical features like age
and tumor grade are included as essential components of
the survival prediction features, which are combined
with the effective feature set and fed into the SVR model
to predict the OS time of GBM patients. The SVR model,
which utilizes SVMs for regression, is widely used in
response prediction according to the literature review
(cited in**"**). While the SVR model has a strong general-
ization ability and fast training speed, there is room for
improvement, as evidenced by an improved SVR algo-
rithm for survival analysis proposed by Shivaswamy

et al.”> This improved algorithm maintains the advan-
tages of the support vector method while enhancing the
ordinary model. With the combination of effective fea-
tures and clinical features, the SVR model can predict the
OS times of GBM patients accurately and efficiently.

The SVR model works by mapping the input vector
into a high-dimensional space through nonlinear trans-
formation and constructing the regression function in
this space based on the principle of structural risk mini-
mization.?® Given r data samples {x;, yi}le, where x are
the input samples and y are the output samples, the
model maps the inputs from the original space into an
M-dimensional feature space to create a hyperplane or
approximation function. The calculation is as follows:

fx)= Z 0 ®;(x) +b (7)

Where b is the offset. After ®-transform, the input
samples can solve the linear regression problem in the
high-dimensional space to achieve the goal of solving the
nonlinear regression problem in the original space.

4 | DATASET AND SETTING

4.1 | Datasets

Our model is evaluated using the BraTS2020, BraTS2019,
and BraTS2018 datasets,>”*® which contain two catego-
ries of brain tumors: High-grade glioma (HGG) and low-
grade glioma (LGG), each with different biological char-
acteristics. Each sample in the datasets contains images
from four imaging modalities: T1, T1ce, T2, and FLAIR,
which have different signal intensities, textures, and spa-
tial information. The subregions of the tumor that are
evaluated included the whole tumor (WT), enhanced
tumor (ET), and tumor core (TC) regions, with the aim of
achieving an automated segmentation of these subre-
gions. The validation sets in the BraTS2020, BraTS2019,
and BraTS2018 datasets consist of 125, 125, and 66 cases
respectively, while the training sets consist of 369, 335,
and 285 samples, respectively.

4.2 | Evaluation metrics

We evaluate the segmentation results quantitatively
using five metrics: the Dice score (Dice), sensitivity, spec-
ificity, Hausdorff95 distance (Haus95), and average
boundary displacement (ABD). These metrics are used to
verify the accuracy of the model's segmentation.
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Sensitivity measures the number of correctly segmented
tumor subregions, while specificity measures the number
of correctly segmented normal tissue regions. The
Haus95 distance, which eliminates the impact of outliers,
is calculated as the 95th percentile of the distances
between actual and predicted values. ABD measures the
average distance between corresponding points on the
boundaries of the ground-truth (GT) and predicted seg-
mentation masks, with a smaller score indicating a better
match. The calculation methods are listed in formu-
las (8) (12).

. 2TP

Dice=———— (8)

FP+42TP+FN

e TP

Sensitivity = TPTEN (9)
Specificity = T (10)

ey =Py TN

Hausdorff95(X,Y)

= max{dxydyx} (1)

xeX yeyYy yeEY x¢€

= max{ max mind(x,y) max miI}( d(x,y) }

Xt

EX‘

+ Z mme y|)

y[GY

Where TP is the number of correctly segmented
tumor subregions, FP is the number of normal tissues
incorrectly labeled as tumor subregions, FN is the num-
ber of tumor subregions incorrectly labeled as normal tis-
sues, and TN is the number of normal tissue regions
predicted to be tumor subregions. X; denotes the predic-
tion region surface, Y; denotes the GT, and ||x; - y|| repre-
sents the Euclidean distance between voxels x; and y,.

We evaluate the accuracy of the survival prediction
model using three metrics: mean square error (MSE),
mean absolute error (MAE), and root mean square error
(RMSE). MSE calculates the square of the difference
between the predicted and actual values, MAE adds up
the absolute differences between the predicted and actual
values, and RMSE is the square root of the ratio of the
squared deviation between the predicted and actual
values and the number of repetitions. These three metrics
all measure the difference between the predicted and

actual values. The formulas for calculation are displayed
in (12-14).

2

1
MSE:EZ?:I (Xobs,i _Xpre,i) (13)

1—n
MAE=— Z 1 | Xobsi = Xprei | (14)

2
RMSE = \/ iy (Xobsi = Xpres) (15)

n

Where i denotes for i-th patients, n denotes for the
total number of patients, X, denotes for the real survival
time of patients, and X, denotes for the survival time
predicted by the model.

