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Abstract 
Background.  Immunotherapy is an effective “precision medicine” treatment for several cancers. Imaging signa-
tures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers 
of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during im-
munotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased 
use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such de-
velopments plausible. We performed a systematic review to determine the extent of development and validation 
of immune-related radiogenomic biomarkers for glioblastoma.
Methods.  A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and 
Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. 
PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis.
Results.  Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging 
volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and 
image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or 
with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index 
test performed.
Conclusions.  Radiogenomic immune biomarkers have the potential to provide early treatment options to pa-
tients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow indi-
vidualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies 
validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.

Key Points

• There are few studies that aim to develop or validate immune-related radiogenomic 
biomarkers for glioblastoma.

• Radiological biomarkers of key components of the tumor-host immune apparatus have 
been developed based on apparent diffusion coefficient values, cerebral blood volume 
values, or radiomics.

Radiogenomics focuses on the relationship between geno-
mics and imaging phenotypes and is increasingly being ap-
plied in the research setting to characterize tumors which 
can be heterogeneous. Characterization might be useful to 

determine an individual’s likelihood of disease progression 
or immune responsiveness.1–5 Due to their infiltrative na-
ture, diffuse gliomas typically have a very poor prognosis 
with the most common type glioblastoma, having a median 
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overall survival of only 14.6 months despite standard-
of-care treatment (which generally comprises surgery 
with maximal safe tumor resection, followed by radio-
therapy with concomitant and adjuvant temozolomide 
chemotherapy).6,7 Recent immunotherapy trials have 
shown that a subgroup of glioblastoma patients ben-
efit from immune checkpoint inhibitors.8–10 Furthermore, 
in a randomized multicenter trial of recurrent glioblas-
toma, anti-programmed cell death protein-1 (PD-1) neo-
adjuvant immunotherapy has shown survival benefit.11 
The challenge, however, is that the majority of patients 
in these studies have shown poor response to immu-
notherapy, attributable to the immunosuppressive tumor 
microenvironment (TME) with limited presence of im-
mune cell populations. Current immunotherapies such 
as PD-1/PD-L1 inhibitors and chimeric antigen receptor 
T-cell therapy depend on the presence of these tumor-
infiltrating lymphocytes within the TME, but these consti-
tute only 10%–15% of all tumor-associated leukocytes.12,13 
In addition, PD-1 expression in human glioma tissues is 
relatively low as compared to other cancers and is het-
erogeneous.14 Despite these challenges, there has been 
an increased interest in tumor-host immune apparatus 
target identification in glioblastoma.9,11 One such area of 
interest has been to identify preoperative imaging bio-
markers that can stratify patients for neo-adjuvant treat-
ment after diagnostic magnetic resonance imaging (MRI). 
Early and noninvasive diagnosis and treatment therefore 
has the potential to improve patient quality of life and 
prolong survival. Noninvasive biomarkers monitoring im-
munotherapy may also improve patient care.1–5

Herein we systematically reviewed 9 studies that devel-
oped and validated MRI biomarkers that have the potential 
to be used, or have been used, for glioblastoma immuno-
therapy. The primary objective was to analyze immune-
related radiogenomic biomarkers. The secondary objective 
was to highlight alternative methods to develop immuno-
therapy biomarkers which were not radiogenomic.

Materials and Methods

We performed a systematic review (registered in 
PROSPERO; ID number CRD42022340968) of immune-
related radiogenomic biomarkers in glioblastoma. The 
search strategy followed Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA)15 (Figure 
1; Supplementary Table S1).

Search Strategy and Selection Criteria

Search terms were applied to PubMed, MEDLINE, and 
EMBASE databases using medical subject headings 
(MeSH) terms16 to identify original research articles pub-
lished from January 1990 to January 2023 (Supplementary 
Table S2). A low-precision “high sensitivity search”17 was 
conducted using subject headings and exploding terms. 
Studies not published in English,18 editorials, confer-
ence proceedings, commentaries, letters, book chapters, 
laboratory-based or animal studies, preprints, or articles 
without peer review were excluded.

Inclusion Criteria

The patients studied were adults aged over 18 diagnosed 
with glioblastoma. All studies with abstracts where MRI 
was used to develop and/or validate biomarkers of the 
tumor-host immune apparatus were included.

Exclusion Criteria

All studies related to non-glial tumors; pediatric patients; 
vaccine trials; imaging other than MRI; and invasive 
studies including intratumoral injections or nanoparticle 
administration, were excluded.

Appraisal of Quality

The Quality Assessment of Diagnostic Accuracy Studies 
2 (QUADAS 2) tool19 was used to assess the quality of 
the studies focusing on risk of bias and concerns re-
garding applicability. Relevant items from the Checklist 
for Artificial Intelligence in Medical Imaging (CLAIM) 
were also used to appraise studies20 (Supplementary 
Table S3).

Data Extraction

Data related to the type of study; MRI sequences; genomic 
markers; radiological markers, and their performance ac-
curacy; and machine learning techniques employed, were 
extracted. Biomarkers were defined as diagnostic, prog-
nostic, predictive, or monitoring according to the FDA-NIH 
BEST (Biomarkers, Endpoints, and other Tools) applied to 
neuro-oncology.21

Importance of the Study

We present the first systematic review of immune-
related radiogenomic biomarker studies for glio-
blastoma. Radiological biomarkers of the tumor-host 
immune apparatus based on apparent diffusion coeffi-
cient values, cerebral blood volume values, and image-
derived features including VASARI (Visually AcceSAble 
Rembrandt Images) and more complex radiomics have 

been developed within the last decade. The summarized 
evidence provides a basis to further develop and vali-
date future immune-related radiogenomic biomarkers. 
If validated, these biomarkers have the potential to be 
further utilized for patient stratification during immuno-
therapy clinical trials for glioblastoma.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
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Data Analysis

PG, a neurosurgeon with 6 years of clinical and research 
experience performed the literature search, which was in-
dependently reviewed by TB, a neuroradiologist with 15 
years of clinical and research experience. Any discrepan-
cies were resolved after discussion. A meta-analysis could 
not be performed due to a lack of sufficient homogenous 
data from the systematic review and marked heterogeneity 
in the methodology of studies.

