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Abstract
Background The hyperintensity area surrounding the residual cavity on postoperative fluid-attenuated inversion recovery 
(FLAIR) image is a potential site for glioblastoma (GBM) recurrence. This study aimed to develop a nomogram using quan-
titative metrics from subregions of this area, prior to chemoradiotherapy (CRT), to predict early GBM recurrence.
Methods Adult patients with GBM diagnosed between October 2018 and October 2022 were retrospectively analyzed. 
Quantitative metrics, including the mean, maximum, minimum, median values, and standard deviation of FLAIR signal 
intensity (SI) (measured using 3D-Slicer software), were extracted from the following subregions surrounding the residual 
cavity on post-contrast T1-weighted (CE-T1WI)-FLAIR fusion images: the enhancing region (ER), non-enhancing region 
(NER), and combined ER + NER. Independent prognostic factors were identified using Cox regression and least absolute 
shrinkage and selection operator (LASSO) analyses and were incorporated into the prediction nomogram model. The model’s 
performance was evaluated using the C-index, calibration curves, and decision curves.
Results A total of 129 adult GBM patients were enrolled and randomly assigned to a training (n = 90) and a validation 
cohorts (n = 39) in a 7:3 ratio. Sixty-nine patients experienced postoperative recurrence. Cox regression analysis identified 
subventricular zone involvement, the median FLAIR intensity in the ER, the rFLAIR (relative FLAIR intensity compared 
to the contralateral normal region) of ER + NER, and corpus callosum involvement as independent prognostic factors. For 
predicting recurrence within 1 year after surgery, the nomogram model had a C-index of 0.733 in the training cohort and 
0.746 in the validation cohort. Based on the nomogram score, post-operative GBM patients could be stratified into high- and 
low-risk for recurrence.
Conclusions Nomogram models which based on quantitative metrics from FLAIR hyperintensity subregions may serve as 
potential markers for assessing GBM recurrence risk. This approach could enhance clinical decision-making and provide 
an alternative method for recurrence estimation in GBM patients.
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PACS  Picture Archiving and Communication System
SVZ  Sub-ventricular zone
MAR  Maximum area ration
SI  Signal intensity
ROI  Regions of interest
ICC  Intraclass correlation coefficient
VIFs  Variance inflation factors
ROC  Receiver operating characteristic
AUC   Area under the curve
MRS  MR Spectroscopy
DWI  Diffusion weighted imaging
PWI  Perfusion weighted imaging
DTI  Diffusion tensor imaging

Introduction

Glioblastoma (GBM) is the most common histological sub-
type of gliomas and is typically associated with poor out-
comes. Its aggressive nature often leads to recurrence within 
a year of diagnosis (Zhang et al. 2024; Behling et al. 2022). 
While novel treatments, including immunotherapy and 
immune-targeted therapy, have shown promise in improving 
GBM survival, assessing therapeutic efficacy and predicting 
imminent recurrence before treatment initiation are critical 
for selecting and promptly implementing salvage therapies.

MRI is the most commonly used imaging modality for 
assessing GBM post-treatment. However, conventional MRI 
sequences, such as T2-weighted imaging (T2WI), fluid-atten-
uated inversion recovery (FLAIR), and contrast-enhanced 
T1-weighted imaging (CE-T1WI), struggle to accurately 
characterize the peri-residual cavity region. This underscores 
the need for quantitative metrics as non-invasive biomarkers 
for early GBM recurrence detection in the immediate post-
operative phase. Accurately characterizing the area surround-
ing the residual cavity, including FLAIR hyperintensity and 
enhancement lesions, remains challenging. Additionally, there 
is considerable variability in the literature regarding assess-
ment timing, region of interest (ROI), and extracted metrics. 
Some studies focus solely on pre- or post-chemoradiotherapy 
(CRT) MRI assessments (García Vicente et al. 2022; Rao et al. 
2022), overlooking the prognostic impact of surgical factors. In 
other studies, GBM patients were often dichotomized based on 
endpoint events, which makes personalized risk assessments 
difficult. Moreover, there is a lack of comprehensive analy-
sis during the early postoperative stage, such as pre-CRT and 
immediately after surgery. Recurrence can occur as early as 
27 days postoperatively (Behling et al. 2022), and delays in 
obtaining timely information regarding tumor progression 
may hinder the initiation of salvage therapy. While recur-
rence prediction models often rely on MRI morphological 
features, radiomics, and functional MRI metrics (Wang et al. 
2022; Jia et al. 2022), the complexity of the technology and the 

specialized software required for radiomics hinder widespread 
clinical use. Thus, traditional MRI remains a cornerstone in 
prognostic studies of GBM.