4.3 | Experimental details

We first normalize the original image data using Z-score
normalization and then crop the images to a variable size
using a bounding box that encompassed the entire brain.
The model is trained for a maximum of 400 iterations,
and the model with the lowest loss on the validation set
is saved as the best model. The model is trained using a
batch size of three and the Adam optimizer with an ini-
tial learning rate of le-4.

To ensure the robustness of the model, we employ a
cyclic cross-validation approach to evaluate and test the
accuracy and reliability of the model in predicting the OS
time of GBM patients. The dataset is divided into a train-
ing set and a test set, with the model first trained on the
training set and its performance evaluated using the test
set. This process is repeated 100 times, with the data
being randomly split into training and test sets each time,
and with the training set accounting for 0.9 of the total
data and the test set accounting for 0.1 of the total data.
The final error loss is calculated as the average of the
100 cross-validations, ensuring that different data combi-
nations are used for training and testing and that the
results of each iteration are verified.

The experiments are carried out using Pytorch on a
computer with an Intel Xeon Gold 6226R CPU @
2.90GHz with 16 cores and 4 NVIDIA RTX A5000 GPUs,
each with 24GB of memory. The software platform used
for development is PyCharm with Python 3.6, and the
packages utilized are SimpleITK 1.2.4, NumPy 1.19.1,
scikit-learn 0.23.1, pyyaml 5.3.1, pandas 1.0.3, and
scipy 1.4.1.
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TABLE 2

Dice Sensitivity

Specificity

Outcomes of metrics for different tumor subregions on the BraTS2020 dataset.

Haus95 ABD

Data Set ET wWT TC ET WT TC
Training 0.747 0.881 0.828 0.777 0.943  0.860
Validation  0.691 0.832 0.729 0.767 0.929 0.821

ET WT TC ET WT TC ET WT TC
0.999 0999 0999 308 13.7 7.0 7.68 640 274
0999 0999 0999 371 19.7 166 112 101 6.87

TABLE 3 Outcomes of various metrics on the BraTS2019 and BraTS2018 datasets.
Dice Sensitivity Specificity Haus95 ABD
Dataset ET WT TC ET WT TC ET WT TC ET WT TC ET WT TC

Training 2019 079 087 086 089 094 091
2018 070 083 0.87 085 093 0.6
Validation 2019 0.75 0.79 072 071 093 0.75
2018 0.66 0.83 0.75 0.72 093 0.76

5 | RESULTS AND DISCUSSION

5.1 | Results

51.1 | Segmentation results

Our model is trained on the training set and then tested
on the corresponding validation set of three brain tumor
segmentation datasets. The objective of the task is to
segment the tumor subregions for evaluation, which
include the WT, ET, and TC. Table 2 shows the average
results of our model on the BraTS2020 training and
validation sets.

The results shown in Table 2 indicate that the pro-
posed model achieved exceptional performance based on
the evaluation indices. A result closer to 1 reflects better
segmentation performance. The model demonstrated a
specificity index of 0.999, which indicates high accuracy
in segmenting normal tissue regions. The accuracy of seg-
mentation for the largest and most prominent region
(WT) is higher in the training set compared to the valida-
tion set due to the constant refinement of the training
data. The low value of Hausff95, which represents the
maximum difference between the segmentation result
and the GT label, highlights the precise boundary seg-
mentation results achieved by the model.

Our model is also evaluated on the BraTS2019 and
BraTS2018 datasets to determine its reliability and effi-
ciency. The results, as shown in Table 3, indicate that the
model produced consistent outcomes on both datasets,
demonstrating its validity. However, there may be some
variations in the performance due to differences in data
size, sample information, and other factors. The best per-
formance is observed on the BraTS2018 dataset.

099 099 099 980 167 615 323 7.02 229
099 099 099 995 166 638 271 741 245
099 099 099 187 178 208 882 771 9.1
099 099 099 137 205 165 640 854 5.63

To evaluate the segmentation results more effectively,
we utilize visualization to display the tumor region seg-
mentation with distinct colors for each subregion: green
for edema, yellow for enhancing tumors, and red for
necrotic regions. The segmentation outcomes are shown
in Figure 4, with Img as the input image, GT as the GT
map created through expert manual segmentation, Pred
as the test result, 3D-GT as the three-dimensional repre-
sentation of the GT map, and 3D-Pred as the three-
dimensional display of the test outcome. For a more
explicit demonstration of the model's segmentation capa-
bilities, we randomly select some cases from the training
set. The results, depicted in 2D and 3D, reveal that the
model's predicted segmentation is highly similar to the
GT, especially in the WT region, demonstrating precision
and accuracy. With advanced applications, the model can
effectively segment the subregions of brain tumor. How-
ever, some edge details may be blurred due to the lack of
noticeable features.

