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Abstract
Introduction Diffuse hemispheric glioma, H3 G34-mutant (DHGs), is a newly categorized tumor in pediatric-type diffuse 
high-grade gliomas, World Health Organization grade 4, with a poor prognosis. Although prognostic factors associated with 
genetic abnormalities have been reported, few reports have examined the clinical presentation of DHGs, especially from the 
viewpoint of imaging findings. In this study, we investigated the relationship between clinical factors, including imaging 
findings, and prognosis in patients with DHGs.
Methods We searched Medline through the PubMed database using two search terms: “G34” and “glioma”, between 1 April 
2012 and 1 July 2023. We retrieved articles that described imaging findings and overall survival (OS), and added one DHG 
case from our institution. We defined midline invasion (MI) as invasion to the contralateral cerebrum, brainstem, corpus cal-
losum, thalamus, and basal ganglia on magnetic resonance imaging. The primary outcome was 12-month survival, estimated 
using Kaplan–Meier curves and logistic regression.
Results A total of 96 patients were included in this study. The median age was 22 years, and the proportion of male patients 
was 48.4%. Lesions were most frequently located in the frontal lobe (52.6%). MI was positive in 39.6% of all patients. 
The median OS was 14.4 months. Univariate logistic regression analysis revealed that OS was significantly worse in the 
MI-positive group compared with the MI-negative group. Multivariate logistic regression analysis revealed that MI was an 
independent prognostic factor in DHGs.
Conclusions In this study, MI-positive cases had a worse prognosis compared with MI-negative cases.
Previous presentations No portion of this study has been presented or published previously.
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Introduction

Diffuse hemispheric gliomas, H3 G34-mutant (DHGs), are 
a newly categorized tumor in pediatric-type diffuse high-
grade gliomas in the 2021 World Health Organization clas-
sification, with a poor prognosis [1, 2]. DHGs are caused by 
an amino acid substitution in the histone gene H3F3A (H3.3) 
in which glycine at position 34 is replaced by arginine or 
rarely valine (G34R/V) [3–5]. Recent studies have shown 
that the majority of DHGs have ATRX and TP53 alterations, 
and approximately half have PDGFRA abnormalities [6]. 
Additionally, most have MGMT promotor methylation [4, 
7]. These tumors are most commonly located in the cere-
bral hemispheres, particularly in the frontoparietal lobes [8]. 
Histologically, the majority present as high-grade gliomas, 
such as glioblastomas (GBMs) or anaplastic astrocytomas, 
while others present as primitive neuroectodermal tumors or 
low-grade gliomas, pathologically [6, 9–11].

Because DHGs are reported to occur in less than 1% of 
all gliomas, previous studies have involved small sample 
sizes. Thus, prognostic factors have not been well investi-
gated; however, the prognosis of DHGs is dismal. Recently, 
Crowell et al. performed a systematic review of 135 patients 
with DHGs, and univariate analysis showed that age and 
degree of resection were significantly associated with over-
all survival (OS) [6]. Other researchers showed that G34V-
mutant tumors had significantly worse OS compared with 
G34R-mutant tumors [12]. These studies evaluated the 
prognostic impact of clinical factors and genetic alterations, 
but the impact of radiographic features has not been well 
investigated. Only one report showed that ill-defined DHG 
margins were associated with a worse prognosis compared 
with well-defined margins [8]. Therefore, the purpose of the 
present study was to clarify the relationship between imag-
ing findings and prognosis in patients with DHGs.

Methods

This study was a non-registered individual participant data 
review. No protocol was prepared.

Patient cohort

We searched Medline through the PubMed database using 
two search terms, “G34” and “glioma”, between 1 April 
2012 and 1 July 2023. In the present cohort, two neuro-
surgeons independently conducted the search and selected 
the cases in August 2023. Among the identified studies, we 
excluded studies that did not report the tumor location or 
OS. Studies containing cases duplicated in different pub-
lished articles were also excluded. There were no restric-
tions on race or age (Fig. 1).