Previous studies on post-treatment GBM often employed 
cluster comparisons, which may overlook individual differ-
ences and limit personalized predictions. To enhance the early 
detection of GBM progression, there is a need for more per-
sonalized prediction methods. Nomograms, a simple graphi-
cal model, have shown potential in predicting survival out-
comes for GBM and other diseases (Huang et al. 2021a, b; 
Chen et al. 2023). While preoperative MRI-based nomograms 
have demonstrated predictive value (Du et al. 2022), studies 
on postoperative MRI nomograms for predicting GBM recur-
rence before CRT are lacking. Accurately characterizing the 
FLAIR hyperintensity area surrounding the residual cavity 
in GBM still remains challenging. This region consists of 
tumor-infiltrated areas, non-infiltrated areas, and true edema, 
with the tumor-infiltrated regions being the primary source 
of GBM recurrence. However, distinguishing these subre-
gions using conventional morphological and conventional 
functional imaging techniques is difficult. In fact, detecting 
early signs of recurrence is essential for timely salvage treat-
ment, thus analyzing the FLAIR hyperintensity surrounding 
the residual cavity may help identify early tumor infiltration. 
Historically, evaluations of the FLAIR hyperintensity area in 
glioma patients have focused on size and signal intensity (SI) 
measurements, which do not adequately reflect the pathophysi-
ological mechanisms in postoperative patients due to lack of 
differentiation between enhancing and non-enhancing subre-
gions. Previous studies have investigated the FLAIR hyper-
intensity area with subregion differentiation in preoperative 
GBM (Yan et al. 2020) and postoperative low-grade glioma 
patients (Yuan et al. 2022). However, to our knowledge, no 
studies have emphasized quantitative evaluation and early pre-
diction of GBM recurrence based on subregional analysis of 
the FLAIR hyperintensity area surrounding the residual cav-
ity. Therefore, further exploration of quantitative subregional 
analysis for predicting tumor recurrence in postoperative GBM 
is warranted.

In this study, we developed a novel nomogram model 
based on the quantitative measurement of subregions within 
the FLAIR hyperintensity area surrounding the residual cav-
ity before CRT. We further explored how integrating these 
quantitative metrics with other morphological MRI features 
and clinical variables could improve the prediction of tumor 
recurrence.
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Methods

Study population and data collection

A retrospective analysis was conducted on GBM patients 
with complete pathological data who underwent total resec-
tion surgery between October 2018 and October 2022. The 
inclusion criteria were as follows: 1) a confirmed GBM 
diagnosis according to the 2021 WHO classification of 
central nervous system tumors, 2) age ≥18 years, 3) tumor 
located in the cerebral hemisphere; and 4) presence of a 
single lesion. The exclusion criteria included patients lost 
to follow-up period, poor quality MRI images, non-adher-
ence to National Comprehensive Cancer Network (NCCN) 
treatment guidelines, biopsy-only procedures, or death from 
causes other than GBM. Institutional review board approval 
was obtained for this study.

Patient data were collected from the hospital informa-
tion system, including demographics, pathologic diagnosis, 
treatment strategies, MRI data, and clinical information such 
as tumor resection and CRT dates, recurrence dates, and 
postoperative Karnofsky Performance Status (KPS) scores. 
Pathological data included the Ki-67 proliferation index and 
molecular phenotypes. According to the response assess-
ment in neuro-oncology (RANO) criteria (Wen et al. 2023), 
patients with GBM were divided into two groups based on 
their progression-free survival (PFS) median: those who 
experienced recurrence within 9 months and those without 
recurrence within 9 months. GBM recurrence was deter-
mined based on specific criteria (Wen et al. 2023). PFS was 
defined as the time from surgery to recurrence or last follow-
up, while overall survival (OS) was defined as the time from 
surgery to last follow-up or death (Chiang et al. 2020).

Instruments and methodologies

All patients were examined using a Philips Achieva 3.0 T 
MRI scanner with an 8-channel phased array head coil. For 
post-contrast scanning, a gadolinium contrast (Gd-DTPA) 
was administered intravenously at 0.1 mL/kg at 3.0 mL/s, 
followed by a 20 mL of saline flush. Detailed MRI scan 
parameters are provided in Table S1. Follow-up MRI exami-
nations were performed within 72 h post-resection, pre-CRT, 
post-CRT, at the 3-month following surgery, and subse-
quently at intervals of 3–6 months.