51.2 | OS prediction results

Our study focuses on segmenting MRI scan images of
patients with GBM. The goal is to accurately distinguish
the tumors and subregions from normal brain tissue and
use the segmentation results to predict the patient's OS
time. To achieve this, a combination of three types of fea-
tures is used: deep features obtained from a CNN, radio-
mic features extracted using the PyRadiomics toolbox,
and clinical parameters such as age and tumor grade
taken from the dataset. The OS time prediction results of
this combination are demonstrated on the BraTS2020
dataset, as shown in Table 4.
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FIGURE 4 Segmentation examples from the training set.

TABLE 4 Results of OS time prediction on the BraTS2020
dataset.

Data set MSE MAE RMSE
Training 129269.5032 251.5015 350.7228
Validation 139571.9641 254.6866 360.8906

We utilize evaluation indicators commonly used in
regression algorithms, such as MSE, MAE, and RMSE, to
assess the accuracy of the OS prediction model. These
indicators measure the deviation between the predicted
and actual values. A smaller value of these indicators
indicates a closer match between the predicted and actual
values, demonstrating the improved accuracy of the
model. Table 4 shows that the prediction performance, as
indicated by the evaluation indices, is high for both

expert-segmented training data and validation data seg-
mented by the model. However, it is common for the pre-
diction performance to be better for the training data
than the validation data, as the tumor region in the
expert-segmented mask image is more accurately defined
and the accuracy of the segmentation has a significant
impact on the prediction outcome. By using the mask
image as the research object, the predictions are more
accurate with fewer errors.

The model's ability to perform well on various data-
sets is demonstrated by testing it on the BraTS2019 and
BraTS2018 datasets, as shown in Table 5. The results
show that the proposed model exhibits high prediction
accuracy of the OS time on both datasets. The superior-
ity of the training data over the validation data in terms
of prediction accuracy is again highlighted. The
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TABLE 5 Results of OS time prediction on the BraTS2019 and BraTS2018 datasets.

Dataset

BraTS2019 Training
Validation
BraTS2018 Training

Validation
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FIGURE 5 Comparison of segmentation results on the BraTS2020 dataset with those produced by other teams.

importance of accurate tumor region segmentation is 125 examples, the target regions are determined, and the

reinforced.

6 | DISCUSSION

overall outcomes are in line with expectations. To offer a
fairer comparison, we contrast our strategy with other
methods. Experimental results on the BraTS2015 show
that the average Dice for the top 15 teams employing this
strategy is 0.8577. The majority of these teams utilize

The training and testing of the proposed model produced combined models, which improve image processing per-

pleasing segmentation results.

After

evaluating  formance by merging image processing components into
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TABLE 6
various methods.

Comparison of OS time prediction results with

Methods MSE

Kim S. et al.>* 121778.60
Islam M. et al.*’ 127478.65
Soltaninejad M. et al.*® 109564.00
Agravat R.R. et al.* 116083.48
Patel J. et al.*° 152467.00
Ours 121095.81

a single model. For instance, Sun et al.'” combined mod-
ules like Cascaded Anisotropic in three individual CNNs.
Although there is still a gap with some of the current
methods, they still obtained subpar results.

Zhao et al.*® found that joint training of two-scale
CNNs leads to a noticeable improvement in tumor classi-
fication accuracy compared to single-path CNNs. Their
results reveal that the joint training of two-scale CNNs
provides a substantial enhancement in the accuracy of
tumor classification compared to single-path CNNs. Most
of the combination techniques in current research are
based on the original technology or improved versions of
it. Our segmentation results on the BraTS2020 dataset are
compared with those of other teams > in Figure 5,
showing that our approach has higher accuracy and pro-
gression than these methods.