Additionally, after obtaining institutional review board 
approval (1608-026) from Okayama University Hospital, we 
retrospectively reviewed our medical records for cases. We 
performed immunohistochemistry for patients diagnosed as 
having glioma in our institute between January 2000 and 
May 2022 using rabbit monoclonal recombinant antibodies 
to histone H3.3 G34R or G34V (RevMAb BioSciences, San 
Francisco, CA, USA; 1:250 dilution for G34R and G34V).

Data extraction

Data were extracted from all available sources in the 
selected manuscripts and our medical records. Patient 
demographics and radiographic characteristics comprised 
age, sex, lesion location, and imaging findings (contrast 
enhancement, necrosis, cyst formation, apparent diffusion 
coefficient (ADC) value). Molecular findings, such as H3.3 
G34, MGMT, ATRX status and patient outcomes, and surgi-
cal details, were also collected.

Midline invasion (MI) was defined as positive if lesions 
involved the contralateral cerebrum, brainstem, corpus 

Fig. 1 Flowchart demonstrating 
the case selection process in this 
study. N: number of studies, n: 
number of cases
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callosum, thalamus, or basal ganglia on either non-con-
trast-enhanced or contrast-enhanced magnetic resonance 
imaging. To determine midline invasion, we reviewed only 
the initial upfront MRI to avoid post-treatment changes. 
Although ADC values would be valuable to differentiate 
edema from tumor infiltration, only 25 of 96 patients have 
the data of ADC values. Therefore we could not use the 
ADC value secondarily to determine the presence of hyper-
cellular tumor with midline invasion or edema crossing the 
midline.

Patients were followed from the date of the diagnosis 
until the date of death or the end of the study period, which-
ever occurred first. In the present study, patients who were 
alive at the end of the study were censored only because no 
patients were lost to follow-up. The primary outcome was 
defined as OS at 12 months.

Statistical analysis

Continuous variables were expressed as median (interquar-
tile range), and categorical variables were expressed as n 
(%). We used a t-test to compare the continuous variables 
of two samples and used the chi-square test to compare cat-
egorical variables. Survival probabilities were estimated 
using the Kaplan–Meier method, and the log-rank test was 
used to compare the survival distributions between groups, 
as follows: age (≤ 19 years, 20–29 years, and ≥ 30 years), 
sex, laterality (right, left, bilateral), MI (positive, negative), 
G34 status (G34R-positive, G34V-positive), MGMT pro-
moter status (unmethylated, methylated), contrast enhance-
ment (positive, negative), and extent of resection (biopsy, 
subtotal resection, gross total resection (GTR)). Addition-
ally, using a logistic regression model, we calculated odds 
ratios (ORs) and 95% confidence intervals (CIs) for each 
item using 12-month survival as the outcome. The variables 
in the multivariate logistic regression model comprised age, 
sex, MI, and G34 status on the basis of clinical knowledge 
and previous reports [12]. Extent of resection was excluded 
owing to its strong correlation with MI (multicollinearity). 
p < 0.05 was considered statistically significant, and all 
analyses were performed using GraphPad Prism (version 
9.00 for Windows; GraphPad Software, La Jolla, CA, USA).

Results

Of the 67 identified studies, 95 cases in 14 articles [7, 8, 
13–24] met the inclusion criteria of reporting the tumor 
location and OS. Additionally, we included one patient from 
our institute whose diagnosis was confirmed by both immu-
nohistochemistry and genome-wide DNA methylation pro-
filing (Table 1; Fig. 2, Supplementary Fig. 1). The patients’ 

demographic data are summarized in Table 1. Forty-three 
of the 96 patients (44.8%) were male, and the median age 
was 22 years (whole range, 8–66 years) (interquartile range, 
18–29), which was older than previous reports [6]. The data 
except for age, sex, and MI included missing data (Table 1). 
The neurological findings were shown in supplementary 
Table 1.

