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Abstract: Magnetic hyperthermia therapy (MHT) is a re-emerging treatment modality for brain
tumors where magnetic nanoparticles (MNPs) are locally delivered to the brain and then activated
with an external alternating magnetic field (AMF) to generate localized heat at a site of interest. Due
to the recent advancements in technology and theory surrounding the intervention, clinical and
pre-clinical trials have demonstrated that MHT may enhance the effectiveness of chemotherapy and
radiation therapy (RT) for the treatment of brain tumors. The future clinical success of MHT relies
heavily on designing MNPs optimized for both heating and imaging, developing reliable methods for
the local delivery of MNPs, and designing AMF systems with integrated magnetic particle imaging
(MPI) for use in humans. However, despite the progression of technological development, the
clinical progress of MHT has been underwhelming. This review aims to summarize the current
state-of-the-art of MHT and offers insight into the current barriers and potential solutions for moving
MHT forward.

Keywords: MHT: Magnetic Hyperthermia Therapy; glioma; HGG = High Grade Glioma; hyperthermia;
MNP = Magnetic Nanoparticle

1. Introduction

High-grade glioma (HGG), the most prevalent primary brain malignancy, presents a
formidable challenge due to its resistance to standard treatment regimens, namely, max-
imal safe resection supplemented by adjuvant temozolomide (TMZ) chemotherapy and
fractionated radiotherapy (RT) [1,2]. The infiltrative nature of HGG prevents complete
resection, and the presence of resistant tumor cells within the surrounding healthy brain
is a major driver of recurrence [3,4]. In over 80% of cases, HGG recurs locally, typically
within two centimeters of the resection cavity [4]. This local recurrence underscores the
potential of therapies that target the affected area directly. Given the dire statistics—a
median survival of 15 months and below a 5% five-year survival rate [2,5]—more effective
treatment approaches are desperately needed.

Magnetic hyperthermia therapy (MHT) is a re-emerging treatment approach for HGGs
consisting of local heat generation in the tumor region through the direct delivery of
magnetic nanoparticles (MNPs), which are activated by exposure to an external alternating
magnetic field (AMF) [6–10]. The major advantages of MHT are its ability to focus heating
on a small volume of a tumor without damaging surrounding tissue and its lack of ionizing
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radiation. Magnetic hyperthermia therapy leverages the unique cellular responses to
heat, as the 42–45 ◦C hyperthermia it induces selectively causes tumor cell death while
preserving healthy cells. This effect is facilitated by the hyperthermic environment in the
tumor, which activates heat shock proteins and stimulates a strong immune cell response,
enhancing the antitumor effect [11,12].

Although MHT is not yet a standard treatment for HGGs, its potential integration
into existing treatment protocols is promising, especially as an adjunct therapy. This
review explores key aspects of MHT imaging and treatment through the lens of a proposed
treatment workflow [13]. Additionally, we address the challenges in transitioning MHT
to clinical use and the ongoing efforts to resolve these issues. Our goal is to provide a
comprehensive overview of the latest advancements in MHT, aiming to stimulate the
further development and integration of this emerging technology into clinical practice for
the safe and effective treatment of HGGs.

2. MHT Workflow

The workflow used to guide this review was proposed by Healy et al. [13]. This
workflow involves both a clinician and a medical physicist working in concert to (1) obtain
imaging (CT, MRI) to direct initial treatment planning (tumor margin, anatomy for NP
delivery), (2) select optimal nanoparticles for treatment, (3) deliver chosen nanoparticles,
(4) obtain post-procedural imaging (MPI) to ensure proper implantation, and (5) implement
MHT using AMF (Figure 1). This review will focus on steps seeing the most innovation:
nanoparticle selection and delivery, MPI imaging, and AMF treatment.
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2.1. Nanoparticles

MHT efficacy relies heavily upon designing MNP constructs capable of generating
a significant thermal dose at non-toxic concentrations. The thermal dose is dependent
on the temperature achieved within the lesion of interest and the time for which that
temperature is sustained [14]. Specifically, the thermal dose is calculated based on the
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maximum temperature achieved across 90% of the lesion (T90). Antitumor effects have
been well described when the T90 is between 40 and 45 ◦C (mild hyperthermia) and >50 ◦C
(thermal ablation) [15]. MHT for HGG aims to heat tissues within the lower range, between
42 and 45 ◦C [16].