The accurate segmentation of brain tumors in MRI scan
data plays a crucial role in determining tumor diagnosis and
formulating prognostic plans. Although manual segmenta-
tion is still commonly used in clinical practice to gather
information such as tumor size and location, it is prone to
subjectivity and can be time-consuming. As a result, the
search for automatic segmentation techniques that increase
efficiency and accuracy continues. Most current techniques
are limited to 2D segmentation, while brain MRI images are
three-dimensional. It is recommended to use a 3D model for
processing these images, which can result in more precise
segmentation. Many experts and academics have conducted
research on this topic and made significant contributions,
including the development of new models such as 3D-
CNN,?? Cascaded Deep CNNs, and others.

The experimental results of the OS time obtained in
this study are objectively evaluated by comparing them
with the prediction results from other methods found in
the relevant literature. The comparison data is presented
in Table 6. Kim et al.>* employed radiomic features to
make survival duration predictions using a random forest
regression model. The features were first screened using a
random forest method to avoid overfitting. Amian et al.*
used a random forest model to predict survival time and

extracted spatial features from the entire tumor and its
subregions. Kofler et al.’** made predictions solely based
on the clinical feature of age and three orthogonal polyno-
mial and orthogonal regression models. The XGBoost
approach was used by Islam et al.*’ to predict survival
based on tumor geometry and a combination of location of
radiomics features and clinical features. Soltaninejad
et al.*® made predictions using a random forest model and
features such as mean tumor intensity and the proportion
of tumor volume to brain tissue. Agravat et al.> used three
features derived from age, volume, and shape to predict
patient survival with a random forest regression model.
Patel* utilized a PCA to reduce the number of dimensions
and a segmentation network to extract 2048 deep image
features, then used a Cox hazard proportional model for
survival prediction. Ali et al.*' predicted survival using a
random forest recursive method to remove multiple radio-
mics features from MRI images and a grid search and ran-
dom forest prediction model.

The results presented in Table 6 clearly show that the
algorithm proposed in our study has several distinct advan-
tages, as evidenced by the close alignment between the pre-
dicted results and actual values. This is a clear indication of
the effectiveness of our proposed algorithm and provides a
solid foundation for the clinical diagnosis and treatment of
GBM and the advancement of personalized medicine.
Despite the strengths of our proposed algorithm, it is impor-
tant to note that there are some studies that have achieved
even better prediction performance. This highlights the sig-
nificance of continued optimization of the model in future
development. By doing so, we can enhance the versatility of
the model, minimize the prediction error, and achieve even
greater accuracy in segmentation. Through these efforts, we
can ensure that our proposed algorithm remains at the fore-
front of GBM diagnosis and treatment, providing the best
possible outcomes for patients.

The analysis of the above results indicates that radio-
mic features have a strong tendency to provide stable and
reliable outcomes, as well as having some interpretive
advantages. Researchers and specialists have conducted
an extensive experiment with two new image features
that were derived from spatial and brain segmentation
maps and discovered their usefulness in the field.** If
these two features are considered for inclusion in future
studies, it can further enhance the prediction perfor-
mance for survival. By combining the knowledge and
expertise of clinical professionals, the accuracy of classify-
ing radiomic features can be increased, thereby facilitat-
ing the identification of more precise feature selection
techniques. The result of these efforts is a process that is
both interpretable and easily applicable in a clinical set-
ting, making it highly valuable for both researchers and
practitioners alike.
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7 | CONCLUSION

In this study, we propose a new, automated framework for
segmenting multimodal MRI scans and predicting the OS
time of patients with GBM. The framework consists of two
key components: a modified 3D-UNet model that segments
three subregions of GBM in multimodal MRI scans, and an
SVR model that predicts patient OS time based on the
extracted radiomic and clinical features. To use the frame-
work, the first step is to segment the GBM subregions in the
multimodal MRI scans with the modified 3D-UNet model.
Next, the radiomic features of the GBM tumor are extracted
and combined with relevant clinical features, and the com-
bined features are fed into the SVR model to make a predic-
tion of the patient's OS time. The framework is tested and
validated using datasets from the Brain Tumor Segmenta-
tion (BraTS) challenge. The results of the OS time prediction
on the BraTS2020 dataset show an MSE of 139571.9641, an
MAE of 254.6866, and a mean root square error of 360.8906,
indicating that the proposed framework can predict patient
survival from GBM multimodal MRI scans with a high
degree of accuracy and precision. Overall, the proposed
framework provides a novel approach to the segmentation
of GBM multimodal MRI scans and the prediction of
patient OS time, with the potential to have significant clini-
cal implications for the early diagnosis of brain tumors.
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