Radiographic findings

An ipsilateral lesion was observed in 81.5% (44/54) of the 
patients, and the left hemisphere was slightly dominant 
(27/54 cases, 50.0%). Bilateral lesions were observed in 
18.5% (10/54) of the patients. Consistent with previous 
reports [6, 18], tumors were located most often in the frontal 
lobe (50/95cases, 52.6%). Contrast enhancement was seen 
in 62.3% (48/77) of the patients, necrosis in 30.6% (11/36), 
and cyst formation in 48.5% (16/33). A low ADC value was 
observed in 96.0% (24/25) of the cases. MI was observed 
in 39.6% (38/96) of the cases, namely 18 in the corpus cal-
losum, 13 in the basal ganglia, 10 in the contralateral cere-
brum, 10 in the thalamus, and 4 in the brainstem (some 
patients had lesions in more than one location).

Genetic alterations

Regarding the missense mutation in the H3-3 A gene, 
p.G34R was observed in 88.6% (70/79) of the cases, 
whereas p.G34V was observed in 11.4% (9/79). Addition-
ally, 97.3% (36/37) of the cases had alterations in the ATRX 
gene. MGMT promoter methylation was identified in 89.1% 
(57/64) of the cases.

Outcomes

Of the 83 patients who underwent surgery, biopsy results 
were reported in 25.3% (21/83) of the cases; subtotal resec-
tion results were reported in 32.5% (27/83), and GTR results 
were reported in 42.2% (35/83) (Table 1). The median OS 
of all cases was 14.4 months, and the 12- and 24-month sur-
vival rates were 68.1% and 42.0%, respectively.

MI predicts the prognosis of DHGs, H3 G34-mutant

Figure 3 shows the OS curves for each clinical, radiographic, 
and genetic feature. In the univariate analysis, compared 
with the MI-negative group, OS was significantly shorter in 
the MI-positive group (p = 0.0135) and significantly longer 
in the GTR-achieved vs. other two group (p < 0.0001).

Univariate logistic regression analysis with 12-month OS 
as the outcome showed that the MI-positive group had a 
significantly higher mortality than that in the MI-negative 
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Variable Overall (n = 96) Death(−) (n = 57) Death(+) (n = 26) P value
Age
 Median age at diagnosis [year, IQR] 22 [18–29] 21[15–29] 22.5[19–27] 0.392
Sex
 Male 43 (44.8%) 23 (40.4%) 12 (46.2%) 0.64
Female
Laterality
 Right 17 (31.5%) 11 (32.4%) 4 (30.8%) 1
 Left 27 (50.0%) 18 (52.9%) 5 (38.5%) 0.517
 Bilateral 10 (18.5%) 5 (14.7%) 4 (30.8%) 0.237
 Number of patients with missing data 42 23 13
Location
 Frontal lobe 50 (52.6%) 27 (48.2%) 15 (57.7%) 0.482
 Parietal lobe 38 (40.0%) 21 (37.5%) 10 (38.5%) 1
 Temporal lobe 30 (31.6%) 17 (30.4%) 9 (34.6%) 0.8
 Occipital lobe 14 (14.7%) 9 (16.1%) 3 (11.5%) 0.744
 Corpus callosum 18 (18.9%) 7 (12.5%) 8 (30.8%) 0.066
 Basal ganglia 13 (13.7%) 6 (10.7%) 6 (23.1%) 0.182
 Thalamus 10 (10.5%) 4 (7.1%) 4 (15.4%) 0.256
 Insular cortex 11 (11.6%) 7 (12.5%) 3 (11.5%) 1
 Brain stem 4 (4.2%) 2 (3.6%) 2 (7.7%) 0.588
 Cerebellum 2 (2.1%) 1 (1.8%) 1 (3.8%) 0.536
 Number of patients with missing data 1 1 0
Midline invasion
 Positive 38 (39.6%) 16 (28.1%) 16 (61.5%) 0.007
 Negative
Extent of resection
 Gross total resection 35 (42.2%) 25 (49.0%) 3 (13.6%) 0.004
 Subtotal resection 27 (32.5%) 17 (33.3%) 10 (45.5%) 0.429
 Biopsy 21 (25.3%) 9 (17.6%) 9 (40.9%) 0.039
 Number of patients with missing data 13 6 4
Contrast enhancement
 Yes 48 (62.3%) 28 (70.0%) 12 (52.2%) 0.183
 No 29 (37.7%) 12 (30.0%) 11 (47.8%)
 Number of patients with missing data 19 17 3
Necrosis
 Yes 11 (30.6%) 8 (42.1%) 1 (8.3%) 0.101
 No 25 (69.4%) 11 (57.9%) 11 (91.7%)
 Number of patients with missing data 60 38 14
Cyst formation
 Yes 16 (48.5%) 11 (57.9%) 4 (33.3%) 0.273
 No 17 (51.5%) 8 (42.1%) 8 (66.7%)
 Number of patients with missing data 63 38 14
ADC hypointensity
 Yes 24 (96.0%) 13 (92.9%) 8 (100%) 1
 No 1 (4.0%) 1 (7.1%) 0 (0%)
 Number of patients with missing data 71 43 18
H3F3A alteration
 G34 R 70 (88.6%) 43 (91.5%) 14 (73.7%) 0.106
 G34 V 9 (11.4%) 4 (8.5%) 5 (26.3%)
 Number of patients with missing data 17 10 7
MGMTpromoter methylation
 Yes 57 (89.1%) 32 (88.9%) 15 (88.2%) 1
 No 7 (10.9%) 4 (11.1%) 2 (11.8%)
 Number of patients with missing data 32 21 9
ATRXalteration