MNPs’ heating capacity derives from their magnetic properties, which are influenced
by the composition, size, density, and shape [17] an overview of MNP properties is shown
in Table 1. Specifically, MNPs are superparamagnetic, meaning that the torque of the AMF
acts upon the coupled electron spins of the ferromagnetic nanoparticles. This leads to MNPs
having a much higher susceptibility and therefore a higher heating efficiency [18]. MNP
heating efficiency is often described in specific loss power (SLP), defined as the measured
thermal loss normalized to the mass or volume of magnetic material [19,20]. However, SLP
can be context-dependent and therefore inconsistently measured at different frequencies [21].
Although, according to Rosenweig’s model, at low frequencies (105–106 Hz) such as those
used in MHT, the out-of-phase component of susceptibility can be held constant [22],
allowing for the utilization of the parameter intrinsic loss power (ILP). ILP provides a
system-independent measurement parameter to measure MNP heating efficiency. To date,
the most common materials used for MNP synthesis include pure metals (e.g., iron, cobalt,
nickel), alloys (e.g., FeCo, alnico), and oxides (e.g., Fe3O4, g-Fe2O3, CoFe2O4). Magnetic iron
oxide nanoparticles (MIONPs) are used most often in treating glioma due to their superior
biocompatibility, established heating profile, and relatively low production cost [23]. With
regard to MNP design for MHT specifically, substantial research has been dedicated to
optimizing the heating efficiency in terms of MNP size, with the most common and effective
MNPs reported to have a diameter between 10 and 20 nm [24–27]. Other groups have
studied the efficacy of various shapes and arrangements of MNPs, showing that both
cubic [27] and chain-like arrangements of MNPs [28] heated more effectively compared to
spherical and randomly arranged MNPs, respectively. An additional finding was that an
MNP suspension solution’s viscosity also impacts heating, with a higher viscosity resulting
in decreased SLP [28].

Another important consideration for MNP optimization is ensuring they do not
aggregate and precipitate once introduced. To achieve this, MNPs are often conjugated
with various compounds and polymers, such as polyethylene glycol (PEG) and chitosan, to
increase their chemical stability and solubility [29–31]. Numerous other surface coatings
have also been applied for similar reasons [32–36]. Carbon-coated MNPs, in particular,
have attracted significant attention due to their improved thermal stability compared to
uncoated counterparts [37]. Silica is also frequently used, due to its biocompatibility and
ability to limit MNP aggregation [38–40]. However, it has been shown that interactions
between silica and the MNP surface may result in a reduction in saturation magnetization
by 32%, thus decreasing heating efficiency [41]. This effect may be variable, as others
have recently demonstrated that silica coating may reduce saturation magnetization by as
low as 8% and may even result in an increase of as much as 14% [42]. Similarly, organic
compounds such as PEG, which are used to reduce non-specific interactions between MNPs
and proteins, may affect MNP geometry and therefore their magnetic properties [43,44].
These two examples highlight the complexity of MNP design and the trade-offs between
biological stability and magnetic properties that must occur to synthesize stable, non-toxic,
and effective MNPs.

Lastly, it is important to address the growing biomedical application of multi-core
MNP systems. Thus far, our discussion has focused on single-core systems in which each
nanoparticle is composed of a single magnetic core. In contrast, multi-core systems fix
multiple magnetic cores together within a single matrix, allowing for additional intra- and
inter-particle magnetic dipolar interactions [45]. Numerous studies have found that these
multi-core systems exhibit superior heating for magnetic hyperthermia [46–48]. Unsurpris-
ingly, the process for synthesizing these multi-core MNPs is complex and depends on the
precise control of numerous parameters ranging from temperature and stirring conditions
to reagent and surfactant concentrations [49]. As a result, batch-to-batch reproducibility
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and the up-scaling of production is a major challenge. A significant amount of research is
devoted to refining multi-core MNP synthesis methods [49].

Table 1. Magnetic nanoparticles implemented in MHT. Qualitative and quantitative descriptions of
their shape, size, composition, and administration. MNPs studied in clinical and preclinical studies
with experimental findings.