Results

Nine studies were included from 686 screened studies 
based on the PRISMA assessment (Figure 1). All 
studies22–30 were retrospective and published after 

2016 following the release of iRANO criteria for assess-
ment of response to immunotherapy.31 Seven studies 
were radiogenomic and were the focus of the system-
atic review to achieve the primary objective (Table 1). 
The remaining 2 were non-radiogenomic (Table 2) but 
included for illustrative purposes to highlight how re-
searchers can develop immunotherapy biomarkers 
without any association with genomic information (sec-
ondary objective).

Study Datasets

All studies included patients with histologically diagnosed 
“glioblastomas, isocitrate dehydrogenase (IDH)-wild type” 
or “astrocytoma, IDH-mutant, grade 4” who had under-
gone standard of care treatment.6,34

Identification of studies via PubMed, OVID (Medline and Embase) 2016–23

Records identified from:

PubMed (n = 899)
Medline and Embase (n = 960)

Records screened
(n = 689)

S
cr

ee
n

in
g

Id
en

ti
fi

ca
ti

o
n

In
cl

u
d

ed

Studies assessed for eligibility
(n = 148)

Studies included in review
(n = 7 + 2)

Records removed before
screening: (n = 1170)

Duplicate records removed
Non-English; No abstracts

Records exduded: (n = 594)

Children (<18ys)
No imaging; No genomics
Animal studies

Studies excluded: (n = 86)

Non-immunotherapy
Nanoparticle/tracer related
Non-glioblastoma
Conference papers
Other cancers papers
Vaccine trials

Figure 1. Search strategy of systematic review for immune-related radiogenomic biomarkers in glioblastoma.
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Among the radiogenomic studies, 6/7 (85.7%) were 
multicenter and one was performed using a dataset 
of 60 consecutive patients from a single center.23 The 
Cancer Imaging Archive (TCIA) MRI data (https://www.
cancerimagingarchive.net/collection/tcga-gbm/) and cor-
responding genomic data from The Cancer Genome Atlas 
were used as datasets in all the multicenter studies.24,26–30 
In one TCIA-TCGA study, Liao et al.24 developed radiomic 
biomarkers corresponding to immune-related gene ex-
pression.35–37 The study included 137 patients with TCIA 
MRIs, of which 46 had corresponding genomic informa-
tion. In a second study, Jajamovich et al.26 developed im-
aging biomarkers from 558 patients with TCGA genomic 
information, of which 50 had corresponding MRIs. In a third 
study, Liu et al.27 used multiple datasets (TCGA, Chinese 
Glioma Genome Atlas, and Clinical Proteomic Tumor 
Analysis Consortium RNA-sequencing data; GSE13041 

and GSE83300 RNA microarray data; TCIA and local insti-
tution imaging data) and developed biomarkers using a 
cohort of 774 patients with mRNA gene expression data 
from multicenter datasets including 70 patients matched 
with MRI and mRNA data (TCGA, Clinical Proteomic Tumor 
Analysis Consortium). Subsequently, the biomarkers were 
validated using MRI and survival data from a third inde-
pendent cohort of 149 patients from a single center. In the 
fourth study, Rao et al.28 studied 92 patients from the TCGA 
database with MRI, mRNA, miRNA, and survival data. In 
the fifth study, Narang et al.29 developed biomarkers using 
matched MRI and mRNA data from 79 patients within the 
TCIA-TCGA database. The biomarkers were then trained 
on 35 patients and tested on 34 patients from a separate 
hospital cohort. Hsu et al.30 identified biomarkers using 
matched MRI and mRNA data of 32 patients from TCIA-
TCGA database and tested them on 84 patients with MRI 

Table 2. Non-Radiogenomic Studies in the Review

Paper Study De-
sign

Target 
condition

Dataset(s) Available 
demo-
graphic 
informa-
tion
% male
Age 
(mean ± 
SD)
Ethnicity 
n (%)

Reference 
standard

Index 
test

Index test fea-
tures selected

Type of 
test set

Test set per-
formance

George 
E et al., 
202218

Retrospec-
tive
Multicenter

OS
PFS

113 patients 
from PD-L1
inhibition 
immuno-
therapy trial 
(NCT02336165)
pretreatment 
& 8-week 
posttreatment 
MRIs: T1, T1 CE, 
T2, T2 FLAIR
Manual seg-
mentation of 
VOI
3 train-test 
combinations 
giving range 
(n-n):
Train = 60–74
Test = 29–43

69%
55.2 ± 
11.5 years
Data from 
US
Ethnicity:
White 99 
(87.6%)
African 
American 
1 (0.9%)
Asian 1 
(0.9%)
Other 3 
(2.7%)
Unknown 
9 (8.0%)

Survival data
PFS derived 
from modified 
RANO32 (un-
clear number 
of readers & 
seniority)

Random 
Forest
model

Radiomics 
shape & tex-
ture extracted 
from T2 FLAIR 
VOI (whole 
tumor) & T1 CE 
VOI (enhancing 
tumor) masks.
Note: only 
features within 
top 20 in all 3 
test sets for 
OS: GLCM cor-
relation T1 & 
maximal axial 
diameter in T1 
CE VOI.
Note: only fea-
ture within top 
20 in all 3 test 
sets for PFS: 
GLRLM RLV T2 
in T2 FLAIR VOI.

External
(3 com-
binations 
of sites—
similar to 
cross-
validation 
method-
ology)

AUC
pretreatment 
OS 0.47–0.52
PFS 0.47–0.52
AUC
Posttreatment
OS 0.69–0.75 
PFS 0.68–0.71

Qin L 
et al., 
201721

Retrospec-
tive
Multicenter

Anti-PD-1
+/− Anti- 
CTLA-4 
therapy 
response 
in
recurrent 
glioblas-
toma

10 immu-
notherapy 
trial patients 
(NCT02017717; 
NCT02054806)
(5 benefit group 
and 5 no-benefit 
group)
Postoperative 
MRI: T1, T1C, T2 
FLAIR, ADC
Manual seg-
mentation of 
VOI

Trial data 
from re-
spective 
trials

Survival data (< 
5 months & > 5 
months)
Note: without 
unequivocal 
imaging, 
clinical, or 
histopathologic 
evidence of 
progression
RANO33 meas-
ures on T1 CE 
image

Inter-
mediate 
ADC 
volume
(IADC 
VOI)

IADC VOI 
change from 
FLAIR VOI

N/A
(Train set 
only)

N/A
(Train set 
only; 100% 
accuracy)

https://www.cancerimagingarchive.net/collection/tcga-gbm/
https://www.cancerimagingarchive.net/collection/tcga-gbm/
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and survival data from the TCIA database; limited mRNA 
data were also available in the test set.