Table 1 Clinical characteristics of the patients on the basis of 12-month overall survival
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Fig. 2 Summary of the clinical, radiographic, and genetic features in patients with diffuse hemispheric gliomas, H3 G34-mutant cases. ADC: 
apparent diffusion coefficient

 

Variable Overall (n = 96) Death(−) (n = 57) Death(+) (n = 26) P value
 Yes 36 (97.3%) 22 (95.7%) 10 (100%) 1
 No 1 (2.7%) 1 (4.3%) 0 (0%)
 Number of patients with missing data 59 34 16
Patient survival
 Median overall survival [months, IQR] 14.4 [8.2–22.5] 20 [15–31.0] 7.5 [6–10.8] < 0.001
ADC: apparent diffusion coefficient, IQR: interquartile range

Table 1 (continued) 
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Fig. 3 Kaplan–Meier survival 
curve demonstrating overall 
survival. Overall survival was 
evaluated with (A) age, (B) sex, 
(C) laterality, (D) midline inva-
sion (MI), (E) genetic alteration 
in H3F3A, (F) methylation status 
of the MGMTMGMT promoter, 
(G) contrast enhancement (CE), 
and (H) extent of resection at the 
primary surgery. STR: subto-
tal resection, GTR: gross total 
resection
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Discussion

DHGs were a newly defined tumor entity in the World Health 
Organization classification 5th edition, and were reported 
to occur in less than 1% of all gliomas [1]. Yoshimoto et 
al. reported that in their analysis of 411 gliomas, 4 tumors 
had G34R mutations [13]. In contrast, more than 30% of 
high-grade gliomas in adolescents and young adults harbor 
heterozygous mutations in the non-canonical H3.3 vari-
ant, resulting in glycine 34 to arginine or valine (G34R/V) 
amino acid substitution [25]. DHGs exhibit primitive neu-
roectodermal tumor-like or GBM-like histology and almost 
invariably carry ATRX and TP53 mutations, and lack immu-
noreactivity for OLIG2 [18]. Additionally, DHGs frequently 
exhibit MGMT promoter methylation and lack TERT pro-
moter mutations [18].