Imaging analysis

MRI data in DICOM format were retrieved from the Picture 
Archiving and Communication System. Pre-CRT MRI mor-
phological characteristics were assessed, including tumor 

location, corpus callosum involvement, presence of midline 
shift, maximum area ratio (MAR) of hyperintensity outside 
the residual cavity, and the condition of the residual cav-
ity (including morphology, enhancement type, and poten-
tial subventricular zone [SVZ] involvement) (Bender et al. 
2021). Residual cavity morphology was classified as regular 
or irregular. The enhancement of the residual cavity wall 
was categorized into four types: no enhancement, fine line-
like enhancement (partial or full wall enhancement <3 mm 
thick), coarse line-like enhancement (partial or circumferen-
tial enhancement 3–5 mm thick), and nodular enhancement 
(nodules 5–10 mm in diameter) (Wu et al. 2019). The first 
two types of enhancement were designated as type I, while 
the latter two were designated as type II. Patients were cat-
egorized based on their MAR ratio into residual cavity type 
(MAR < 1) and edema type (MAR > 1). Further stratifica-
tion into SVZ+ and SVZ-groups was based on the relation-
ship between the residual cavity and the SVZ (Yamaki et al. 
2020).

The workflow of is shown in Fig. 1. The software 3D 
Slicer (version 5.2.1, https:// www. slicer. org/) was used to 
measure the volume of FLAIR hyperintensity subregions 
surrounding the residual cavity, including both enhanced and 
non-enhanced areas. Additionally, the FLAIR SI of hyper-
intensity subregions at the largest orthogonal cross-section 
outside the residual cavity was measured using the 3D 
Slicer software. This analysis included six ROIs, as shown 
in Fig. 2. The mean, maximum, minimum, and median SI 
values, along with standard deviation, were directly meas-
ured, and relative FLAIR (rFLAIR) values were calculated. 
The rFLAIR was defined as (ROI-background)/(normal-
background) (Yuan et al. 2022). Two radiologists with 6 and 
21 years of experience in diagnostic imaging reviewed all 
findings, with any discrepancies resolved through consulta-
tion with a third radiologist with 31 years of neuroradiology 
experience.

Modeling and evaluation

Cox regression analysis was performed to identify signifi-
cant factors associated with GBM recurrence. Significant 
variables from the univariate analysis were included in the 
multivariate analysis to construct PFS nomograms for pre-
dicting recurrence at 6 months and 1 year using software 
from Jing Ding Medical Technology Co., Ltd. The nomo-
gram’s predictive ability was assessed using the C-index, 
while calibration curves and decision curves were used to 
evaluate its diagnostic performance. The decision curves 
plotted net benefit on the vertical axis and threshold prob-
ability on the horizontal axis. Kaplan–Meier survival analy-
sis and the log-rank test were used to compare recurrence 
rates between high- and low-risk groups.

https://www.slicer.org/
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Statistical analysis

Interclass correlation coefficient (ICC) and kappa tests 
were used to evaluate inter-observer and intra-reader con-
sistency, with values between 0.8 and 1.0 indicating excel-
lent agreement. Statistical analyses were performed using 
R software and a prognostic prediction model (V3.14, Jing 
Ding Medical Technology Co. Ltd.). Categorical varia-
bles were compared using chi-square or Fisher exact tests, 
while continuous variables were analyzed using t-tests or 
Mann–Whitney U-tests. Results were presented as n (%) 
for categorical variables and mean ± standard deviation or 
median (interquartile range) for continuous variables. A 

sequential analysis approach was conducted to determine 
significant factors associated with PFS.