Out of the 2 non-radiogenomic studies, one ana-
lyzed recurrent tumors25 and the other included a mix-
ture of newly diagnosed and recurrent tumors.22 Both 
studies included patients from immunotherapy clinical 
trials.22,25 Specifically, George et al.22 used data from a 
multicenter phase II programmed death-ligand 1 clinical 
trial (NCT02336165) with a sample size of 113 patients par-
titioned into training and test sets. In the second study, 
Qin et al.25 studied 10 consecutive patients enrolled in clin-
ical trials of anti-PD-1 therapy with or without anti-CTLA-4 
therapy (NCT02017717; NCT02054806).

Magnetic Resonance Imaging

The images used to develop biomarkers were obtained 
from either T1-weighted (T1), T1-weighted contrast-
enhanced (T1 CE), T2-weighted (T2), T2-weighted Fluid 
Attenuated Inversion Recovery (T2 FLAIR), dynamic 
susceptibility contrast-enhanced (DSC) sequences or 
diffusion-weighted imaging/apparent diffusion coefficient 
maps (DWI/ADC). All radiogenomic studies included ei-
ther T2 FLAIR (4/7, 57.1%) or T1 CE (6/7, 85.7%) images as a 
minimum.

Machine Learning, Radiomics, and Statistical 
Analysis

Eight studies (8/9; 88.9%) used manual or semi-automated 
segmentation for determining the image volume of in-
terest and classified extracted image features with clas-
sical machine learning or advanced statistical modeling 
techniques while one study28 did not use segmentation 
and applied VASARI (Visually AcceSAble Rembrandt 
Images) standardized features to advanced statistical 
modeling techniques. No deep-learning techniques were 
used. The extracted image features were either radiomic-
based and obtained from structural images or consisted 
of quantitative ADC metrics. An exception was one study, 
which also extracted cerebral blood volume metrics in ad-
dition to ADC metrics.23 Radiomic features were extracted 
using Pyradiomics24,27 (https://github.com/AIM-Harvard/
pyradiomics) or the open source radiomics package by 
Vallières22 (https://github.com/mvallieres/radiomics).

All radiogenomic studies23,24,26–30 (7/7, 100%) devel-
oped diagnostic imaging biomarkers that identified gli-
oblastoma with immune-related gene signatures,24,26–30 
immune cell markers23 or immune infiltration scores.27 
Four radiogenomic studies (4/7; 57.1%)24,27,28,30 also dem-
onstrated that the imaging biomarkers were prognostic 
by correlating imaging features with survival. The 2 non-
radiogenomic studies developed a prognostic22 biomarker 
related to survival, and a predictive imaging biomarker25 
that correlated with immunotherapy-related treatment re-
sponse, respectively.

The radiogenomic studies23,24,26–30 (7/7, 100%) developed 
biomarkers by correlating MRI features with immune-
related gene expression levels23,26,28–30 (diagnostic bio-
markers), composite scores derived from them called 
“immune cell infiltration scores”27 (diagnostic biomarkers) 

or survival data24,27,28,30 (prognostic biomarkers). In 5/7 
(71.4%) studies23,24,27,28,30 indirect methods were used to 
determine that the imaging biomarkers were clinically 
meaningful (Table 3) by correlating the classified groups 
of (1) an imaging-based survival classifier with immune-
related gene expression levels,24,28,30 or (2) an imaging-
based immune-related gene expression level classifier 
with progression-free survival,23 or (3) an imaging-based 
immune cell infiltration classifier with survival.27

Cho et al.23 compared MRI-derived ADC and normalized 
relative cerebral blood volume (nCBV) values with 
lymphoid and myeloid cell marker expression levels, 
demonstrating that CD68 (tumor-associated macrophages; 
TAMs), CSF1R (TAMs), CD33 (myeloid-derived suppressor 
cell) and CD4 (regulatory T-cell) levels positively correlate 
with nCBV values; and CD3e (cytotoxic T-cell) and CD49d 
(bone marrow-derived cells) negatively correlate with ADC 
values. These findings persisted regardless of whether 
enhancing tumor or whole tumor was analyzed. CD123 
(dendritic cells), CD49d, and CD117 (mast cells) levels also 
negatively correlated with tumor volume. To determine if 
the immune cell markers selected in the study were clin-
ically meaningful, a Cox proportional hazard analysis of 
progression-free survival was performed with only CD49d 
expression proving significant.

Liao et al.24 used Pyradiomics to extract shape, first 
order, and texture-based radiomic features from 2D FLAIR 
images, and employed 4 different models on the data, 
namely Gradient Boosting Decision Tree (GBDT), logistic 
regression, support vector machine (SVM) and k-nearest 
neighbors (KNN). They showed that GBDT performance 
was best among the 4 models with an accuracy of 0.81 for 
classifying images into those related to short or long sur-
vivors. Six gene expression levels differed between the 2 
survivor classes, 3 of which were moderately highly cor-
related with the most discriminative radiomic features. 
These 3 genes were tissue inhibitors of metalloproteinases 
1 (TIMP1), repressor of silencing 1, and epiregulin (EREG), 
all of which have immune-related functions.35–37

Using a different approach, Jajamovich et al.26 used 
MRI-derived ADC correlation analysis on gene expression 
data grouped into molecular subtypes as well as gene sub-
groups. The researchers demonstrated a negative corre-
lation of mean ADC values with an immune-related gene 
signature subgroup containing CD4, CD86, and major his-
tocompatibility complex class I and II which are associated 
with dendritic cell maturation, the complement system, 
and macrophage function.