MNP Type MNP Shape
Illustration

MNP Types Used in
Glioma MHT Studies

Characteristic
MNP Size Study Type Composition and

Administration
Experimental

Results

Iron Oxide
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2.2. MPI

Beyond their ability to serve as therapeutic heating agents, MNPs can serve as diagnos-
tic agents as well. MNPs have been used as MRI contrast agents due to their exceptionally
high relaxivity [58,59]. However, at the high MNP concentrations required for MHT, MRI is
not possible due to signal saturation, which results in a “black hole” susceptibility artifact
on MRI that obscures all relevant anatomy [13]. This problem could be addressed by
magnetic particle imaging (MPI), an emerging tomographic technique that may enable
the real-time 3D imaging of MNPs at high therapeutic concentrations [60–62]. Briefly,
MPI systems operate by generating strong magnetic field gradients that contain a specific
area of low field strength, known as the field-free region (FFR). Rapidly passing the FFR
over MNPs causes their magnetization to flip, creating a detectable signal. Importantly,
biological tissue does not produce a significant signal in response to the low-amplitude
magnetic fields used in MPI, giving the MNPs ideal contrast independent of their depth
within the tissue [63]. However, this also means that MPI is unable to visualize underlying
tissue anatomy, necessitating anatomic coregistration with a CT scan or MRI. The unique
benefits of MPI include improved imaging signal-to-noise ratios, high spatial and temporal
resolutions, the linear quantification of the number of MIONPs regardless of the tissue
depth, and the ability to image MNPs at concentrations typically used for MHT (50–100 mg
of Fe per g of tissue) [62].

With regard to MHT, preliminary studies have used MPI for image-guided MHT
in vivo [64] and have even designed dual MPI–MHT systems [65]. One current limitation of
MHT is that it is not possible to focus the high-frequency fields needed for MHT (>300 kHz)
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to specific regions of the body, thus posing the risk of the off-target heating of MIONPs
that may have unintentionally migrated elsewhere in the body, such as the liver. However,
one group demonstrated that by employing an MPI gradient field, they were able to
achieve highly localized heating to a region just a few millimeters in size, preventing the
heating of MNPs outside of the FFR [64,65]. The underlying physics of MPI can further
be applied to enable real-time, noninvasive magnetic nanothermometry (MNT) during
MHT. To understand this first requires understanding that the magnetization vector of
MNPs changes when they are exposed to an AMF and upon the subsequent removal of
that AMF signal. The timing of these changes in the MNP magnetization state is influenced
by the temperature of the sample. Therefore, it is thought that by comparing the timing
differences of changes in MNP magnetization against the time scale of the MPI device, the
temperature of the sample can be estimated [13]. In 2023, one group designed a prototype
of such a system, with promising preliminary data showing the ability for combined MHT–
MNT–MPI in situ [66]. This is a significant advancement, as previous clinical trials studying
MHT in the brain have relied on the insertion of invasive intracranial thermal probes for
thermometry, effectively negating a key advantage of MHT—its non-invasiveness.

To date, MPI has shown great promise in clinical applications ranging from angiog-
raphy to cancer theranostics and molecular imaging [67,68]. Recently, there has been a
significant effort to develop MNPs optimized for MPI [69,70]. Superparamagnetic iron
oxide nanoparticles (SPIONs) are the most effective agents for MPI, since their superparam-
agnetism enables high-order harmonics of excitation frequencies required for MPI [71]. The
current challenge remains customizing MNPs with properties that enable both effective
hyperthermia and MPI in vivo. Additionally, the upscaling of MPI systems for human use
is needed, although this is being actively pursued [67,71].

2.3. Nanoparticle Delivery

The blood–brain barrier (BBB) is an important consideration for intracranial MHT, as
it limits the efficacy of systemic MNP delivery [72]. Intracranial lesions must therefore be
accessed directly through local delivery [69] by way of: direct intracavitary implantation
following surgical resection, convection-enhanced delivery (CED) using a stereotactically
placed catheter, or direct stereotactic injection (Figure 2). The underlying principle is a
balance between maximizing intratumoral MNP delivery while minimizing reflux and
undesired off-site toxicities [69,70]. Reflux is the retrograde flow of fluid back up the
catheter or cannula’ this can lead to MNPs localizing in healthy tissue and causing damage
when heated [73]. A further consideration in the delivery of MNPs is to preferentially
choose minimally invasive techniques or those that can already fit within the workflow of
another vital intervention.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 6 of 18 
 

 

2.3. Nanoparticle Delivery 

The blood–brain barrier (BBB) is an important consideration for intracranial MHT, as 

it limits the efficacy of systemic MNP delivery [72]. Intracranial lesions must therefore be 

accessed directly through local delivery [69] by way of: direct intracavitary implantation 

following surgical resection, convection-enhanced delivery (CED) using a stereotactically 

placed catheter, or direct stereotactic injection (Figure 2). The underlying principle is a 

balance between maximizing intratumoral MNP delivery while minimizing reflux and 

undesired off-site toxicities [69,70]. Reflux is the retrograde flow of fluid back up the cath-

eter or cannula’ this can lead to MNPs localizing in healthy tissue and causing damage 

when heated [73]. A further consideration in the delivery of MNPs is to preferentially 

choose minimally invasive techniques or those that can already fit within the workflow of 

another vital intervention. 