Significant factors from univariate Cox analysis were 
further evaluated using LASSO analysis for multivariate 
analysis. Before applying LASSO, the data were checked 
to ensure they met the necessary assumptions for regression 
analysis, such as linearity, independence, and proportional 
hazards. To address multicollinearity, variance inflation fac-
tors (VIFs) were examined and variables with high VIFs 
were either removed or combined to reduce redundancy. The 
results of the Cox regression analysis were used to create 
a nomogram using the RMS package (version 4.2.1) in R 
software (https:// cran.r- proje ct. org/). The predicted probabil-
ity (defined as Nomo-score) of each patient was calculated 

Fig. 1  The study flowchart and the radiomics workflow

Fig. 2  Subregions of six ROIs. 
ER, enhancing region outside 
the residual cavity; NER, non-
enhancement region outside the 
residual cavity

https://cran.r-project.org/
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using the nomogram algorithm (with the nomogram Ex soft-
ware package). The C-index was used to assess the nomo-
gram’s predictive ability, while calibration curves were used 
to compare predicted and observed probabilities. Decision 
curve analysis was performed to assess the net benefits and 
performance of the nomogram. The area under the curve 
(AUC) of the time-dependent receiver operating character-
istic (ROC) curve was calculated to evaluate the model’s 
prediction efficiency. Patients were stratified into recurrence 
risk categories using nomogram scores, and survival curves 
were compared using the log-rank test, with P < 0.05 con-
sidered statistically significant.

Results

General information

During the study period, a total of 180 adult GBM patients 
were evaluated. Of these, 51 patients were excluded for the 
following reasons: poor imaging quality (n = 25), non-adher-
ence to NCCN treatment guidelines (n = 20), and secondary 
resection (n = 6). Consequently, 129 patients were included 
in the final analysis, comprising 52 females and 77 males, 
with ages ranging from 18 to 73 years (mean age: 54 years). 
Among these patients, 69 experienced recurrence during the 
study period. The patients were randomly assigned to either 
a training cohort (n = 90) or a validation cohort (n = 39) at a 
ratio of 7:3 (Table S2).

Post‑operative MRI characteristics

Regarding MRI morphological characteristics, patients in 
the recurrence group exhibited a significantly greater mid-
line structures displacement (p = 0.017) compared to those 
in the non-recurrence groups. However, no significant dif-
ferences were observed between the two groups in terms 
of tumor location (p = 0.315), corpus callosum involve-
ment (p = 0.817), residual cavity type (p = 1.000), enhanced 
region (ER) volume (p = 0.175), unenhanced region (NER) 
volume (p = 0.367), residual cavity morphology (p = 0.204), 
enhanced pattern (p = 0.689), extent of resection (p = 0.502), 
and SVZ involvement (p = 0.061). For subregional quantita-
tive mertics, significant differences were noted in  ERmean 
(p = 0.007),  ERmedian (p = 0.003), and  NERstandard deviation 
(p = 0.03) between the recurrence and non-recurrence groups 
(Table 1).

For the evaluation of MRI features, the Kappa values for 
inter-observer agreement between the two radiologists were 
as follows: tumor location (0.955), corpus callosum involve-
ment (0.931), midline shift (0.967), MAR (0.934), residual 
cavity type (0.943), type of residual cavity enhancement 

(0.921), extent of surgical resection (0.944), and SVZ 
involvement (0.967).

Outcome

Univariate analysis in the training cohort identified 12 
clinical variables and MRI features as significant factors 
of recurrence, including SVZ involvement (p = 0.047), cor-
pus callosum involvement (p = 0.001), occipital lobe loca-
tion (p = 0.001),  NERminmum (p = 0.004),  NERstandard deviation 
(p = 0.042),  NERmedian (p = 0.01),  NERmaximum (p = 0.008), 
 NERmean (p = 0.009),  ERmedian (p = 0.004),  ERmean 
(p = 0.008),  ERmaximum (p = 0.016), and ER + NER rFLAIR 
values (p = 0.042). Based on LASSO regression analysis, six 
potential predictive factors were selected: corpus callosum 
involvement, SVZ involvement,  ERmedian, ER +  NERratio, 
 NERstandard deviation, and occipital lobe location (Fig. 3). Ulti-
mately, multivariate analysis identified four significant inde-
pendent variables: SVZ involvement (p = 0.131),  ERmedian 
(p = 0.02), ER +  NERratio (p = 0.08), and corpus callosum 
involvement (p = 0.001) (Table 2).

Nomogram model development and prediction 
efficiency

Significant variables from the multivariate analysis were 
incorporated into a nomogram model (Fig. 4A). The C-index 
was calculated as 0.733 for the training cohort and 0.746 for 
the validation cohort. The nomogram was compared with 
various independent variables for predicting recurrence, 
including corpus callosum involvement, ER + NER rFLAIR 
values,  ERmedian, SVZ involvement, and the nomogram score 
(Table 3). Two representative GBM patient cases are illus-
trated in Fig. 5.