Liu et al.,27 refined gene expression grouping further still 
using extracted shape, first order, wavelet, and texture-
based radiomic features from intra- and peri-tumoral re-
gions. Key features were selected using recursive feature 
elimination and SVM to generate a predictive model that 
classified tumors into those with low or high immune cell 
infiltration scores. These immune cell infiltration scores 
represented those immune cell infiltration patterns in the 
gene expression data that persisted in different datasets 
and were shown to be prognostic for survival. In an inde-
pendent MRI dataset, the SVM model classified patients 
into predicted classes of low and high immune cell infil-
tration; only survival data was available as a reference 
standard.

https://github.com/AIM-Harvard/pyradiomics
https://github.com/AIM-Harvard/pyradiomics
https://github.com/mvallieres/radiomics


N
eu

ro-O
n

colog
y 

A
d

van
ces

11Ghimire et al.: Radiogenomic biomarkers for immunotherapy in glioblastoma

Ta
bl

e 
3.

 
Ra

di
ol

og
ic

al
 B

io
m

ar
ke

rs
 Id

en
tifi

ed
 in

 th
e 

Sy
st

em
at

ic
 R

ev
ie

w

Pa
p

er
R

ad
io

 g
en

o
m

ic
b

io
m

ar
ke

r
R

ad
io

lo
g

ic
al

 
b

io
m

ar
ke

r
Pr

o
g

n
o

st
ic

M
o

n
it

o
ri

n
g

D
ia

g
n

o
st

ic
 (R

ad
io

g
en

o
m

ic
 

co
m

p
o

n
en

t)
Pr

ed
ic

ti
ve

D
ir

ec
t m

et
h

o
d

 o
f b

io
m

ar
ke

r 
d

ev
el

o
p

m
en

t
In

d
ir

ec
t m

et
h

o
d

s 
o

f b
io

m
ar

ke
r 

d
ev

el
o

p
-

m
en

t

C
h

o
 e

t a
l.19

Ye
s

Q
u

an
ti

ta
ti

ve
 

M
R

I f
ea

tu
re

s 
(A

D
C

, n
C

B
V,

 
tu

m
o

r 
vo

lu
m

e)

N
/A

N
/A

Ye
s

(E
xp

re
ss

io
n

 le
ve

ls
 o

f i
m

-
m

u
n

e 
ce

ll 
m

ar
ke

rs
)

N
/A

C
o

rr
el

at
io

n
 o

f A
D

C
, n

C
B

V,
 

tu
m

o
r 

vo
lu

m
e 

fe
at

u
re

s 
&

 e
x-

p
re

ss
io

n
 le

ve
ls

 o
f i

m
m

u
n

e 
ce

ll 
m

ar
ke

rs

E
xp

re
ss

io
n

 le
ve

ls
 o

f i
m

m
u

n
e 

ce
ll 

m
ar

ke
rs

 
&

 P
FS

 (w
it

h
o

u
t i

m
ag

es
)

N
o

te
: P

FS
 d

er
iv

ed
 fr

o
m

 R
A

N
O

32

Li
ao

 e
t a

l.20
Ye

s 
(s

ec
-

o
n

d
ar

y)
R

ad
io

m
ic

 M
R

I 
fe

at
u

re
s 

(T
2 

FL
A

IR
)

Ye
s

(R
ad

io
m

ic
s 

an
d

 
su

rv
iv

al
—

n
o

t 
im

m
u

n
e-

re
la

te
d

)

N
/A

Ye
s

(I
n

d
ir

ec
t:

 e
xp

re
ss

io
n

 
le

ve
ls

 o
f i

m
m

u
n

e-
re

la
te

d
 

g
en

es
 a

n
d

 r
ad

io
m

ic
s)

N
/A

U
si

n
g

 s
u

rv
iv

al
 d

at
a 

o
f p

at
ie

n
ts

 
to

 c
la

ss
if

y 
ra

d
io

m
ic

 fe
at

u
re

s 
-n

o
t i

m
m

u
n

e-
re

la
te

d

E
xp

re
ss

io
n

 le
ve

ls
 o

f t
h

e 
g

en
es

 id
en

ti
fi

ed
 

(a
ll 

im
m

u
n

e-
re

la
te

d
) d

is
ti

n
g

u
is

h
ed

 2
 s

u
r-

vi
va

l g
ro

u
p

s.
T

h
es

e 
im

m
u

n
e-

re
la

te
d

 g
en

e 
ex

p
re

ss
io

n
 

le
ve

ls
 w

er
e 

th
en

 c
o

m
p

ar
ed

 to
 r

ad
io

m
ic

s.

Ja
ja

m
ov

ic
h

 
et

 a
l.22

Ye
s

Q
u

an
ti

ta
ti

ve
 

M
R

I f
ea

tu
re

s 
(A

D
C

)

N
/A

N
/A

Ye
s

(t
u

m
o

r 
su

b
ty

p
e.

 Im
m

u
n

e-
re

la
te

d
 g

en
e 

ex
p

re
ss

io
n

 
si

g
n

at
u

re
 s

u
b

g
ro

u
p

)

N
/A

C
o

rr
el

at
io

n
 o

f A
D

C
 fe

at
u

re
s 

an
d

 (1
) t

u
m

o
r 

su
b

ty
p

e 
an

d
 (2

) 
im

m
u

n
e-

re
la

te
d

 g
en

e 
ex

p
re

s-
si

o
n

 s
ig

n
at

u
re

 s
u

b
g

ro
u

p

N
/A

Li
u

 e
t a

l.23
Ye

s
R

ad
io

m
ic

s 
M

R
I 

fe
at

u
re

s 
(T

2 
an

d
 

T
1 

C
E

)

Ye
s

(R
ad

io
m

ic
s 

an
d

 
su

rv
iv

al
)

N
/A

Ye
s

(I
m

m
u

n
e 

ce
ll 

in
fi

lt
ra

ti
o

n
 

sc
o

re
 a

n
d

 r
ad

io
m

ic
s)