Although DHGs were first reported in 2012, precise treat-
ment and prognostic factors have not been well elucidated 
[3, 4]. Regarding treatment, a systematic review showed 
that most cases underwent upfront surgical resection; how-
ever, GTR was achieved in less than 50% of the cases [6]. 
Radiotherapy and chemotherapy have also been used as ini-
tial treatment, but the details have not been well described. 
Of the 31 patients in this study with detailed chemotherapy 
regimen information, 20 (64%) received temozolomide-
based therapy [6]. Although the significance of MGMT 
promoter methylation in DHGs has not been investigated, 
Crowell et al. showed that patients harboring MGMT pro-
moter methylation showed superior survival [6]. Vuong et 
al. reported that PDGFRA and EGFR amplification had a 
negative prognostic impact, with the G34V genotype having 
a worse prognosis than that for G34R [12]. In their review, 
methylation of the MGMT promoter was also observed in 
most DHGs. Furthermore, G34V-positive DHGs tended to 
have a worse prognosis than G34R-positive DHGs.

In this study, we investigated the radiographic and genetic 
factors related to prognosis in patients with DHGs. To the 
best of our knowledge, this is the largest study to have ana-
lyzed the radiographic features of DHGs. Korshunov et al. 
investigated 81 patients with DHGs and reported that 80% 
of the tumors were located in the temporal and parietal lobes 
[26]. In our study, the most common tumor location was the 
frontal lobe, but many tumors also invaded the parietal and 
temporal lobes. Additionally, DHGs were characterized by 
slight gadolinium contrast enhancement, peritumoral edema 
on T2-weighted/fluid-attenuated inversion recovery imag-
ing, and hyperintensity on diffusion-weighted imaging or a 
low ADC value [16]. In the present study, 94% of the cases 
had a low ADC value, which can be a characteristic imag-
ing finding. According to Ohnishi et al., diffusion-weighted 
imaging hyperintensity and a low ADC value may be asso-
ciated with high cellularity in DHGs [16].

group (OR = 4.48, 95% CI = 1.70–12.4; p < 0.01), and the 
GTR-achieved group had a significantly lower mortal-
ity than that in the group that underwent biopsy alone 
(OR = 0.14, 95% CI = 0.03–0.57; p = 0.01) (Table 2).

Furthermore, multivariate logistic regression was per-
formed to examine the association of MI with 12-month 
OS as the outcome. Compared with the MI-negative group, 
the MI-positive group had significantly higher mortality 
after 12 months (OR = 3.60, 95% CI = 1.20–11.5; p = 0.02) 
(Table 3).

Table 2 Univariate analysis of 12-month overall survival
Characteristic Odds ratio (95% CI) P value
Age 1.02 (0.98–1.07) 0.32
Sex
 Female Ref.
 Male 1.27 (0.49–3.24) 0.62
Midline Invasion
 Negative Ref.
 Positive 4.48 (1.70–12.4) < 0.01
Laterality
 Left Ref.
 Right 1.31 (0.27–6.03) 0.73
 Bilateral 2.88 (0.54–15.6) 0.21
G34 status
 G34R Ref.
 G34V 1.00 (0.19–4.27) > 0.99
MGMT promoter methylation
 unmethylated Ref.
 methylated 0.94 (0.16–7.30) 0.94
Contrast enhancement
 Negative Ref.
 Positive 0.53 (0.18–1.50) 0.23
Extent of resection
 Biopsy Ref.
 Subtotal resection 0.65 (0.20–2.16) 0.48
 Gross total resection 0.14 (0.03–0.57) 0.01
CI: confidence interval

Table 3 Multivariate analysis of 12-month overall survival
Characteristic Odds ratio (95% CI) P value
Age 1.02 (0.97–1.08) 0.39
Sex
 Female Ref.
 Male 1.20 (0.37–3.89) 0.76
Midline Invasion
 Negative Ref.
 Positive 3.60 (1.20–11.5) 0.02
G34 status
 G34R Ref.
 G34V 0.63 (0.10–3.20) 0.6
CI: confidence interval
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methods and surgical strategies varied between institutions. 
Future large-scale studies are needed.

Conclusions

Similar to GBMs, DHGs have a poor prognosis if they invade 
deep structures or the contralateral cerebrum; however, safe 
and maximal tumor resection may prolong survival.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s11060-
024-04587-5.
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