 

Figure 2. Schematic representation of various MNP delivery methods: (A) CED delivery, (B) Direct 

implantation, (C) Stereotactic injection. 

Direct implantation is a modality that completely avoids the risk of reflux and allows 

for direct visualization as the resection cavity is still open and MNPs are pasted directly 

within [74]. Once the resection is complete, the surgeon will “paste” a viscous solution of 

MNPs on the wall of the resection cavity either by directly applying the solution [74] or 

by utilizing hydroxycellulose mesh and fibrin glue to layer the MNPs and provide en-

hanced stability [75]. Residual tumor cells then take up the MNPs, most often via the clath-

rin- and caveolae-mediated endocytosis pathways [74,76,77]. This modality has already 

been studied in two human trials [74,75]. This can be an invasive approach; however, if it 

fits into the workflow of the resection, then there is no excess trauma being done to the 

patient. With all of the risks and benefits considered, direct implantation is an ideal adju-

vant modality for treating primary HGGs, where maximum possible resection is the pri-

mary standard-of-care treatment [78]. However, given recent data suggesting that reoper-

ation does not necessarily provide an improved EOR [79], resection may not be the most 

effective intervention for patients with rHGG [78]. This eliminates the opportunity to de-

liver nanoparticles via direct implantation, and a different technique is needed for these 

patients. 

Direct stereotactic injection is the most minimally invasive choice; only a small can-

nula is stereotactically inserted into the lesion, often without a preceding debulking pro-

cedure [80]. In the two human studies performed using this technique [50,80], the cannula 

was placed stereotactically multiple times within the lesion, dispensing small volumes of 

MNPs throughout the lesion. The authors delivered 0.4–1.4 mL of NPs over a 30–40 s in-

terval 8–10 mm apart; the slow delivery and small volumes are tactics for minimizing fluid 

Figure 2. Schematic representation of various MNP delivery methods: (A) CED delivery, (B) Direct
implantation, (C) Stereotactic injection.



Pharmaceuticals 2024, 17, 300 6 of 17

Direct implantation is a modality that completely avoids the risk of reflux and allows
for direct visualization as the resection cavity is still open and MNPs are pasted directly
within [74]. Once the resection is complete, the surgeon will “paste” a viscous solution of
MNPs on the wall of the resection cavity either by directly applying the solution [74] or by
utilizing hydroxycellulose mesh and fibrin glue to layer the MNPs and provide enhanced
stability [75]. Residual tumor cells then take up the MNPs, most often via the clathrin-
and caveolae-mediated endocytosis pathways [74,76,77]. This modality has already been
studied in two human trials [74,75]. This can be an invasive approach; however, if it fits into
the workflow of the resection, then there is no excess trauma being done to the patient. With
all of the risks and benefits considered, direct implantation is an ideal adjuvant modality for
treating primary HGGs, where maximum possible resection is the primary standard-of-care
treatment [78]. However, given recent data suggesting that reoperation does not necessarily
provide an improved EOR [79], resection may not be the most effective intervention for
patients with rHGG [78]. This eliminates the opportunity to deliver nanoparticles via direct
implantation, and a different technique is needed for these patients.

Direct stereotactic injection is the most minimally invasive choice; only a small can-
nula is stereotactically inserted into the lesion, often without a preceding debulking proce-
dure [80]. In the two human studies performed using this technique [50,80], the cannula
was placed stereotactically multiple times within the lesion, dispensing small volumes
of MNPs throughout the lesion. The authors delivered 0.4–1.4 mL of NPs over a 30–40 s
interval 8–10 mm apart; the slow delivery and small volumes are tactics for minimizing
fluid flow to prevent reflux along the cannula [80]. Stereotactic injection provides an option
for rHGG in that it does not require a preceding resection and it is minimally invasive.
However, the tactic required to minimize reflux (small volume and slow infusions) is a
limiting factor in the efficacy of this technique. Direct injection is a viable option, but the
ideal modality would allow for higher-volume infusions at an increased rate.