N
/A

U
si

n
g

 r
ad

io
m

ic
 fe

at
u

re
s 

to
 

cl
as

si
fy

 p
at

ie
n

ts
 in

to
 g

ro
u

p
s 

w
it

h
 h

ig
h

 o
r 

lo
w

 im
m

u
n

e 
ce

ll 
in

fi
lt

ra
ti

o
n

 s
co

re
s

A
ss

es
sm

en
t o

f p
ro

g
n

o
si

s 
b

y 
(1

) c
o

rr
el

-
at

in
g

 im
m

u
n

e 
ce

ll 
in

fi
lt

ra
ti

o
n

 s
co

re
s 

w
it

h
 

su
rv

iv
al

 in
 2

 d
at

as
et

s,
 th

en
, (

2)
 c

o
rr

el
at

in
g

 
ra

d
io

m
ic

s 
w

it
h

 im
m

u
n

e 
ce

ll 
in

fi
lt

ra
ti

o
n

 
sc

o
re

s 
in

 a
 th

ir
d

 d
at

as
et

 (c
o

rr
el

at
io

n
 o

f 
im

m
u

n
e 

ce
ll 

in
fi

lt
ra

ti
o

n
 s

co
re

s 
an

d
 s

u
r-

vi
va

l e
n

d
u

re
d

),
 th

en
, a

n
d

 (3
) c

o
rr

el
at

in
g

 
ra

d
io

m
ic

s 
an

d
 s

u
rv

iv
al

 in
 fo

u
rt

h
 d

at
as

et

R
ao

 e
t a

l.24
Ye

s 
(s

ec
-

o
n

d
ar

y)
Q

u
an

ti
ta

ti
ve

 
an

d
 q

u
al

it
at

iv
e 

M
R

I f
ea

tu
re

s 
(V

A
S

A
R

I)

Ye
s

(M
R

I f
ea

tu
re

s 
an

d
 s

u
rv

iv
al

-n
o

t 
im

m
u

n
e-

re
la

te
d

)

N
/A

Ye
s

(E
xp

re
ss

io
n

 le
ve

l o
f 

im
m

u
n

e-
re

la
te

d
 g

en
es

 
an

d
 M

R
I f

ea
tu

re
s)

N
/A

U
si

n
g

 s
u

rv
iv

al
 d

at
a 

to
 c

la
ss

if
y 

ra
d

io
m

ic
 fe

at
u

re
 g

ro
u

p
s-

 n
o

t 
im

m
u

n
e-

re
la

te
d

E
xp

re
ss

io
n

 le
ve

l o
f g

en
es

 id
en

ti
fi

ed
 

(i
m

m
u

n
e-

re
la

te
d

 a
n

d
 n

o
n

-i
m

m
u

n
e-

re
la

te
d

) t
h

at
 d

is
ti

n
g

u
is

h
ed

 2
 r

ad
io

m
ic

 
fe

at
u

re
 g

ro
u

p

N
ar

an
g

 e
t 

al
.25

Ye
s

R
ad

io
m

ic
s 

M
R

I 
fe

at
u

re
s 

(T
1 

C
E

, 
T

2 
FL

A
IR

)

N
/A

N
/A

Ye
s

(G
en

e 
ex

p
re

ss
io

n
 le

ve
ls

 
re

la
te

d
 to

 C
D

3 
T

 c
el

ls
)

N
/A

C
o

rr
el

at
io

n
 o

f r
ad

io
m

ic
s 

fe
a-

tu
re

s 
w

it
h

 g
en

e 
ex

p
re

ss
io

n
 

si
g

n
at

u
re

 fo
r 

C
D

3 
T

 c
el

ls

N
/A

H
su

 e
t a

l.26
Ye

s
R

ad
io

m
ic

s 
M

R
I 

fe
at

u
re

s 
(T

1 
C

E
, 

A
D

C
)

Ye
s

(r
ad

io
-i

m
m

u
n

e 
p

at
ie

n
t g

ro
u

p
s 

an
d

 s
u

rv
iv

al
)

N
/A

Ye
s

(i
m

m
u

n
e 

g
en

e 
si

g
n

at
u

re
s 

an
d

 r
ad

io
m

ic
s)

N
/A

U
si

n
g

 r
ad

io
m

ic
 fe

at
u

re
s 

to
 

cl
as

si
fy

 p
at

ie
n

ts
 in

to
 g

ro
u

p
s 

w
it

h
 d

iff
er

en
t g

en
e 

ex
p

re
ss

io
n

 
im

m
u

n
e 

si
g

n
at

u
re

s

Pr
ed

ic
te

d
 im

m
u

n
o

p
h

en
o

ty
p

e 
p

at
ie

n
t 

g
ro

u
p

s 
w

it
h

 s
ig

n
ifi

ca
n

t d
iff

er
en

ce
s 

in
 m

e-
d

ia
n

 o
ve

ra
ll 

su
rv

iv
al

G
eo

rg
e 

et
 

al
.18

N
o

R
ad

io
m

ic
s 

fe
a-

tu
re

s 
(V

O
I s

tr
u

c-
tu

ra
l i

m
ag

es
)

Ye
s

(R
ad

io
m

ic
s 

an
d

 
su

rv
iv

al
)

N
/A

N
/A

N
/A

U
si

n
g

 s
u

rv
iv

al
 d

at
a 

o
f p

at
ie

n
ts

 
in

 im
m

u
n

o
th

er
ap

y 
cl

in
ic

al
 tr

ia
ls

 
to

 r
eg

re
ss

 r
ad

io
m

ic
 fe

at
u

re
s

N
/A

Q
in

 e
t a

l.21
N

o
Q

u
an

ti
ta

ti
ve

 
M

R
I f

ea
tu

re
s 

(I
A

D
C

 V
O

I)

N
/A

Ye
s

(l
o

n
g

it
u

d
in

al
 

ch
an

g
e 

in
 IA

D
C

 
V

O
I d

u
ri

n
g

 im
-

m
u

n
o

th
er

ap
y)

N
/A

Ye
s

(I
A

D
C

 V
O

I 
ch

an
g

e 
an

d
 

th
er

ap
eu

ti
c 

b
en

efi
t)

U
si

n
g

 s
u

rv
iv

al
 d

at
a 

o
f p

at
ie

n
ts

 
in

 im
m

u
n

o
th

er
ap

y 
cl

in
ic

al
 tr

ia
ls

 
to

 d
et

er
m

in
e 

fe
at

u
re

 c
h

an
g

e 
lo

n
g

itu
d

in
al

ly

(R
A

N
O

33
 b

u
t m

in
im

al
ly

 s
u

p
p

o
rt

iv
e)

VO
I, 

vo
lu

m
e 

of
 in

te
re

st
, N

/A
, n

ot
 a

pp
lic

ab
le

, A
DC

, a
pp

ar
en

t d
iff

us
io

n 
co

ef
fic

ie
nt

, I
AA

DC
 V

OI
, v

ol
um

e 
of

 in
te

re
st

 w
ith

 in
te

rm
ed

ia
te

 a
pp

ar
en

t d
iff

us
io

n 
co

ef
fic

ie
nt

, R
F:

 R
an

do
m

 F
or

es
t, 

GB
DT

: G
ra

di
en

t b
oo

m
 d

ec
is

io
n 

tre
e,

 S
VM

, s
up

po
rt 

ve
ct

or
 m

ac
hi

ne
, O

S,
 o

ve
ra

ll 
su

rv
iv

al
, P

FS
, p

ro
gr

es
si

on
-fr

ee
 s

ur
vi

va
l, 

VA
SA

RI
, V

is
ua

lly
 A

cc
eS

Ab
le

 R
em

br
an

dt
 Im

ag
e.