The AUCs for predicting recurrence in the training group 
were as follows: clinical model 0.650, conventional MRI 
model 0.700, FLAIR value model 0.793, clinical + conven-
tional MRI model 0.743, nomogram model 0.806, and the 
combined model 0.866. The AUCs in the validation cohort 
were: clinical model 0.536, conventional MRI model 0.799, 
FLAIR value model 0.531, clinical + conventional MRI 
model 0.813, nomogram model 0.818, and combined model 
0.732 (Table S3).

Decision curve analysis showed that the nomogram score 
provided the greatest benefit when the threshold probability 
was above 0.13, with the highest net gain compared to other 
predictors. Calibration curves demonstrated good agreement 
between predicted and actual 1-year recurrence rates in both 
the training and validation cohorts using the nomogram with 
quantitative metrics derived from FLAIR hyperintensity 
subregions (Fig. 4B–E).

Based on a Nomogram cut-off score of 112.69, GBM 
patients were stratified into high- and low-risk levels. 
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Approximately 50% of patients were classified as high-risk 
level. Kaplan–Meier curves analysis revealed that patients in 
the low-risk level had a significantly lower recurrence rate 
compared to those in the high-risk level (p < 0.001 for the 
training cohort, p = 0.025 for the validation cohort) (Fig. 4F, 
G).

Discussion

In the present study, we developed a nomogram model 
for personalized prediction of recurrence in adult GBM 
patients using quantitative metrics from segmented 

Table 1  Characteristics of patients with GBM in the training and validation cohorts (n = 129 patients)

GBM glioblastoma, RC residual cavity, ER enhancing region outside the residual cavity, NER non-enhancing region outside the residual cavity, 
SVZ subventricular zone, KPS Karnofsky Performance Scale

Characters Training cohort (n = 90) P value Validation cohort (n = 39) P value

No recurrence (n = 40) Recurrence (n = 50) No recurrence (n = 20) Recurrence (n = 19)

Location 0.315 1.000
Frontal lobe 13 (32.5%) 17 (34.0%) 6 (30.0%) 5 (26.3%)
Other 27 (67.5%) 33 (66.0%) 14 (70.0%) 14(73.7%)
Corpus callosum involvement 0.817 0.065

   Yes 5 (12.5%) 22 (44.0%) 3 (15.0%) 9 (47.4%)
Midline shift 0.017 0.480

   Yes 16 (40.0%) 20 (40.0%) 4 (20.0%) 6 (31.6%)
MAR 1.000 0.910
RC type 25 (62.5%) 28 (56.0%) 14 (70.0%) 12 (63.2%)
ER vloume 6.00 [1.75;9.00] 7.00 [3.00;11.0] 0.175 2.50 [1.00;8.25] 8.00 [5.00;12.5] 0.025
NER vloume 25.5 [12.0;48.2] 30.5 [16.2;47.5] 0.367 18.0 [12.2;25.2] 30.0 [18.0;42.5] 0.007
ER ratio 1.19 [1.00;1.34] 1.19 [1.00;1.37] 0.804 1.14 [1.00;1.50] 1.23 [1.13;1.38] 0.391
NER ratio 1.46 [1.34;1.59] 1.41 [1.32;1.51] 0.289 1.46 [1.34;1.56] 1.44 [1.35;1.54] 0.746
ER + NER ratio 1.36 [1.31;1.53] 1.34 [1.23;1.45] 0.120 1.43 (0.21) 1.39 (0.21) 0.512
All ratio 1.42 [1.27;1.61] 1.37 [1.23;1.57] 0.540 1.28 (0.36) 1.42 (0.26) 0.153
ERmin 93.0 [40.0;180] 93.0 [37.2;165] 0.667 70.0 [31.5;185] 91.0 [37.5;152] 0.888
ERmax 572 [467;846] 832 [525;1126] 0.050 665 (431) 767 (271) 0.380
ERmean 325 [257;507] 489 [318;671] 0.007 299 [264;556] 357 [334;547] 0.227
ERmedian 312 [248;497] 500 [314;682] 0.003 298 [251;562] 341 [306;562] 0.318
ERstandard deviation 93.2 [70.5;136] 118 [78.6;173] 0.108 110 (75.2) 125 (55.5) 0.483
NERmin 324 [296;464] 458 [303;667] 0.073 336 [264;556] 336 [304;572] 0.633
NERmax 542 [462;687] 777 [494;1074] 0.057 628 [475;1044] 640 [528;836] 0.768
NERmean 394 [364;574] 627 [360;806] 0.085 401 [330;691] 416 [373;671] 0.448
NERmedian 386 [359;569] 611 [351;795] 0.092 392 [325;676] 392 [364;666] 0.482
NERstandard deviation 38.4 [26.9;48.8] 49.9 [35.0;73.4] 0.030 52.6 [32.4;74.1] 49.3 [35.9;72.7] 0.888
RC morphology 0.204 0.149
Irregular 13 (32.5%) 24 (48.0%) 5 (25.0%) 10 (52.6%)
Enhanced pattern 0.689 0.077
II 19 (47.5%) 27 (54.0%) 7 (35.0%) 13 (68.4%)
Extent of resection 0.502 0.182
Total 37 (92.5%) 43 (86.0%) 19 (95.0%) 15 (78.9%)
SVZ involvement 0.061 0.020
SVZ + 22 (55.0%) 38 (76.0%) 12 (60.0%) 18 (94.7%)
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subregions on pre-CRT FLAIR-CET1WI fusion images. 
Our preliminary findings indicate that specific quanti-
tative metrics from subregions, along with certain con-
ventional MRI morphologic features, were significant 
risk factors for early GBM recurrence. These metrics 
included the  ERmedian and ER + NER rFLAIR values, and 