CED infusion is currently the most effective technique for the infusion of MNPs in
patients lacking a preceding resection. The modality utilizes a burr hole with the stereotactic
insertion of one or more catheters into the target lesion. An infusion pump then generates
a pressure gradient at the catheter tip, infusing MNPs directly into the brain [81]. This
form of infusion relies on bulk flow rather than diffusion to displace extracellular fluid
and prevent reflux. CED mitigates the need for small-volume, slow infusions that are
common with stereotactic injection [82]. CED is the most common delivery technique to
date; robust literature exists describing CED in both large animal models and humans [83].
In three reported canine studies [70,84,85] and three human studies [74,86,87], MNPs were
infused via a stereotactically placed catheter. However, despite CED being an improvement
over direct injection, there is still a need to improve delivery techniques to allow for faster
delivery and larger infusions, and further preclinical research is required to optimize
nanoparticle delivery and minimize reflux.

2.4. AMF

Following safe and accurate MNP delivery, exposure to an alternating magnetic field
(AMF) is required to excite the MNPs and generate hyperthermia. AMF is a magnetic field
(MF) with an amplitude that varies over time [88] and generates MNP heating primarily
through hysteresis loss. Briefly, in this process, AMF exposure induces cycles of magnetiza-
tion and demagnetization, as the magnetic domains present within the MNP continuously
switch to reorient with the fluctuating magnetic field [89]. Thermal energy production
then primarily occurs during the return to equilibrium (relaxation) of individual magnetic
domains, which, in order to overcome a rotational energy barrier, experience energy loss
in the form of heat [22,89]. In Néel relaxation, energy loss occurs as the magnetic vectors
reorient against the atomic lattice of the magnetic core [89,90]. In Brownian relaxation,
energy loss occurs as entire MNPs themselves experience friction from rotating within the
surrounding medium [89,90].
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AMF parameters are an essential consideration in MHT, as therapeutic heating only be-
gins upon the exposure of MNPs to the AMF. In accordance with the model of AMF-induced
MNP heat generation described by Rosensweig et al., the quantity of electromagnetic energy
that can be converted into heat increases with the MF amplitude and frequency [22,91]. In
theory, target lesion destruction is achieved by maximizing these two parameters. In clinical
practice, however, safety considerations impose an upper limit on these parameters. AMF
can generate electric current loops (known as eddy currents) which can cause the thermal
injury of healthy tissue and negatively impact MHT efficacy [92,93]. In prior clinical studies,
MHT tolerance has been shown to be limited by headaches, which could potentially be
mediated by temporary, heat-related increases in intracranial pressure [50,93,94].

To date, no long-term adverse effects of AMF or MHT treatment have been reported,
and much of the existing data suggest that MHT is an overall safe intervention [9,10,14,95].
Most AMF generators approved for use in MHT produce MFs with frequencies far below
the dangerous radio frequency range [10,96] and orders of magnitude below the frequencies
used in routine MRI [97]. Even so, no universal guidelines detailing the upper limits of safe
AMF exposure currently exist. Atkinson and Brezovich were among the first to investigate
safe frequencies in MHT [98,99]. Their clinical studies on healthy patients culminated in the
Atkinson–Brezovich criterion, which established a maximum MF-frequency product (H × f)
of 4.85 × 108 Am−1 s [100]. On the basis that MF strength could safely be increased given a
compensatory decrease in the target region size (i.e., a smaller tumor), Hergt et al., in 2007,
proposed the higher threshold of 5.00 × 109 Am−1 s−1 for a target region with a diameter
less than the 30 cm tested by Brezovich [98,99,101]. Up to this point, no clinical studies
on MHT in HGGs have surpassed this threshold; the maximum H × f used in two such
trials was 1.50 × 109 Am−1 s [9,50,75]. Pulsed heating has been shown to minimize the
non-specific eddy current heating [14,102,103]. While optimizing AMF parameters is crucial
for effective MHT, it is equally important to balance these parameters within safe limits
to avoid adverse effects, ensuring that the therapeutic benefits of MHT are maximized
without compromising patient safety.