 



 12 Ghimire et al.: Radiogenomic biomarkers for immunotherapy in glioblastoma

Rao et al.28 used MRI VASARI features to dichotomize the 
data into 2 groups with corresponding scores according to 
the tumor volume class, T1/FLAIR ratio, and hemorrhage 
values. These radiomic groups were prognostic for sur-
vival and showed significant differences in gene expres-
sion levels within immune-related pathways (inducible 
co-stimulator (iCOS-iCOSL) signaling in T helper cells; ret-
inoid X receptor (RXR) activation; and phosphoinositide 
3-kinase (PI3K) signaling in B lymphocytes).

Narang et al.29 obtained 6 radiomic-based imaging fea-
tures (Gray-Level Size Zone Matrix, kurtosis, Neighborhood 
Gray Tone Difference Matrix) after feature selection tailored 
to gene expression levels of CD3 T cells using the Boruta al-
gorithm. Using dichotomized CD3 counts, they trained and 
tested the classifier using the 6 features. A multivariate re-
gression analysis demonstrated that the classifier was not 
confounded by clinical factors or tumor volume.

Hsu et al.30 identified radiomic-based imaging features 
related to T1 CE and ADC images (first order, gray-level run-
length matrix, gray-level co-occurrence matrix (GLCM)) 
that were able to classify clustering-derived immune cell 
subset patient groups based on immune profile combin-
ations (cytotoxic T lymphocytes (CTLs), activated dendritic 
cells (aDCs), T regulatory cells (Tregs), myeloid-derived 
suppressor cells) using logistic regression models. The fea-
tures were selected using random forest and information 
gain algorithms.

Radiological Imaging Biomarker Summary

Biomarkers extracted from MRI volumes of interest that 
correlated with various immune-related markers in pa-
tients with glioblastoma included ADC values, nCBV 
values, and image-based (VASARI, radiomics) features.

ADC biomarkers were negatively correlated with, 
firstly, CD3e and CD49d expression levels and, secondly, 
an immune-related gene signature (CD4, CD86, major 
histocompatibility complex class I and II) in respec-
tive studies.23,26 Similarly, nCBV biomarkers were pos-
itively correlated with expression levels of CD68, CSF1R, 
CD33 and CD4.23 Radiomic biomarkers (shape, first order, 
wavelet, and texture) were predictive of firstly, immune 
infiltration patterns/scores or CD3 expression levels in 
respective studies,27,29 or secondly survival, which was 
shown to be correlated with immune-related genes 
(TIMP1, repressor of silencing 1, EREG), immune cell in-
filtration scores or other immune signatures, in respec-
tive studies.24,27,30 Simpler radiomic biomarkers (tumor 
volume-class, T1/FLAIR ratio, and hemorrhage phenotype) 
were predictive of survival, which was shown to be correl-
ated with immune-related pathways (iCOS-iCOSL, RXR, 
and PI3K).28 Similarly, tumor volume was negatively correl-
ated with CD123, CD49d, and CD117.23 The immune-related 
genomic and corresponding radiological biomarkers iden-
tified in this review are summarized in Table 4.

Bias Assessment and Applicability Concerns

A qualitative analysis of the risk of bias and concerns re-
garding applicability was performed for each study and is 
summarized in Supplementary Figure S1. Six (6/9; 67%) 

studies had a high risk of index test bias. The risk of bias 
was high or unclear in 6/9 (67%) studies regarding pa-
tient selection and was unclear in 4/9 (44%) studies re-
garding the reference standard used. Concerns of study 
applicability were high regarding the index test in 6/9 
(67%) studies, high or unclear regarding patient selection 
in 7/9 (78%) studies, and unclear regarding the reference 
standard used in 5/9 (56%) studies.

Discussion

Summary of Findings

The systematic review demonstrated that radiological bio-
markers, namely ADC values, nCBV values, and radiomic 
features (VASARI, texture, shape, histogram, and wavelet) 
extracted from different MRI sequences, correlated with 
immune-related genetic markers and were developed as 
noninvasive radiogenomic biomarkers. Some studies used 
internal hold-out datasets for analytical biomarker valida-
tion21; however, none used external hold-out datasets to 
validate the trained biomarker. Some non-radiogenomic 
biomarkers (ie, without any correlation with immune-
related genetic markers) were developed to predict re-
sponse to immunotherapy. All reviewed studies are best 
considered as “proof of concept.”

Limitations

Studies Assessed
All studies employed retrospective designs. Limitations 
encompassed 6 main areas.

First, differences in the type of genomic data (single vs 
bulk RNA-sequencing data; microarray data, polymerase 
chain reaction or immunohistochemistry-based data) and 
their harmonization in each study confound pooled infer-
ences from the different studies (Supplementary Table S4).

Second, patients underwent MRI imaging in different 
centers where there were differences in scanner man-
ufacturer and local MRI sequence protocols. Different 
postprocessing steps were deployed in each study to tackle 
these differences but lack uniformity (Supplemental Table 
S5). It is plausible that there could be subsequent varia-
bility in the imaging features between centers confounding 
pooled inferences from the different studies.