the involvement of SVZ and corpus callosum. Pre-CRT 
MRI-based nomograms outperformed clinical and con-
ventional MRI models in prognostic assessment, demon-
strating greater accuracy and predictive performance. To 
the authors’ knowledge, no previous studies have focused 
on early recurrence prediction using quantitative metrics 

Fig. 3  A LASSO feature selection and tuning, where the vertical 
dashed line indicated the optimal penalty coefficient λ corresponding 
to the non⁃zero features. B The AUC curve plotted through tenfold 
cross-validation, with the dashed lines on the left and right represent-

ing λ min and λ 1se, respectively. λ min was selected for this study. 
C The 6 features retained after LASSO filtering and their respective 
weight coefficients

Table 2  Univariate and 
multivariate analyses for 
unfavorable PFS of training 
cohort

HR Hazard ratio, 95% CI 95% confidence interval, ER enhancing region outside the residual cavity, NER 
non-enhancing region outside the residual cavity, SVZ subventricular zone

Characteristics Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

SVZ involvement 1.934 [1.009–3.706] 0.047 1.671 [0.859–3.25] 0.131
NERsd 1.008 [1–1.016] 0.042
NERmedian 1.001 [1–1.003] 0.01
NERmax 1.001 [1–1.002] 0.008
NERmean 1.001 [1–1.003] 0.009
NERmin 1.002 [1.001–1.003] 0.004
ERmedian 1.001 [1–1.002] 0.004 1.002 [1.001–1.003] 0.002
ERmean 1.001 [1–1.002] 0.008
ERmax 1.001 [1–1.001] 0.016
ER + NER ratio 0.227 [0.054–0.948] 0.042 0.142 [0.034–0.598] 0.008
Occipital lobe location 13.018 [2.686–63.079] 0.001
Corpus callosum involvement 2.63 [1.498–4.616] 0.001 2.74 [1.5–5.003] 0.001
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based on segmented MRI fusion images and nomogram 
models.

This study has several advantages, including predicting 
early GBM recurrence using pre-CRT MRI data (which 
minimizes the influence of surgical procedures), extract-
ing factors from conventional MRI sequence, identifying 

novel imaging markers for early warnings, and utilizing 
open software for image fusion. Furthermore, postoperative 
and pre-CRT MRI are less affected by residual hemorrhage 
around the surgical cavity. Previous studies had shown that 
FLAIR SI can be used to differentiate GBM from solitary 
brain metastasis (Nguyen et al. 2022). However, exploration 