2.5. MHT-Mediated Enhancement of Chemotherapy and Radiation

Hyperthermia therapy (HT) has been repeatedly shown to enhance the cytotoxic effects
of radiation therapy (RT) on tumor cells. Although the exact mechanism driving this en-
hancement remains uncertain, it is thought that HT initiates intracellular heat shock responses
that disrupt the repair of RT-induced DNA double-strand breaks [104–106]. Specifically,
it has been found that HT degrades the DNA repair pathway protein BRCA2 [107,108].
Moderate HT has also been shown to enhance perfusion, potentially enhancing the effects
of RT by reducing the radioresistant hypoxic cell population. In terms of chemotherapy,
hyperthermia has been shown to disrupt the BBB, potentially allowing for increased levels
of systemically administered chemotherapeutics to reach the tumor [109–112]. In addition
to enhancing the anticancer effects of chemotherapy and RT through heat, MHT possesses
other unique features that further promote tumor sensitization. MIONPs conjugated with
GBM-targeting antibodies were shown to radiosensitize and induce apoptosis in the highly
therapy resistant stem-like cancer cell populations thought to mediate local GBM recur-
rence [113]. Additionally, MNPs have been extensively studied as drug carriers that are to
deliver chemotherapy directly to the tumor. One group used TMZ-loaded SPIONs to de-
liver chemotherapy to cancer cells and found that the combination of MHT, chemotherapy,
and RT had the greatest anticancer effect compared to any monotherapy or two-modality
combination therapy [114]. Many other groups have also shown that MNPs can be effective
drug carriers for chemotherapy and found an added anticancer effect when giving MHT in
combination with chemotherapy [110,115–118].

2.6. MHT for Glioma Clinical Impact

Over the last three decades, a number of clinical trials have investigated the use of
MHT in HGG. A comprehensive list of these is outlined in Table 2. The earliest of these
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trials was performed in Japan in 1991 by Kobayashi and collaborators [74]. The team
conducted a trial implementing MHT on 25 patients with malignant brain tumors, 13 of
which were HGGs. MNPs were implanted with either intracavitary implantation or CED,
depending on the tumor size. MHT was associated with a positive response rate of 34.8%
in HGG patients following treatment, consistent with a complete or partial response rate
according to the Japanese Society for Cancer Therapy [119]. The response rate was positive
for five of the thirteen patients with HGG (38.4%).

Table 2. Comprehensive summary of human MHT studies for glioma, presented with the treatment
population, nanoparticle delivery modality, and study outcomes.

Study Authors Title N
(#)

MNP Delivery
Modality MNPs Used Study Outcomes

Kobayashi et al.,
1991 [74]

Interstitial hyperthermia
of malignant brain
tumors by implant

heating system:
clinical experience

25 Direct
Implantation + CED Fe-Pt Alloy

Successful treatment
completion in 23 of

25 patients with a 34.8%
overall response rate

to treatment

Stea et al., 1992 [87]

Treatment of malignant
gliomas with

interstitial irradiation
and hyperthermia

28 CED Ni-S Alloy

Demonstrated feasibility
of the interstitial MHT of

brain tumors with
ferromagnetic implants,
with a median patient

survival of 20.6 months
from diagnosis

Stea et al., 1994 [86]

Interstitial irradiation
versus interstitial

thermoradiotherapy for
supratentorial malignant
gliomas: a comparative

survival analysis

62 CED Ni-S Alloy

The hazard of dying
when treated with
hyperthermia plus

brachytherapy was 0.53
times that of the control

group treated with
brachytherapy alone

Maier-Hauff et al.,
2007 [80]

Intracranial
Thermotherapy using

Magnetic Nanoparticles
Combined with External

Beam Radiotherapy:
Results of a Feasibility
Study on Patients with

Glioblastoma Multiforme

14 Stereotactic Injection Aminosilane-coated
Fe3O4

Treatment with a median
maximum intratumoral

temperature of
44.6 degrees C was

tolerated in all 14 patients

Maier-Hauff et al.,
2011 [50]

Efficacy and safety of
intratumoral

thermotherapy using
magnetic iron-oxide

nanoparticles combined
with external beam

radiotherapy on patients
with recurrent

glioblastoma multiforme

66 Stereotactic Injection Aminosilane coated
Fe3O4

An overall survival after
a primary tumor

diagnosis of 23.4 months
and an overall survival
following a diagnosis of
first tumor recurrence of

13.4 months

Grauer et al.,
2019 [75]

Combined intracavitary
thermotherapy with iron
oxide nanoparticles and

radiotherapy as local
treatment modality

in recurrent
glioblastoma patients

6 Direct Implantation Aminosilane-coated
Fe3O4

Demonstrated
inflammatory reaction

surrounding the resection
cavity following

intracavitary MHT in
combination with
radiation therapy,

potentially triggering a
potent antitumor
immune response

This study was directly followed by two American trials in 1992 and 1994 performed
by Stea et al. [86,87]. The 1992 study was a feasibility trial performed in which 28 patients
with HGG were treated with a CED infusion of MNPs followed by MHT [87]. The median
survival was 20.6 months. The 1994 study compared outcomes in a group of patients
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treated with MHT plus brachytherapy versus the control group of brachytherapy alone [86].
The 25 patients in the MHT plus brachytherapy group were found to have a 0.53 hazard
ratio of death compared to the 37 patients in the control group.