Third, patient selection for the majority of studies was 
based on what had been included in public datasets (es-
pecially TCIA/TCGA) or small sets of local hospital data. 
Not only did the sample appear to be similar or the same 
in almost all studies (from TCIA/TCGA), but there was no 
clear and detailed explanation regarding the process of 
patient selection. For example, there was no clarity re-
garding patient selection being continuous or at random. 
Furthermore, other eligibility criteria varied amongst all 
the studies and again the details were unclear in the ma-
jority of studies. Confounded patient selection may mean 
that the study samples are not representative of the in-
tended population (“glioblastomas, isocitrate dehydro-
genase (IDH)-wild type” and “astrocytoma, IDH-mutant, 
grade 4”) which limits the generalizability of the results 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae055#supplementary-data
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to the clinic. It is noteworthy that even if generalizable to 
the pooled grade 4 gliomas, the biomarkers developed in 
the studies have not been optimized for IDH-wild-type gli-
oblastoma alone (as the datasets preceded the 2021 WHO 
classification).

Fourth, details regarding the reference standards used 
in the majority of studies were unclear and it would be 
challenging to reproduce them. Furthermore, tumor 

heterogeneity within the TME is likely to confound refer-
ence standards and may be a limitation in all the studies 
as the biopsy sample of the tumor, and subsequent tumor-
tissue genomic data, may not entirely represent the overall 
TME of the tumor.64,65 The majority of the studies23,24,26–28 
have not addressed other confounding variables such as 
age at diagnosis, resection status (biopsy, subtotal resec-
tion, total resection), postsurgical treatment (complete/

Table 4. Immune-Related Genomic Biomarkers With Corresponding Radiological Biomarkers Identified in the Review

Paper Immune-related genomic 
biomarker/s

Immune Function/ associated immune 
cells

Clin-
ical 
status

Radiological bio-
marker

Radiolog-
ical status

Cho et al.23 CD68, CSF1R, CD33, CD4, CD49d, 
CD11b, CD123, CD25, CD117

CD68,38 CSF1R38,39: TAMs
CD3340: myeloid-derived suppressor 
cells (MDSCs)
CD441–43: helper T cells, cytotoxic T cells
CD3e44,45: Helper T cells, cytotoxic T cells
CD49d46: myeloid cells
CD11b47: macrophages, neutrophils, NK 
cells, memory B cells, cytotoxic T cells
CD12348:dendritic cells
CD2549: T cells, B cells, NK cells, regula-
tory T cells
CD11750: hematopoietic stem and pro-
genitor cells, pro-B cells, pro-T cells

Estab-
lished

Quantitative MRI 
features
(ADC, nCBV, T2 
FLAIR)

Not es-
tablished

Liao et al.24 TIMP1, ROS1, EREG, and CHIT1 TIMP151: Dendritic cells, macrophage, 
neutrophils
ROS152: Under research
EREG53: Influence expression of PD-L1
CHIT154: macrophages

Not 
estab-
lished

Radiomic MRI fea-
tures
(T2 FLAIR)

Not es-
tablished

Jajamovich 
et al.26

CD4, CD86, MHC I, and MHC II CD4,41–43 CD86,55 MHC I,56,57 MHC 
II58,59: Dendritic cell maturation, TREM1 
signaling, communication between 
innate and adaptive immune cells, 
production of nitric oxide and reactive 
oxygen species in macrophages, com-
plement system

Estab-
lished

Quantitative MRI 
features (ADC)

Not es-
tablished

Liu et al.27 Immune cell infiltration score (low 
vs high)

N/A N/A Radiomic MRI fea-
tures
(T2, T1 CE)

Not es-
tablished

Rao et al.28 Immune-related pathways de-
rived from gene expression levels

N/A N/A Quantitative and 
qualitative MRI fea-
tures (VASARI; T1, 
T2, T1 CE, T2 FLAIR)

Not es-
tablished

Narang et 
al.29

 CD3 CD360: Helper T cells, cytotoxic T cells Estab-
lished

Radiomic MRI fea-
tures
(T1 CE, T2 FLAIR)

Not es-
tablished

Hsu et al.30 Enrichment-based Immune 
phenotypes based on cytotoxic 
T cells, activated dendritic cells, 
regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSCs)

N/A N/A Radiomic MRI fea-
tures
(T1 CE, ADC)

Not es-
tablished

George et 
al.22

Response to anti-PD-L1 immuno-
therapy

PD-L161,62: T cells Estab-
lished

Radiomic MRI fea-
tures
 (T1, T1 CE, T2 FLAIR)

Not es-
tablished

Qin et al.25 Response to Anti-PD-1 +/− CTLA-4 
immunotherapy

PD-1,61,62 CTLA-463: T cells Estab-
lished

Quantitative MRI 
features (ADC, T2 
FLAIR)

Not es-
tablished

VOI, volume of interest; CD, cluster of differentiation; TAMs, tumor-associated macrophages; MHC, major histocompatibility complex.
Regarding the clinical status of the immune markers, we define “established” and “not established” arbitrarily as being established as an immune 
cell surface markers and vice-versa; regarding radiological status, “established” and “not established” as the radiological markers are clinically 
used as a biomarker for immune status and not radiologically established marker for immune status respectively.
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incomplete Stupp protocol) and second-line treatment in-
cluding immunotherapy that are likely to influence the de-
velopment and validation of prognostic biomarkers.24,27,28 
Moreover, diagnostic biomarkers can also be confounded 
by the unique interaction between the central nervous 
system, immune system, and advanced age in patients 
with glioma.66 An example relevant to 2 of the included 
studies23,26 is that microglia express higher basal levels of 
MHCII and CD11b with age.67

Fifth, the variable index tests developed as radiogenomic 
biomarkers did not undergo rigorous analytical valida-
tion and none were clinically validated.21 Internal hold-out 
test sets were used effectively to validate prognostic bio-
markers after training in 2 studies24,28 and a diagnostic bi-
omarker in one study29 (none were temporal hold-out test 
sets). Overall, these findings limit the generalizability of 
the results to the clinic.

Sixth, most studies employed indirect methods for bi-
omarker development and validation. For example, an 
imaging biomarker might predict a gene expression sig-
nature; a separate dataset containing no imaging data 
might show that the same gene expression signature can 
predict survival. The separate dataset is not a hold test set 
for validating an imaging biomarker for either a gene ex-
pression signature or survival. The limitation is that such 
indirect methodology for imaging biomarker development 
shows there is some clinical relevance, but this is not an-
alytical validation.21 Most studies likely employed such 
methods as there are few datasets containing imaging 
data that is matched with gene expression (for diagnostic 
biomarkers) or survival (for prognostic biomarkers).