Fig. 4  The combined model 
was constructed and presented 
as a nomogram. A Decision 
curve analysis of the nomogram 
score and each independent 
predictor predicting PFS in the 
training (B) and validation (C) 
cohorts. The y-axis represents 
net benefit, and the x-axis 
represents threshold probabil-
ity. Decision curves show that 
when the threshold probability 
is greater than 0.13 (red dotted 
line), the column-line graph 
(green line) has more benefit 
than all patients with a positive 
clinical outcome (red line) or 
no positive clinical outcome 
(brown line). Calibration plots 
of the nomogram. The diagonal 
line indicates the ideal value, 
and the solid line represents the 
performance of the nomogram; 
the closer the solid line is to 
the diagonal dashed line, the 
better the calibration will be. 
The calibration curves demon-
strated good calibration of the 
nomogram in the training group 
(D) and validation group (E). 
Kaplan–Meier curves based on 
the Nomo-score (cut-off value 
of 112.69) for PFS in GBM 
patients (F, G). PFS, progres-
sion-free survival. GBM, glio-
blastoma. ER, enhancing region 
outside the residual cavity; 
NER, non-enhancement region 
outside the residual cavity
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in predicting GBM recurrence with this method remains 
limited. Since pre-CRT imaging could help to predict post-
treatment reactions such as pseudo-progression and pseudo-
remission (Amidon et al. 2022), identifying new imaging 
markers and developing new methods based on conven-
tional MRI sequences like FLAIR could be valuable for 
early warning of recurrence and timely implementation of 
salvage treatment, thereby improving survival outcomes for 
GBM patients.

One challenge with purely morphological analysis is dis-
tinguishing between cerebral edema, ischemia, and residual 
tumor tissue in FLAIR hyperintensity areas (Broggi et al. 
2023). Since visual differentiating SI can be challenging, 
quantitative SI measurements could help to identify areas 
with residual tumor cells (Long et al. 2023). Previous stud-
ies had reported differences in FLAIR SI between areas 
of recurrence and non-recurrence shortly after surgery 
(1–8 days) (Chang et al. 2017), suggesting that increased 
SI may serve as an earlier indicator of tumor progression, 
with more prediction efficiency than the volume increase 
of FLAIR hyperintensity lesions. Investigating FLAIR 
hyperintensity areas based on segmented subregions could 
lead to a better understanding of their underlying pathol-
ogy. Although previous studies have explored the relation-
ship between FLAIR quantitative metrics and survival in 
low-grade gliomas (Yuan et al. 2022), research on GBM 
has been limited. The present study shows that quantitative 
metrics based on segmented FLAIR-CET1WI fusion images 
can improve the efficiency of predicting GBM recurrence 
risk. The pre-CRT FLAIR hyperintensity metrics, including 
both  ERmedian and ER + NER rFLAIR values, were signifi-
cant predictors of tumor recurrence. A lower rFLAIR value 
of the hyperintensity subregions surrounding residual cavity 
was associated with earlier tumor recurrence, consistent with 
previous studies. For instance, in a study of 26 GBM patients 
post-surgery (Chang et al. 2017), a negative correlation was 

found between FLAIR SI and tumor cell counts, along with 
an association between rFLAIR values and shorter PFS. 
Thus, these quantitative metrics could be helpful in predict-
ing GBM recurrence.

Our preliminary results confirmed the utility of conven-
tional MRI features in predicting GBM recurrence, includ-
ing SVZ and corpus callosum involvement. Both SVZ 
(Huang et al. 2021a, b; Adeberg et al. 2022) and corpus cal-
losum involvement (Fyllingen et al. 2021; Hazaymeh et al. 
2022) are independent risk factors for GBM recurrence. SVZ 
involvement promotes tumor stem cell formation and differ-
entiation (Loras et al. 2023), while corpus callosum involve-
ment facilitates tumor cell migration to the opposite hemi-
sphere. Patients with corpus callosum involvement exhibit 
higher changes in platelet-derived growth factor recep-
tor alpha, correlating with lower survival rates (Cui et al. 
2022). However, previous studies focused on preoperative 
MRI morphologic metrics (Huang et al. 2021a, b; Adeberg 
et al. 2022; Fyllingen et al. 2021; Hazaymeh et al. 2022), and 
the relationship between abnormal SI surrounding residual 
cavity, SVZ and/or corpus callosum involvement, and GBM 
recurrence before CRT remains underexplored. We further 
investigated the predictive value of post-operative conven-
tional MRI features around the residual cavity. The prelimi-
nary results demonstrated that combining quantitative met-
rics extracted from FLAIR hyperintensity subregions with 
conventional MRI features improves predictive efficiency.