Maier-Hauff et al. published a feasibility study in 2007 [80] followed by an efficacy trial
in 2011 [50] where patients with recurrent glioblastoma (GBM) had MNPs stereotactically
infused and were then treated with combined MHT and stereotactic RT. The efficacy
trial reported a median progression-free survival (PFS) of 13.4 in the 59 GBM (66 total)
participants as well as an overall survival (OS) of 23.2 months, both higher than the reported
standard-of-care averages (PFS = 6.9 months, OS = 14.6 months, respectively) [50,120]. The
brain autopsy studies showed particle aggregation at the sites of installation and the tumor
necrosis area. These studies served to catapult MHT into clinical practice in Germany.

Most recently, Grauer et al. [75] implanted MNPs into six recurrent HGG (rHGG)
patients through the “NanoPaste” technique, by which the resection cavity wall is coated
with layers of Nanotherm® using a hydroxycellulose mesh and fibrin glue. Histopathology
specimens of MNP-adjacent tumor areas showed sustained necrosis. The study saw two
patients (33%) that experienced a sustained response to treatment, with an overall survival
of >23 months.

Overall, the human MHT studies to date have shown consistently positive results.
However, there is still much investigation to be carried out to establish MHT as a clinical
norm worldwide. In addition to research, increased financial backing and collaboration
among academic institutions will be critical for the further development of MHT in the
treatment of HGG patients.

3. Discussion

MHT provides a potential therapeutic solution for the challenges associated with
rHGGs treatment and offers many advantages over other heat-based therapies commonly
used to treat brain tumors (i.e., laser interstitial thermal therapy, photothermal therapy).
This is in large part due to the fact that, following implantation, MNPs can be remotely
activated by an external AMF. The penetration depth of the AMF exceeds that of other
activation modalities commonly used in hyperthermia therapy (e.g., light or acoustic
waves), allowing for the heating of deeply seated tumors without necessitating further
invasive procedures [96]. Moreover, MNPs remain intracranially around the delivery
site for weeks to months, potentially allowing for multiple MHT sessions following a
single delivery of MNPs [75]. Thus, unlike other thermal therapies, which may only be
performed intraoperatively, multiple noninvasive sessions of MHT can be performed after
post-operative recovery and the initiation of chemotherapy and RT [121–123].

The promising potential of MHT has translated into encouraging preliminary results.
Preclinically, MHT has been shown to induce profound antitumor effects and enhance the
efficacy of chemotherapy and RT when used to treat HGGs. Furthermore, MNPs have
been used as multifunctional theranostic agents in applications such as cancer-targeting
drug carriers and MRI contrast agents. Clinically, multiple trials between 1988 and 2019
have shown that numerous sessions of MHT are possible in the brain following a single
intracranial delivery of MNPs. Overall, these studies reported that MHT was safe, conferred
a survival benefit, and potentially induced an antitumor immune response [9].

Despite these promising initial results and the unique advantages of MHT, clinical
progress has slowed over the past decade, particularly in the United States, where the most
recent clinical trial took place in 1994 [86]. Additionally, the most well-known European
producer of MNPs and AMF generators for clinical use, MagForce, filed for insolvency in
2022. This disparity between the promising preliminary data and the diminishing clinical
initiative is puzzling and begs the question of why such a discrepancy exists.

The answer is likely multifactorial. Just as MHT boasts many unique advantages, it
faces similarly unique challenges on its path towards clinical application. As described
here, the success of MHT depends on the optimization and proper implementation of many
distinct and complex components. For instance, designing biocompatible MNPs that are
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effective for simultaneous MHT and MPI in the brain is a complex process that comprises
an entirely separate field of research. The same is true of AMF and MPI device design, as
well as the development of intracranial MNP delivery techniques. MHT research spans
multiple disciplines and specialties, including physics, bioengineering, cancer biology,
clinical medicine, and surgery. As such, researchers with different expertise may work
in isolation, leading to slowed progress. In order for any new treatment modality to
be effectively translated into a clinical application, interdisciplinary collaboration and
cross-talk between these specialists are essential.