Review Process
Pooled diffuse glioma (WHO grades 2–4) studies were 
excluded from the review process as it was beyond the 
research question, but we acknowledge that the bio-
markers obtained in these studies might be of use in 
glioblastoma.68,69

Publication bias may have affected the range of perfor-
mance accuracy of the biomarkers included in this sys-
tematic review. The potential for publication bias may be 
heightened by the omission of preprints and materials that 
have not undergone peer review. This is particularly rele-
vant in the data science community, where the rapid pace 
of development often outstrips the slower process of peer 
review, leading some researchers to avoid submitting their 
work to peer-reviewed journals.17 The composition of the 
research team could therefore influence this bias. Teams 
with a stronger clinical focus might be more likely to seek 
publication in peer-reviewed journals, whereas those with 
a stronger emphasis on data science might not.

Study Explanations and Relevance From  
a National and International Perspective

The focus of most of these studies was on prognosis 
which may be of limited relevance to either identifying 
immune-related targets for immunotherapy; or for 
predicting therapeutic response to immunotherapy. 
Novel immunotherapeutic approaches are currently being 

explored for glioblastoma but the translational landscape 
from basic scientific evidence to efficacious clinical treat-
ment is still far behind other cancers.9,70–80 Two areas of 
research can be combined to help develop panels of bio-
markers which may be useful to stratify immunotherapy 
to treat particular tumors, and thereby contribute mean-
ingfully to translation. First, studies focusing on immune-
related genes and the immune tumor microenvironment 
(TME) in glioblastoma as well as melanoma, ovarian, lung, 
and colon cancers have demonstrated potential immuno-
therapy targets and therefore desirable prediction classes 
for radiogenomic analysis.9,35–37,64–66,72–76,81–85 Second, there 
is an expanding arsenal of techniques to extract features 
including radiomics and deep learning features that can be 
used to develop imaging biomarkers in glioblastoma,86–91 
and even a decade ago non-immune radiogenomic glio-
blastoma studies demonstrated considerable promise.92 It 
is plausible that these 2 advancements, alongside an ex-
panding number of new data repositories, may lead to the 
development of important biomarkers and allow transla-
tion to succeed—the review shows we are currently at a 
proof-of-concept stage.

Current Evidence in the Field

This is the first systematic review of immune-related 
radiogenomic biomarker studies for glioblastoma. One 
study that did not focus on glioblastoma patients but also 
included oligodendroglioma and astrocytoma patients, de-
veloped an immune TME radiomic signature.93 Here it was 
shown that the heterogeneity of the immune TME harbors 
prognostic impact. Other studies of interest have used 
different modalities. Nagle et al.94 demonstrated imaging 
biomarkers for labeled CD8 T cells using positron emis-
sion tomography (PET) imaging in glioblastoma mouse 
models and showed the ability to quantify CD8 T cells 
noninvasively. Similarly, various radiomic signatures asso-
ciated with CD8 T cells were identified in a systematic re-
view by Ramlee et al.95 related to various cancers including 
glioma (high and low-grade), gastrointestinal cancer, head 
and neck cancer, hepatobiliary cancer, lung cancer, breast 
cancer, and melanoma and their respective CD8 T-cell-
related radiomic signature obtained from imaging modal-
ities such as PET, CT, and MRI.

Large high-quality multicenter studies are pos-
sible and should be the standard to aim for in neuro-
oncology. In other oncology disciplines, this has been 
demonstrated. For example, Sun et al.96 developed and 
validated CT-derived radiomic biomarkers related to 
tumor-infiltrating CD8 T cells in patients included in phase 
I trials of anti-programmed cell death protein-1 (PD-1) or 
anti-programmed cell death ligand 1 (PD-L1) monotherapy 
for solid malignant tumors. Similarly, Trebeschi et al.97 de-
veloped CT-derived radiomic biomarkers for predicting 
response to immunotherapy in advanced melanoma 
and lung cancer patients. It is also noteworthy that plat-
forms such as ImaGene (https://github.com/skr1/Imagene) 
have demonstrated the potential for reproducibility of 
radiogenomic analysis with initial feasibility experiments 
analyzing invasive breast carcinoma, and head and neck 
squamous cell carcinoma.98

https://github.com/skr1/Imagene
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Implications for Future Research and Clinical 
Practice

The present review has revealed an absence of high-quality 
studies regarding immune-related radiogenomic markers 
in glioblastoma with concerns regarding bias and gener-
alizability. Future large, multicenter, prospective studies 
using radiomic or deep learning methods are required for 
the development and validation of pertinent biomarkers. It 
is plausible that features extracted from images of modal-
ities such as advanced MRI (including permeability, perfu-
sion, diffusion, chemical exchange saturation transfer), MR 
spectroscopic imaging, and PET might provide additional 
information on tumor biology and microenvironment. 
Future studies could also develop and validate biomarkers 
for either IDH-wild-type glioblastoma alone which likely 
has a unique immune TME (biomarkers for postbiopsy set-
tings at recurrence or during immunotherapy treatment),99 
or for lesions that are suspected to be glioblastoma (bio-
markers for prebiopsy and neo-adjuvant settings which 
might include enhancing lower grade gliomas and other 
mimics). Candidate biomarkers need to be clinically valid-
ated in the setting of prospective studies. Whether a clini-
cally validated biomarker demonstrates impact when used 
in conjunction with an intervention would require the bio-
marker to be integrated into immunotherapy clinical trials 
such as the CheckMate 143 study.10 Even if prospective bi-
omarker studies are clinically validated soon, for example, 
to provide a panel of diagnostic biomarkers ready for pa-
tient stratification in downstream research, the scarce level 
1 evidence for immunotherapy benefit currently means 
that biomarker studies demonstrating impact (ie, validated 
predictive biomarkers) when used in conjunction with an 
intervention, are unlikely to emerge soon.

Future studies might also use spatial transcriptomics or 
single-cell sequencing to better understand the role of im-
mune cells in disease progression and lead to the discovery 
of new classes for radiogenomic analysis. Ultimately, 
there is the potential to produce noninvasive imaging bio-
markers for neo-adjuvant immunotherapy stratification as 
part of personalized medicine within the next decade.
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