Nomogram is valuable tool for individualized predic-
tion of GBM recurrence risk, confirming their usefulness 
in oncology. In constructing the nomogram model, scores 
were assigned based on each predictor’s contribution. The 
scores of the enrolled variables were summed to produce 
a total score, which represents the precise probability of 
tumor recurrence. The advantage of nomograms is their 
ability to simplify complex regression equations into visual 
representations, enabling easy interpretation and digitization 
of results, thus supporting personalized decision-making 
(Tunthanathip et al. 2021). Nomograms are widely used 
in clinical settings for predicting disease risk or prognosis, 
including glioma. A previous study (Xie and Li 2022) con-
firmed the effectiveness of a nomogram in assessing GBM 
prognosis by creating a model based on preoperative imag-
ing and histological features to predict glioma recurrence 
within 1 year after tumor resection. In Zheng’s study, the 
nomogram, which incorporated preoperative imaging fea-
tures as well as clinical and molecular variables, improved 
predictive accuracy of PFS in GBM patients (Zheng et al. 
2021). Comparatively, our study extracted quantitative met-
rics from conventional MRI sequence at pre-CRT and post-
operative time points, allowing us to evaluate the impact of 
postoperative changes on prediction efficiency.

Limitations of this study should be noted. First, the small 
sample size, due to the exclusion of multiple lesions and the 

Table 3  The C-index of prognostic factors and nomogram for predic-
tion PFS in the training and validation cohorts

PFS progression free survival, ER enhancing region outside the resid-
ual cavity, NER non-enhancing region outside the residual cavity, 
SVZ subventricular zone, C index concordance index

Models C-index (95% confidence interval)

Training cohort Validation cohort

Corpus callosum 
involvement

0.621 (0.554–0.688) 0.664 (0.558–0.77)

ER + NER ratio 0.577 (0.491–0.663) 0.563 (0.42–0.706)
ERmedian 0.648 (0.568–0.728) 0.545 (0.406–0.684)
SVZ involvement 0.581 (0.514–0.648) 0.64 (0.562–0.718)
ER + NER 

ratio +  ERmedian

0.608 (0.53–0.686) 0.735 (0.613–0.857)

Nomogram 0.733 (0.659–0.807) 0.746 (0.642–0.85)



 Journal of Cancer Research and Clinical Oncology         (2024) 150:483   483  Page 10 of 12

impact of surgical resection on recurrence and prognosis 
(Jackson et al. 2020; Di et al. 2022), may result in selective 
bias. Future studies with larger external validation cohorts 
are needed to confirm the findings. Second, long-term fol-
low-up is necessary to differentiate tumor infiltration from 
true cerebral edema and ischemia. Future studies should 
integrate functional MRI, including diffusion weighted 
imaging (DWI), perfusion weighted imaging (PWI), and 
MR spectroscopy (MRS) to address this limitation. Previous 
studies have demonstrated the utility of functional imaging 
in evaluating peri-tumoral FLAIR hyperintensity subregions 

(Yan et al. 2017). The apparent diffusion coefficient value 
in peri-tumor regions could be used to create nomogram 
models for predicting glioma progression (Pala et al. 2021). 
Additionally, DTI, MR spectroscopy, and positron emission 
tomography have been reported to be useful in delineating 
the “true” boundaries of this aggressive tumor, thereby fur-
ther improving patient prognosis (Price and Gillard 2011). 
We speculate that incorporating functional sequences into 
the pre-radiotherapy imaging protocol for GBM patients 
could enhance prognostic prediction, which will be a key 
focus of future prospective studies.

Fig. 5  Two presented cases 
of GBM patients who had 
distinctly different PFS time 
(2 months vs. 15 months) with 
similar clinic pathological 
features showed significantly 
different nomo-scores (154.54 
vs. 115.92; P < 0.001). PFS, 
progression free survival; 
OS, overall survival; ER, 
enhanced regional outside the 
residual cavity; NER, non-
enhancement region outside the 
residual cavity; SVZ, subven-
tricular zone
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Conclusion

In conclusion, the quantitative metrics of the hyperinten-
sity subregion surrounding the residual cavity on FLAIR 
were independent predictors of GBM recurrence. FLAIR-
CET1WI image fusion is essential for this subregional seg-
mentation. The metrics extracted from fusion images, when 
combined with conventional MRI morphological features, 
could be used to successfully construct a nomogram model. 
This novel nomogram model would effectively improve the 
prediction of early GBM recurrence. However, further multi-
center studies enrolling multimodal functional MRI tech-
niques for constructing nomograms should be conducted to 
enhance individualized prediction efficiency and validate the 
value of this method, providing a novel approach for early 
detection of GBM recurrence.
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