This challenge of facilitating such cross-talk is not exclusive to MHT—prior work in
other medical specialties has demonstrated the importance of integrating the efforts of re-
searchers and clinicians, who frequently function independently. One example is deep brain
stimulation (DBS), a technique in the rapidly evolving subfield of functional neurosurgery
that integrates aspects of neurology, psychiatry, neuroscience, and electrical engineer-
ing [124,125]. DBS has an established organizational framework for multidisciplinary
communication that enables independent regional groups of experts in the aforementioned
disciplines to communicate regularly and stay abreast of recent updates [126,127]. An-
other example is stereotactic radiosurgery (SRS), in which neurosurgeons work in concert
with radiation oncologists and medical physicists to plan and provide precise, targeted
RT [128,129]. Existing workflows for SRS involve close multidisciplinary collaboration
enhanced by the presence of established registries, databases, and conferences that facilitate
information sharing [130]. Efforts to advance MHT could benefit greatly from incorporating
similar strategies to foster collaboration between the physicists, neurosurgeons, and engi-
neers. The authors suggest organizing an MHT-specific symposium to kick-start crosstalk
among neurosurgeons, medical physicists, and other researchers within the field. The goal
of this symposium would be to generate connections amongst groups working towards the
same goal, clinical adoption.

Beyond addressing this research disconnect, MHT will need to build academic momen-
tum to push into the clinical trial phase. The recent advancement of the chemotherapeutics
field may provide valuable precedence. Two technologies discussed above—the CED
delivery of MNPs and magnetic MNP targeting—are both the subject of numerous clinical
trials studying their compatibility with chemotherapy [131–135]. The favorable clinical
trajectory of these shared technologies in the realm of chemotherapeutics can guide the
translation of MHT.

Additionally, MHT will need to address shortcomings in federal, philanthropic, and
industry funding. Primary brain cancer is rare compared to other types of cancers [136],
resulting in relatively less funding. To address this, MHT may benefit by leveraging the
steady growth of nanomedicine as a research area and market. At the national level,
the National Nanotechnology Initiative (NNI) is an ongoing research and development
initiative established by the United States government in 2000, with an initial funding of
approximately USD 464 million [137] in 2001. Since then, the nanomedicine subfield has
experienced steady growth, with the global nanomedicine sector—valued at USD 53 billion
in 2009 [138]—more than tripling by 2022 to USD 170 billion [139]. This major financial
investment the field of nanomedicine is projected to receive can potentially address many
key obstacles hindering the development of MHT covered here, including the recruitment of
experts (and, potentially, the formation of interdisciplinary teams of specialists), the design
and production of specialized nanoparticles and AMF generators, and the experimental
confirmation of treatment safety and efficacy [140].

Although there are certain challenges facing its clinical application, the future of
MHT is bright. The strong body of preliminary pre-clinical and clinical research has
repeatedly demonstrated that MHT may confer additional survival benefits, enhance the
current standard of care for high-grade brain tumors, and induce cancer cell death through
a variety of mechanisms. Significant work is currently being done to address many of
the limitations addressed in this review. Previous clinical trials have reported certain
therapy-related toxicities due to the amount of delivered magnetic material, the migration
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of magnetic material during heating, and/or the need to insert invasive temperature
probes into the patient’s brain to monitor temperature. At present, numerous groups
aim to address these issues by designing MNP constructs optimized for both MPI and
MHT, potentially enabling the non-invasive real-time thermometry and imaging of MNPs
and more homogenous heating at lower MNP doses. Moreover, human-scale MHT-MPI
systems are in development, and trials of these machines are the logical next step in the
road towards clinical application. Additional basic science studies are needed to further
elucidate the underlying biological mechanisms driving the MHT treatment response and
help clinicians to understand how best to integrate MHT into the current standard of care
for refractory brain tumors. It is clear that effectively translating MHT from the bench to the
clinic is a challenging problem that requires significant progress across multiple disciplines.
Although it may appear as if progress has stalled, it is more likely that addressing the
shortcomings discovered from previous clinical trials is complex and requires significant
research. It is important to recognize that MHT is a highly technology-dependent therapy,
and the development of these technologies to the level of clinical use understandably
takes time.

4. Conclusions

MHT is a promising treatment for HGGs that has not yet realized its full potential de-
spite encouraging preclinical and clinical results. In this review, we described the essential
components of the MHT workflow (nanoparticle composition, nanoparticle delivery to
areas of interest, and AMF properties and generation), discussing the current state of each,
areas of ongoing work, as well as opportunities for future development. We identify multi-
ple factors hindering the clinical translation of MHT, including limited interdisciplinary
collaboration and insufficient funding. We propose solutions that draw parallels to other
fields in medicine that have experienced rapid evolution in recent years. Efforts to advance
MHT in the preclinical and clinical realms are promising and warrant further attention and
financial support from academic and industrial stakeholders in order to improve the care
and outcomes of patients with HGGs.
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